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Abstract

We investigate a game played on a hypergraph H = (V| E) by two players, Bal-
ancer and Unbalancer. They select one element of the vertex set V' alternately until
all vertices are selected. Balancer wins if at the end of the game all edges e € E
are roughly equally distributed between the two players. We give a polynomial time
algorithm for Balancer to win provided the allowed deviation is large enough. In
particular, it follows from our result that if H is n-uniform and has m edges, then
Balancer can achieve having between n/2 — \/In(2m)n/2 and n/2 4+ /In(2m)n/2 of
his vertices on every edge e of H. We also discuss applications in positional game
theory.

1 Introduction

In the classical theory of Maker/Breaker positional games a hypergraph H = (V| E) is
given and the players, Maker and Breaker, take turns in occupying a previously unoccupied
element of the “board” V. The goal of Breaker is to prevent Maker from fully occupying an
edge. The well-known criterion of Erdds and Selfridge [4] provides a strategy for Breaker
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to win. In a more general setting, the criterion of Beck [2] ensures that Breaker can select
more than ale| elements of each edge e € E, for some « > 0.

In these Maker/Breaker-type games Breaker does not care about fully occupying an edge
himself. In the so-called Avoider/Forcer-type games this is the only thing player “Avoider”
cares about not doing. More precisely Avoider wins the game against Forcer if at the end
of the game he does not occupy any edge. More generally, Avoider wins if he occupies less
than (1 — a)|e| elements from any edge e € E, for some o« > 0. Lu [7] obtained criteria
similar to the ones of Erdds and Selfridge, and of Beck for this case.

In the present paper we investigate a game where one of the players, called Balancer, must
achieve the goals of both Breaker and Avoider. Balancer’s main difficulty is that while
as Breaker he cannot hurt himself by selecting any particular vertex, as Avoider he can.
Similarly, as Avoider he cannot hurt himself by not occupying any particular vertex while
as Breaker he can. The classical Erdés-Selfridge-type criteria do not immediately generalize
to this setting.

Now we give a precise formulation of our game. Given a hypergraph H = (V, E), the game
Discrepancy is played by two players, called Balancer and Unbalancer. They take turns
in occupying previously unoccupied elements of V. The game ends when all elements are
occupied by one of the players. Balancer’s aim is to achieve a situation where each edge
e € E(H) has about the same number of Balancer’s and Unbalancer’s vertices. In order
to quantify this, assume that F(H) = {e1,...,en}, and in addition to H a target vector
b= (by,...,bn}, bj >0, is given. Let B and U be the subsets occupied by Balancer and
Unbalancer, respectively, at the end of the game. Then Balancer wins the (H,b)-game if
for every edge e; € E(H) one has: |[|[BNe;j| —|UNej|| < b;, otherwise the game is won by
Unbalancer.

A more convenient (yet completely equivalent) game description is as follows: Balancer
labels each of his vertices by +1, Unbalancer’s labels are —1. Let f : V — {—1,+1} be
the labeling in the end of the game. Define f(e;) = ZUE% f(v). Then the game is won by

Balancer if and only if |f(e;)| < b; for every j =1,...,m.

The study of games where both Breaker- and Avoider-type goals should be achieved by
one of the players was first suggested in [6] and a method was developed to deal with such
situations. In particular a player can successfully create a pseudo-random graph of density
1/2 and consequently, as it follows from properties of pseudo-random graphs [5], create, for
example, (1/4 — o(1))n pairwise edge-disjoint Hamiltonian cycles.

In this note we suggest a completely different approach, whose correctness is proved with
basically no calculation. An added advantage of our strategy is that it supplies a polynomial
time algorithm for Balancer to win even if Unbalancer has unbounded computational power.
Our main result is the following.

Theorem 1 Let H = (V, E) be a hypergraph with edge set E = {ey,...,en}. Let further



b = (by,...,bn) be a target vector. Assume that |V| is even and Balancer moves first.
Then he has a winning strategy for (H,b) provided
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In particular Balancer has a winning strategy if b; < \/21n(2m)le;| for j=1,...,m.
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In a sense the theorem gives a strategy for Balancer to create a pseudo-random coloring
of the board while playing against an adversary. The deviation between the colors in each
set is comparable to the one one would get from a random coloring.

