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Abstract

Continuing and extending the analysis in a previous paper [9], we establish
several combinatorial results on the complexity of arrangements of circles in the
plane. The main results are a collection of partial solutions to the conjecture
that (a) any arrangement of unit circles with at least one intersecting pair has
a vertex incident to at most 3 circles, and (b) any arrangement of circles of
arbitrary radii with at least one intersecting pair has a vertex incident to at
most 3 circles, provided the number of intersecting pairs is significantly larger
than the number of circles times the maximum cardinality of a subset of circles
incident to a fixed pair of points.

1 Introduction

In this paper we study the combinatorial complexity of arrangements of circles in the
plane. The main motivation for our study is the following conjecture, some of whose
variants have been posed by ???. This is an extension of the classical Sylvester-Gallai’s
problem [7] to the case of circles.
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Conjecture 1.1. (a) Let C be a finite family of unit circles in the plane, at least
two of which intersect. Then there exists an intersection point that is incident
to at most three circles of C.

(b) Same as (a), under the additional assumption that every pair of circles of C
intersect.

(c) Let C be a finite family of arbitrary circles in the plane, such that at least two of
them intersect and the number P of intersecting pairs satisfies P ≥ β|C|q, where
β is a sufficiently large constant and where q is the maximum size of a pencil
of C, namely, a subset all of whose elements are incident to the same pair of
points. Then there exists an intersection point that is incident to at most three
circles of C.

(d) Same as (c), under the additional assumption that every pair of circles of C
intersect (only assuming that C is not a single pencil).

Conjecture 1.1(b) has been proven in a preceding paper of Pinchasi [9]. In fact,
it has been shown there that if C consists of at least 5 pairwise-intersecting unit
circles then there exists an intersection point incident to just two circles. That paper
also gives an example of 4 pairwise-intersecting unit circles where every intersection
point is incident to 3 circles. This example can be extended to yield a family of any
number of unit circles (not every pair of which intersect) where every intersection
point is incident to 3 circles.

In this paper we prove various special cases of Conjecture 1.1.

We first study Conjecture 1.1(d), and prove it in the case that n, the size of C, is
sufficiently large (see Theorem 5.1). We then tackle Conjecture 1.1(a), and prove it
in the case that n is sufficiently large and the number of pairs of intersecting circles
in C is at least βn, for an appropriate absolute positive constant β (see Theorem 7.1).
Finally, we give a proof of Conjecture 1.1(c) (see Theorem 10.1). We also show that
part (c) of the conjecture may fail if P ≤ |C|q/2.

Although the results that we have obtained do not solve the conjecture in full
generality, they come close to it. Specifically, part (a) is still open when the number
P of intersecting pairs of circles is smaller than β|C|, for some constant β, and it can
be reduced to a subproblem that involves only O(1) circles, which can in principle
be solved by an exhaustive search. Part (b) is fully solved in [9]. The open problem
in part (c) is to lower the constant β provided by the current proof (as noted above,
lowering it too much may cause this part to be false). Finally, part (d) remains open
for small values of |C|.

Some of the technical tools that we develop for our solutions may be of independent
interest. The main set of tools deals with faces of degree 2 in the arrangement A(C) of
C. With the possible exception of the unbounded face, these faces are either ‘lenses’
(contained in the interiors of the two incident circles) or ‘lunes’ (contained in the
interior of one incident circle and in the exterior of the other). We derive various
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upper bounds for the number of these faces: In case (b), it was shown in [9] that the
number of lunes is at most 3 and the number of lenses is at most n. In case (d), we
show that the number of lunes is at most 2n− 2 and the number of lenses is at most
18n. In case (a), we show that the number of lenses is at most O(n4/3 log n) (and the
number of lunes is at most n). In case (c), we show that the number of lenses and
lunes is O(n3/2+ε), for any ε > 0 (where the constant of proportionality depends on
ε).

The study of lenses and lunes is reminiscent of the study of lenses in arrangements
of ‘pseudo-parabolas’ by Tamaki and Tokuyama [14]. In fact, their more general upper
bound of O(n5/3) applies to all the cases that we consider here, but, using the special
geometry of circles, we are able to obtain the above-mentioned improved bounds.

IT MAY BE WORTH TO APPLY OUR BOUNDS TO THE PROBLEMS THAT
[14] AND A SUBSEQUENT PAPER I HAVE WITH SARIEL STUDY: k-LEVELS,
CUTTING CIRCLES INTO PSEUDO-SEGMENTS, ETC.

Another collection of results that may be of independent interest relates the num-
ber V of vertices in an arrangement of circles and the number P of intersecting pairs
of circles. Specifically, we first show that in an arrangement of unit circles one always
has V = Ω(P ). AND FOR GENERAL CIRCLES?!

The paper is organized as follows. After introducing some notations in Section 2,
we prove the above-mentioned linear upper bounds on the number of lunes and lenses
in arrangements of pairwise-intersecting circles. The case of lunes is analyzed in
Section 3 and the case of lenses is handled in Section 4. We then show, in Section 5,
the existence of an intersection point incident to at most 3 circles, for arrangements
of pairwise intersecting general circles, assuming that n is sufficiently large and no
pair of points is incident to all circles.

We then consider arrangements of unit circles, such that not every pair of them
necessarily intersect. We show in Section 6 that the number of lenses in such an
arrangement is O(n4/3 log n), and then go on in Section 7 to show the existence of an
intersection point in such arrangements that is incident to at most 3 circles, provided
the number of pairs of intersecting circles is at least βn, for a sufficiently large constant
parameter β.

We then derive, in Section 8, several combinatorial results involving vertices of
high degree in an arrangement of circles.

In Sections 9 and 10 we return to the case of arrangements of circles of arbitrary
radii. In Section 9 We establish an upper bound of O(n3/2+ε), for any ε > 0, on the
number of lenses and lunes in such an arrangement. We also obtain an improved
bound that depends on the number P of intersecting pairs of circles in C. We then
exploit this bound in showing that such an arrangement has a vertex incident to at
most 3 circles, provided that P is significantly larger than n times the size of the
largest pencil in C.

Finally, in Section 11 we exploit the machinery developed in the paper and prove,
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Figure 1: A lens and a lune

for an arrangement of n unit circles, that V = Ω(P ).

2 Preliminaries

Throughout this paper C denotes a finite family of circles in the Euclidean plane.

We usually denote a circle by the letter C, possibly with some modifier (subscript
or superscript). The closed disk bounded by that circle is denoted by D, and its
center by o, with the same modifier.

Definition 2.1. Let C be a family of circles in the plane. Let C1, C2 be two circles
in C. We call D1 ∩D2 a lens if no circle in C intersects the interior of D1 ∩D2. We
then say that C1 and C2 support this lens.

We call D1\int(D2) a lune if no circle in C intersects the interior of D1\int(D2).
The arc C1 \ int(D2) is called the outer arc of the lune, and we say that C1 supports
the outer arc. The arc C2 ∩D1 is called the inner arc of the lune, and C2 ia said to
support that arc.

Whenever we refer to two intersecting circles we mean two circles that intersect
in two points.

WHAT ABOUT TANGENCIES??

For a circle C and points a, b on C which are not antipodal, we denote by
_

C(ab)
the closed smaller arc of C delimited by a and b.

For two distinct points a and b in the plane, we denote by ab the line through a
and b. We denote by

−→
ab the closed ray that emanates from a and contains b. The

closed line segment between a and b is denoted by [ab].

Let p, q, r be three noncollinear distinct points in the plane. We denote by ∠pqr
the convex region bounded by the rays −→qp and −→qr. The angular measure of ∠pqr is
denoted by ]pqr. Therefore 0 < ]pqr < π.

In a previous paper [9], we have proved the following result.

Theorem 2.2 (Pinchasi [9]). A family of n pairwise intersecting unit circles in the
plane determines at most 3 lunes and at most n lenses.