A stronger result of a special case of Theorem 1 was proved in [6, Lemma 3.]. There it
is shown that if b; = |e;| (i.e. Balancer’s goal is that no hyperedge is “monochromatic”),
then a condition Y7 27lel < 1/4 suffices for Balancer to win.

2 Playing Discrepancy

In this section we present two proofs of the main result. The first one involves essentially
no computation, but gives a slightly weaker result obtained by replacing the 1/2 in the
statement of the theorem by 1/4. The second one requires a limited amount of computa-
tion, but proves the slightly stronger assertion as stated in the theorem and has another
algorithmic advantage explained before the proof.

First proof of Theorem 1 (weaker version). We will call the conditions f(e;) < b; a
positive condition and f(e;) > —b; a negative condition. Balancer wins if at the end of the
game all of these conditions are met. We define the weight VVjJr (at the start of the game) of
the j-th positive condition as follows: Let X, ..., X, be independent uniform +1 random
variables. Let VV;r be the probability that X; + ...+ X; > b; for some 0 < i < |e;|. For a
negative condition the weight 1V, is the probability that some X; +...+ X; < —b;. When
1 = 0 the sum is interpreted as zero.

We define the weight W to be the sum of all the weights W;“ and W,". Observe that the
condition of the theorem (with 1/2 replaced by 1/4) implies W < 1. Indeed, for VV;r we
need to estimate the probability that the random walk of length |e;|, starting at zero ever
exceeds b;. Notice that by the "mirror principle” this is less than twice the probability
that the random walk of length |e;| ends up bigger than b;, which has probability at most
b2
__J
e *%! by the Chernoff bound. The estimation of W} is analogous.
Hence the following claim implies Theorem 1.

Claim. If the initial weight W satisfies: W < 1, then Balancer has a winning strategy.



Proof. Assume that in the beginning of the game all vertices v € V(H) are labeled f(v) =0
by f. Then as the game proceeds Balancer changes the labels of his vertices from 0 to 1,
while Unbalancer changes his from 0 to —1. We extend the definition of the weight of a
condition for an arbitrary stage of the game. Let f : V — {0,—1,+1} denote a current
labeling. For an edge e; € £ define

m; = {vees: flv) =0}].

In case a condition was violated earlier in the game (irrespective of the current value of
f(e;)) let the weight of the condition be 1. Otherwise, we define the weight (for the positive
condition) as the probability that f(e;) + X7 + ...+ X; > b;, for some 0 < ¢ < m; where
the X; = £+1 are independent and uniform random variables. The definition of the weight
for a negative condition is similar. When ¢ = 0 the sum is f(e;) so the weight is 1 if
the condition is currently breached. The weight W is the sum of the weights over all the
conditions j. Balancer’s strategy is now simple to describe: He always moves so as to
minimize the weight. At the end of the game the weight is simply the number of conditions
that have been breached at some point during the game. Hence to infer the theorem it
suffices to show that the weight does not increase in a single round.

Observe that for any unclaimed vertex x, the decrease in the value of W if z is taken by
Balancer is equal to the increase of the value of W if x is taken by Unbalancer. Indeed,
for each condition, its weight W is the average of the condition’s weight after Balancer
takes x and its weight after Unbalacer takes x. Hence it suffices to show that after an
arbitrary move = by Balancer, Unbalancer, by moving y # x, does not increase the weight
by more than he could have by moving y before the move of Balancer. Since the weight
is the sum of the weights of the conditions it suffices to show this for a single condition j.
All cases are trivial except when both z,y are in the set e;. Say the original weight of the
condition was W and let W* be the new weight after Balancer takes x and WY be the new
weight after Unbalancer takes y (but without a move by Balancer!) and W*¥ be the new
weight after they both move in the set. So we would like to infer Wev — W < WY —W or
equivalently W= < W<*4+W¥—W. Note that W = w since the weight is the average
of the new weights with a random first move. Thus we would like to see Wev < W. Notice
that looking at the definition of the weight this is tautologicall The original W was the
probability that a random walk starting at a point of a certain length (the number of still
unchosen vertices) ever reaches a boundary while W< is the probability that the random
walk starting at the same point which has length two less ever reaches the boundary. O

We next present another proof of Theorem 1 (in its strong version), which contains some
limited calculations compared to our first proof, but has the advantage that when actually
playing, Balancer can calculate the value of each weight very easily (as opposed to the
method of the first proof, where the weight of a condition is defined by a probability that
is harder to compute).