In the first part of this paper, in preparation for our attack on Conjecture 1.1(d),
we consider families C of n pairwise-intersecting circles of arbitrary radii in the plane,
and extend the preceding result to such families. Specifically, we show:

Theorem 2.3. A family of n pairwise intersecting circles in the plane determines at
most 2n− 2 lunes.
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Theorem 2.4. A family of n pairwise intersecting circles in the plane determines at
most 18n lenses.

3 The Number of Lunes in a Family of Pairwise-

intersecting Circles

In this section we prove Theorem 2.3. Let C be a family of n pairwise interseting
circles in the plane. Define a graph G whose vertices are the centers of the circles in
C, and whose edges connect pairs of centers whose associated circles support the same
lune. By drawing the edges of G as straight segments, we obtain a plane embedding
of this graph.

Definition 3.1. We say that C is a pencil if there are two points that belong to every
circle in C.

Observe that unless C is a pencil, there are no multiple edges in G. Indeed, suppose
to the contrary that there exist C1, C2 ∈ C such that both L1 = D1 \ int(D2) and
L2 = D2 \ int(D1) are lunes. Denote the intersection points of C1 and C2 by a, b.
These points partition C1 into two arcs, one of which is the outer arc of L1 and the
other is the inner arc of L2. Hence neither of the relative interiors of these arcs meets
another circle, so all circles in C pass through a and b.

Lemma 3.2. G is planar.

Proof: We will show that the plane embedding of G defined above has no pair of
crossing edges. This will be a special case of the following more general lemma, which
will be needed when we shall later consider families that are not pairwise intersecting.

Lemma 3.3. Let C1, C2, C3, C4 be four distinct circles, such that both L1 = D2 \
int(D1) and L2 = D4 \ int(D3) are lunes, and such that all pairs of these circles, with
the possible exception of the pair (C2, C4), are intersecting. Then the line segments
[o1o2] and [o3o4] do not intersect.

Proof: We need the following simple observation:

Observation 3.4. Let C1 and C2 be two intersecting circles, and denote by p the
center of the arc C1 ∩D2. Then o2 lies on the ray −→o1p.

Since L1 is a lune, either D3 contains L1 or D3 is disjoint from the interior of L1;
the same two possibilities hold for D4. We consider the following subcases:

Case 1: D3 is disjoint from the interior of L1. We have to show that o4 does not lie
inside the convex unbounded region K that is bounded by the rays −−→o3o1, −−→o3o2 and by
the line segment [o1o2]. Denote by a, b the intersection points of C1 and C2. Denote
by p the intersection point of −−→o3o1 with C1 that lies outside D3. The point p is the
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Figure 2: Case 1

Figure 3: Case 2

farthest point from o3 on C1 (see Figure 2). It suffices to show that o4 is not inside
∠o2o1p.

Let γ be the arc C1∩D3. Clearly, p /∈ γ. Let q be the midpoint of the arc C1∩D2;
it is the intersection point of −−→o1o2 with C1. Since D3 is disjoint from the interior of
L1, we have q /∈ γ. Denote by δ the arc C1 ∩D4. Observe that δ ⊆ γ, for otherwise
C1 would intersect the interior of D4 \ int(D3), contradicting the assumption that L2

is a lune. Hence, by Observation 3.4, o4 is on a ray that emanates from o1 and crosses
γ.

We claim that γ, and thus δ too, is disjoint from
_

C1(pq). To show this, denote by
r the midpoint of γ; clearly, r is the point on C1 antipodal to p. recall that both p

and q do not lie in γ. Therefore, if γ ∩
_

C1(pq) 6= ∅, then γ ⊆
_

C1(pq). This however
is impossible, since p and r are antipodal points on C1 and thus cannot both lie in
_

C1(pq).

Hence, o4 does not lie on any of the rays that emanate from o1 and cross
_

C1(pq),
i.e, o4 /∈ ∠o2o1p.

Case 2: D3 ⊃ L1 and D4 is disjoint from the interior of L1. Rotate the plane so
that the line o1o2 becomes horizontal, and o2 is to the right of o1. Without loss of
generality, assume that o3 is in the closed halfplane above o1o2. We have to show that
o4 does not lie inside the convex unbounded region K that is bounded by the rays
−−→o3o1, −−→o3o2 and by the line segment [o1o2]. Denote by a, b the intersection points of C1

and C2, so that a is below o1o2. Denote by p the intersection point of −−→o3o2 with C2

that lies outside D3; this point is farthest from o3 along C2.

Denote by u and v the intersection points of C3 and C2, so that a, u, v, b are in
clockwise order along C2 (see Figure 3).

Denote by δ the arc C1 ∩D4. Denote by x, y the intersection points of C3 and C1,
so that x, u, v, y are in clockwise order along C3 (by assumption, both u, v lie inside
C1, so no interleaving of x, y with u, v is possible). Denote by γ the arc C1∩D3. The
points x and y are the endpoints of γ. Clearly, δ ⊆ γ, for otherwise, arguing as above,
C1 would intersect the interior of D4 \D3, contradicting the assumption that L2 is a
lune. Denote by q ∈ C1 the intersection point of −−→o1o2 with C1; this is the midpoint of
the arc C1 ∩D2.

Assume to the contrary that o4 lies inside the region K. Let r be the midpoint of
δ. Since o4 is below or on o1o2, we conclude, by Observation 3.4, that r is also below

or on o1o2. Therefore, r ∈
_

C1(xq).

Since we assume that D4 is disjoint from the interior of L1, we have r ∈
_

C1(xa)
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Figure 4: Case 3

and also δ ⊆
_

C1(xa).

We next claim that D4 cannot contain any of the points a, u, x as an interior point.
Indeed, a cannot be interior to D4, for otherwise D4 would intersect the interior of
L1, which is impossible. If x were interior to D4 then D4 would intersect the interior
of the arc C1 \D3. Therefore, C1 would intersect the interior of D4 \D3, contradicting
the assumption that L2 is a lune. Finally, if u were interior to D4 then D4 would
intersect the interior of the arc C2 \D3. In this case C2 would intersect the interior
of D4 \D3, contradicting the assumption that L2 is a lune.

We may also assume that C3 ∩ D4, which is the inner arc of L2, is contained in
D1. Otherwise, D1 would be disjoint from L2, so we could apply Case 1, switching
the roles of L1 and L2.

Let e ∈ D1 be one of the endpoints of the arc C3 ∩D4. Denote by ∆ the region

bounded by
_

C1(xa),
_

C2(au),
_

C3(ux).

¿From the convexity of D4, the line segment [er] is contained in D4. It intersects

the boundary of ∆ at r and at another point f which lies either on
_

C3(ux) or on
_

C2(au) (because e ∈ int(D4)).

Assume first that f ∈
_

C3(ux). By the preceding claim, we have C3∩D4 ⊂
_

C3(ux).

By Observation 3.4, o4 lies on a ray that emanates from o3 and crosses
_

C3(ux). In
other words, o4 ∈ ∠uo3x. Therefore, o4 /∈ ∠po3o1, a contradiction.

Assume next that f ∈
_

C2(au). The preceding claim implies that C2∩D4 ⊂
_

C2(au).

By Observation 3.4, o4 lies on a ray that emanates from o2 and crosses
_

C2(au).
Therefore, o4 /∈ ∠Po2o1, again a contradiction.

Case 3: D3 ⊃ L1 and D4 ⊃ L1. Again, rotate the plane so that the line o1o2 is
horizontal and o2 is to the right of o1, and assume that o3 is in the closed halfplane
above o1o2. We have to show that o4 is not inside the convex unbounded region K
that is bounded by the rays −−→o3o1, −−→o3o2 and the line segment [o1o2].

Note that in this case C4 and C2 must intersect. Indeed, we have assumed that
D4 ⊃ D2 \ int(D1). Thus, if C4 does not interset C2 then D4 ⊃ C2. But then, since
C2 \D3 6= ∅, C2 has to intersect the interior of L2 = D4 \ int(D3), which is impossible.