Second proof of Theorem 1.



The proof is inspired in part by the method of conditional expectations with pessimistic
estimators, see [8] or [1], Chapter 15.

Let a be a real parameter. Define a function

eOé.Z‘ + e—ax

G(z) = cosh(ax) = 5

Here are two basic properties of G(x). Both are straightforward to verify and can be found,
for example, in Chapter 15 or Appendix A of [1].

G+1)+Gx—-1) G(2)G(1) ; (1)

2
1<G(1)<e7 . (2)

Recall the definition of f from the first proof and for an edge e; € E define

fi = > fw);

vee;

¢; = Hvee: flv)e{-1,+1}}.

Let also
Cljl' —ajx
Gj(x) = cosh(a,x) = %,
where o = % Define now the potential function ¢ by:
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The intuition behind this choice is given by the following observation: for every edge e;, if
¢; is its current potential, and a label of a vertex v € e; with f(v) = 0 is chosen randomly
with Pr{f(v) = 1] = Pr[f(v) = —1] = 0.5, then by Property (1) of G; the expected value
of the new potential ¢} is ¢;. Indeed,

qo G+ D)+ G5 -1 - Gilfy)
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Hence, for any unchosen vertex v € V/(H), the decrease in the value of ¢, when v is taken
by Balancer, is equal to the increase of the value of ¢ when v is taken by Unbalancer.

Here is a strategy for Balancer: he picks a previously unchosen vertex v € V(H) and labels
it f(u) = 1 so as to minimize the new value of the potential function. We claim that if
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Balancer follows this strategy, then after each round the value of the potential function
does not increase.

It suffices to show that after an arbitrary move by Balancer, Unbalancer cannot increase the
value of the potential function by more than he could have before the move of Balancer.
Indeed, by (3) and the sentence following it, Balancer, choosing an optimal vertex, can
decrease the value of ¢ by at least the same amount Unbalancer increases with his move.

Since the potential function ¢ is a linear combination of potentials ¢;, it is enough to check
this for each edge e; separately. It is easy to see that the only non-trivial case is when
both vertices (x of Balancer and y of Unbalancer) belong to e;. We are thus to verify the

inequality
Gilf)) G+ _Gifi=1) _ Gi(f) (4)
G~ Gy = G Gyl

or equivalently,
G;(f;) — G(f; + 1)G;(1) < Gi(f; — 1)G;(1) — Gi(f;)G3(1) .

Since by (3) G;(f; —1)G;(1) +G;(f; +1)G;(1) = 2G4(f;)G3(1), the last inequality reduces
to G;(f;) < G;(f;)G3(1), which is valid as G;(1) > 1 by (2).

_ b
Observe that before the game starts ¢ = > 7" e *%! <1/2. Hence if Balancer follows the
suggested strategy, he can achieve ¢ < 1/2 in the end. This implies:

i Gi(fy)
pj=e ‘]'Wﬁlﬂ

for each edge e; of H. Therefore by (2)

coilil 1 % 2 oy
5 < 5ezweeJIGj(l)\ejl < ZefGltTT
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Therefore, Balancer wins, as claimed. O

3 Applications and remarks

1. The first proof of the theorem works under slightly more general circumstances, i.e.
when the conditions are not necessarily required to be symmetric or possibly only one
of the positive and negative conditions are required. More formally, let (a;) and (b;)



be a sequence of negative and positive integers, respectively, not necessarily defined
for every 7 = 1,...,m. Then Balancer can achieve that at the end of the game
a; < f(ej) < bj for every j =1,...,m, provided

2 2
a; b
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Note that the second proof trivially implies a slightly stronger assertion: Balancer
can ensure that |f(e;)| < min(|a;|,b;) for all j.