Denote by γ the arc C2 ∩D4. Denote by p the intersection point of −−→o3o2 with C2

that lies outside D3; this is the point on C2 farthest from o3.

Clearly, p /∈ D3. Since L2 = D4 \ int(D3) is a lune, it follows that p /∈ D4 (for
otherwise C2 would have to intersect the interior of L2). We conclude that p /∈ γ.
Denote by q, s the intersection points of o1o2 with C2, so that s is outside D1; the
point s is the midpoint of the arc C2 \ D1. Since D4 ⊃ L1, we have s ∈ γ. Denote
by r the midpoint of γ. Since o3 is above or on o1o2, p is below or on o1o2. The
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point r cannot lie on
_

C2(qp), for otherwise, since p /∈ γ, the subarc of γ between r
and s contains the intersection of C2 with the closed halfplane above o1o2, which is
impossible since r is the midpoint of γ. Hence, o4, which lies on −→o2r (by Observation
3.4), is outside ∠po2o1. This completes the proof. 2

The planarity of G already implies that C determines at most 3n−6 lunes (unless
C is a pencil, in which case G contains multiple edges; however, in this case C is easily
seen to have exactly 2n− 2 lunes). We can, however, improve this bound and make
it tight (2n− 2), by observing that G is almost a bipartite graph. This is the goal of
the remainder of this section.

Claim 3.5. Let C,C1, C2 be three distinct pairwise-intersecting circles. Suppose that
L1 = D1 \ int(D) and L2 = D \ int(D2) are lunes. Then C2 passes through the two
intersection points of C and C1. Moreover, the inner arc of L1 is the outer arc of L2.

Proof: Denote by a and b the intersection points of C and C1. The arc C2∩D is the
inner arc of L2, hence C1 and C2 cannot intersect inside the interior of D. The arc
C1 \D is the outer arc of L1, hence C1 and C2 cannot intersect outside D. Therefore
C1 ∩ C2 ⊂ C, which implies that C2 passes through a and b.

For the second part, denote the arc C ∩D1 (the inner arc of L1) by d1 and the arc
C1 \D2 (the outer arc of L2) by d2. If d1 6= d2 then C1 = d1 ∪ d2 and D2 ⊃ d1. Since
d1 is the inner arc of the lune L1, we have D2 ⊃ L1, which implies that D2 ⊃ C1 \D.
Since L2 is also a lune, C1 is disjoint from D \ D2. Therefore D2 ⊃ C1 ∩ D. The
last two containments imply that D2 ⊃ C1, which is impossible, since C2 and C1 are
intersecting circles. 2

Lemma 3.6. Suppose that C ∈ C supports an inner arc of a lune L1, as well as an
outer arc of a lune L2. Then either C is a pencil or C supports exactly one inner arc
of a lune and one outer arc of a lune. Moreover, if C is not a pencil then the inner
arc of L1 is the outer arc of L2.

Proof: Write L1 = D1 \ int(D), L2 = D \ int(D2), for a (not necessarily distinct)
pair of circles C1, C2 ∈ C. Denote by a and b the intersection points of C and C1. If
C1 = C2 then a, b are the only intersection points on C1, because C1 \D is the outer
arc of L1 and C1 ∩ D is the innner arc of L2. Hence C is a pencil in this case. We
may thus assume that C1 6= C2.

By Claim 3.5, C2 passes through a, b and the inner arc of L1 is the outer arc of
L2. Denote that arc by d. If C contains another inner or outer arc of some lune then,
by the preceding argument, this arc equals d. However, d can be an inner arc of at
most one lune and an outer arc of at most one lune. 2

Proof of Theorem 2.3: We prove the Theorem by induction on n. The theorem
clearly holds for n = 2. Assume that it holds for all n′ < n and consider the case of
n circles. Denote by C+ the set of all circles in C that support the outer arc of some
lune. Denote by C− the set of all circles in C that support the inner arc of some lune.
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Case 1: C+ ∩ C− = ∅. In this case G is bipartite. As is well known, bipartite planar
graphs on n vertices have at most 2n− 4 edges, so the theorem holds in this case.