<
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. If Unbalancer moves first and/or the board is of odd size, than the obtained target
vector (b;) might be an additive constant 1 or 2 away from the one provided by the
formula of Theorem 1.

. Theorem 1 is obviously tight up to a multiplicative factor when H = (75”12) A less
trivial setting is the so-called “maximum degree game”. There V' consists of the edges
of the complete graph on [n] and E is the (n—1)-uniform set system consisting of the n
stars. Theorem 1 implies that Balancer can achieve having all of his degrees between
% —/nIn(2n)/2 and § + y/n1n(2n)/2. This improves the error term obtained in [6]
for this problem by a constant factor. Beck [3] proved that Unbalancer can get one
of his degrees to be at least n/2 + ¢y/n, i.e., Theorem 1 is tight up to a logarithmic
factor in this case.

. The statement of Theorem 1 supersedes the method of [6] in several aspects. Namely
it applies to the non-uniform case, it is more straightforward to apply, while giving
comparable and often better results. To demonstrate this we derive a variant of one of
the main results of [6] with an improved constant factor as a corollary of Theorem 1
of our paper. As it was shown in [6] the multiplicative constant we obtain in the
following corollary in the bound for € is at most /2 away from being best possible.

Corollary 1 (compare to [6, Theorem 1]) Let ¢ > (logn/3n)"*. Playing against
Breaker on the edges of K,, Maker can build a graph G with the following properties.

— P1: All degrees of G deviate from n/2 by at most \/nlog(4n)/2.
— P2: Any pair S, T of disjoint subsets of [n| with |S|,|T| > en is e-unbiased, i.e.

they satisfy 57 1
€glo,

NI
where eq(S,T') is the number of S — T edges in G.
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Proof. Let 'H; be the hypergraph whose members are the n stars of size n — 1 in K.
The members of the hypergraph H, are the sets [S, T of edges for an arbitrary pair
S, T of disjoint subsets of the vertex set with |S| = |T'| = en, where [S, T represents



the set of all edges connecting a vertex of S with a vertex of T. An easy averaging
argument shows that it is enough to guarantee property P2 for subsets of size exactly
en. Now let Maker act as Balancer in a game of Discrepancy on the hypergraph
H1UHs, with a target vector b; = y/2nlog(4n) for e; € Hy and b; = 2¢|S||T| = 2e>n?
for e; € Hy. A straightforward substitution into Theorem 1 gives the corollary. O

5. In [9] Székely studies the function Ay(F), which is the largest bias Red can achieve
on a member of F playing against Blue. More precisely, let (X, F) be a hypergraph.
Red and Blue select one element of the board X alternately. Then Ay(F) is the
largest integer k£ such that Red has a strategy to occupy k elements more of some
member A of F than Blue at some point during the game.

In part (i) of his Corollary he shows that if F is n-uniform, then Ay(F) < en'/2log'/? | F|.
Theorem 1 provides a similar result, but gives not only a one- but a two-sided dis-
crepancy bound.

In part (ii) of his Corollary Székely shows that if n = maxacr|A|, then Ay(F) <
en?/3log!/? |F|. He later uses this result to derive an upper bound when the board
X, is the n-by-n integer lattice and F,, is the family of all maximal sets of lattice
points contained in a line segment. Theorem 1 now easily implies an improvement
of the Corollary and thus of the Theorem of Székely on line segments. Namely,
Ao(F) < en'/?log!/? | F| in both cases. Actually an even stronger result is true, i.e.
Blue can achieve this bound not only for one-, but for two-sided discrepancy against
Red. Moreover the error term is not absolute, but depends on the size of the actual
line segment.

4 An open question

We do not know how to generalize our approach to the biased game on H. In the (p : q)-
game Balancer selects p and then Unbalancer g elements of the board. Balancer’s goal is
to have around p/(p + q) vertices in every edge. It would be very interesting to obtain a
criteria for Balancer’s win. Such a result would have many applications as it can be used
to create a pseudo-random graph of density p/(p + ¢) which in turn guarantees Balancer’s
win in many other games (see [6]).
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