Case 2: C+∩C− 6= ∅. Let C be a circle in C+∩C−. By Lemma 3.6, either C is a pencil
or C supports exactly one inner arc of a lune L1 = D1 \ int(D) and one outer arc of
a lune L2 = D \D2, and we have C ∩D1 = C \ int(D2). If C is a pencil then clearly
it admits exactly 2n− 2 lunes. If C is not a pencil then C ′ = C \ {C} has exactly one
lune less than C; indeed, the lunes L1, L2 no longer exist, but instead we gained the
lune D1 \ int(D2). By the induction hypothesis, there are at most 2(n− 1)− 2 lunes
in C ′ and therefore at most 2n− 3 ≤ 2n− 2 lunes in C. This establishes the induction
step and thus completes the proof. 2

4 The Number of Lenses in a Family of Pairwise-

intersecting Circles

Let C be a family of n pairwise intersecting circles in the plane. In this section we
prove Theorem 2.4; that is, we prove that the number of lenses in C is at most 18n.

Proof of Theorem 2.4: We prove the theorem by induction on n. The theorem
clearly holds for n ≤ 36, because the number of lenses is at most

(
n
2

)
< 18n, for

n ≤ 36. Suppose that the theorem holds for all n′ < n and consider the case of
n > 36 circles.

Lemma 4.1. There exists a point interior to at least n/9 of the disks bounded by
circles in C.

Proof: Let C0 ∈ C be a circle that has the smallest radius r. Let D∗0 be the disk of
radius 3r that is concentric with C0. For any circle C ∈ C \ {C0}, the area of D ∩D∗0
is minimized when the radius of C is r and C is fully contained in D∗0. This minimum
area is πr2. Since the area of D∗0 is 9π, there is a point inside it that is interior to at
least n/9 of the circles in C. 2

Without loss of generality, assume that the origin, O, is interior to at least n/9 of
the circles in C.

We perform an inversion I of the plane with respect to O, effected by the mapping
I(z) = 1/z, using the complex number representation of the plane. This is a one-to-
one continuous mapping from the plane (minus the origin) to itself. I maps circles,
not passing through the origin, to circles. If C is a circle such that O /∈ D then I
maps int(D) onto int(I(C)). If C is a circle such that O ∈ D then I maps int(D)
onto the complement of I(C).

Observation 4.2. Assume that C1, C2 ∈ C, and O ∈ int(D1) \D2. Let C ′1 = I(C1)
and C ′2 = I(C2). If D1 ∩D2 is a lens then D′2 \ int(D′1) is a lune.

Denote by C ′ the set of all circles C ∈ C such that O ∈ D. We have |C ′| ≥ n/9.
Since the intersection of all the disks bounded by the circles in C ′ has a nonempty
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interior, there is at most one lens that is supported by two circles in C ′. Denote by `
the number of lenses supported by a circle in C ′ and a circle in C\C ′. After performing
the inversion I, we have, by Observation 4.2, at least ` lunes in the family I(C). By
Theorem 2.3, ` ≤ 2n− 2.

By the induction hypothesis, the family C \ C ′ determines at most 18(1− 1/9)n =
16n lenses. Hence, C determines at most 16n + (2n − 2) + 1 < 18n lenses. This
establishes the induction step and thus completes the proof of the theorem. 2

In Section 9 we shall need the following extension of Theorem 2.4:

Lemma 4.3. Let A and B be two families of circles in the plane, such that every
circle in A intersects every circle in B, and there is a point p that is interior to all the
disks bounding the circles of A. Then the number of lenses within the family A ∪ B
that are supported by a circle of A and by a circle of B is O(|A|+ |B|).

Proof: First note that we may assume, without loss of generality, that every pair of
circles in A intersect. Indeed, if C1, C2 ∈ A and C1∩C2 = ∅, then, since p ∈ D1∩D2,
it must be the case that one of D1, D2 contains the other disk. Suppose that D1 ⊂ D2.
We claim that there is no lens that is supported by C2 and by a circle in B. Indeed,
assume that there exists C ∈ B such that D ∩D2 is a lens. Since C1 ⊂ D2, we have
C1 ∩ D ⊂ D2 ∩ D, which means that the arc C1 ∩ D is contained within the lens
D2 ∩ D, which contradicts the definition of a lens. Therefore, we may exclude C2

from A without decreasing the number of lenses under consideration. Hence we may
assume that every pair of circles in A intersect.

Perform an inversion map I with respect to p. By Observation 4.2, every lens that
is supported by a circle in A and a circle in B becomes a lune, unless it contains the
point p. Moreover, the outer (resp. inner) arc of each such lune is supported by the
image of a circle in B (resp. in A). Clearly, at most one lens can contain p.

Denote by I(A) and I(B) the two families that contain the images of the circles
of A and of B, respectively, under the inversion I.

Every pair of circles in I(A) intersect, and each circle of I(A) intersects every circle
of I(B). Define a bipartite graph G whose vertices are the circles in I(A)∪ I(B), and
whose edges are the pairs (C,C ′), where C ∈ I(A), C ′ ∈ I(B), and D′ \ int(D) is a
lune within the family I(A) ∪ I(B). By Lemma 3.3, G is a planar graph. Hence, the
number of edges of G, which is equal to the number of lunes, the outer arc of which
is supported by a circle from I(B) and the inner arc of which is supported by a circle
in I(A), is at most 2(|A|+ |B|)− 4. Adding the one possible lens that contains p, we
obtain the asserted bound. 2

5 Vertices of Low Degree for Pairwise-intersecting

Circles

In this section we establish the following result:
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Theorem 5.1. Let C be a family of n pairwise intersecting circles in the plane. If
n is sufficiently large and C is not a pencil then there exists an intersection point
incident to at most 3 circles.

Let C be a finite family of circles in the plane. We denote by A(C) the arrangement
of C. Clearly, the bounded faces of A(C) of degree 2 are exactly the lenses and the
lunes of C.

We need the following easy consequence of Euler’s formula for planar maps, which
has already been used in our previous work [9]:

Lemma 5.2. Let C be a finite family of circles in the plane. For every k ≥ 2 denote
by tk the number of vertices of A(C) that are incident to exactly k circles of C. Denote
by fk the number of faces of A(C) that have k edges. Then

t2 + f2 ≥ 6 +
∑
k≥3

(k − 3)tk +
∑
k≥3

(k − 3)fk.

Proof: Denote by V,E, F the numbers of vertices, edges and faces of A(C), respec-
tively. We have

V =
∑
k≥2

tk; F =
∑
k≥2

fk; E =
∑
k≥2

ktk =
1

2

∑
k≥2

kfk.

By Euler’s formula, V +F = E+1+c, where c is the number of connected components
of
⋃
C. Therefore,

3
∑
k≥2

tk + 3
∑
k≥2

fk =
∑
k≥2

ktk +
∑
k≥2

kfk + 3 + 3c,

which is easily seen to imply the lemma. 2

Proof of Theorem 5.1: Let tk, fk, for k ≥ 2, be as defined in Lemma 5.2. We
assume to the contrary that t2 = t3 = 0 and derive a contradiction. Under this
assumption, Lemma 5.2 implies:

V =
∑
k≥4

tk ≤
∑
k≥4

(k − 3)tk ≤ f2 − 6.

By Theorems 2.3 and 2.4, the number of bounded faces of A(C) of degree 2 (i.e., the
lunes and lenses of C) is less than 20n. Taking into account the unbounded face as
well, we still have V ≤ f2 − 6 < 20n.

Claim 5.3. C does not contain a pencil of size ≥ 9n1/2.

Proof: Suppose to the contrary that there exists a pencil C ′ ⊂ C of size |C ′| = k ≥
9n1/2. Each circle in C \ C ′ intersects the circles in C ′ in at least k distinct points.
Hence, if we add a circle C1 of C \C ′ to C ′ we obtain at least k new intersection points.

11



Adding another circle C2 ∈ C \ C ′ yields at least k − 2 additional new intersection
points with the circles in C ′ (note that C1 and C2 can share at most two of these
intersection points). Continuing in this manner, adding the j-th circle of C \ C ′ will
yield at least k − 2j + 2 new intersection points.

Suppose first that k < 2n/3. Then we can add k/2 circles of C \ C ′ to C ′, and
obtain at least k2/4 distinct vertices of A(C). Since the number of vertices is at most
20n, we obtain k < 9n1/2, a contradiction.

Suppose then that k ≥ 2n/3. Adding one circle C ∈ C \ C ′ to C ′ yields at least
2n/3 new intersection points, all having degree 2 in A(C ′ ∪ {C}). Since each of these
points must have degree at least 4 in A(C), it follows that C \C ′ must contain at least
2n/3 additional circles, a contradiction that completes the proof of the claim. 2

Since f2 ≤ 20n it follows that by removing at most 20n edges from A(C) we obtain
a planar graph without multiple edges. Since the number of edges in such a planar
graph is at most three times the number of its vertices, we obtain E − 20n < 3V , or
E < 80n.

Claim 5.4. If n is sufficiently large, then each vertex of A(C) is incident to at most
27n3/4 circles.

Proof: Suppose to the contrary that there exists an intersection point p incident to
more than 27n3/4 circles. Let C ′ denote the subfamily of circles incident to p.

By Claim 5.3, C does not contain a pencil of size 9n1/2. Therefore, within the
family C ′, every intersection point other than p has degree at most 9n1/2. Hence
each circle C ∈ C ′ is incident to at least (27n3/4)/(9n1/2) = 3n1/4 distinct intersection
points, so C contributes at least these many edges to A(C). Hence, the number of
edges of A(C) is at least 27n3/4 · 3n1/4 = 81n, a contradiction. 2

By Claim 5.4, each circle in C is incident to at least n/(27n3/4) > 1
27
n1/4 distinct

intersection points, and thus contributes at least these many edges to A(C). Hence
the number of edges of A(C) is at least 1

27
n5/4, which is greater than 80n when n is

sufficiently large. This contradiction completes the proof of the theorem. 2

Remark: GIVE HERE ROM’S CONSTRUCTION OF 6 CIRCLES?

6 The Number of Lenses in Arrangements of Unit

Circles

We now return to the case of unit circles, and tackle Conjecture 1.1(a).

Our first result shows that the number of lenses in A(C) is subquadratic. We note
that the weaker subquadratic bound O(n3/2) is easy to establish using a forbidden
subgraph argument. (An even weaker bound of O(n5/3) follows from the more general
results of Tamaki and Tokuyama [14] mentioned in the introduction.)
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Theorem 6.1. The number of lenses in A(C) is O(n4/3 log n).

Proof: Let P denote the set of centers of the circles in C and let D be the set of disks
of radius 2 centered at the points of P (each disk in D is concentric with a circle of
C and its radius is twice as large).

Let G be the bipartite containment subgraph of D × P ; that is, the edges of
G are all pairs (D, p) ∈ D × P such that p ∈ D. We apply the batched range-
searching technique of Katz and Sharir [5] to D and P . This technique computes G
and represents it as the disjoint union of complete bipartite graphs {Di×Pi}, so that∑

i(|Di|+ |Pi|) = O(n4/3 log n).

Note that for each lens incident to circles C,C ′, the center p′ of C ′ lies in the disk
D of radius 2 concentric with C. Hence (D, p′) appears in one of the graphs Di × Pi.

Hence it suffices to show that the number of lenses ‘within’ each of the graphs
Di × Pi is linear in |Di| + |Pi|. (Note that a lens ϕ in A(C) is also a lens in the
arrangement of any subset of C that contains the two circles incident to ϕ.) More
precisely, let Ci denote the set of circles in C that are concentric with the disks in Di,
and let C̄i denote the set of circles of C centered at the points of Pi. Our goal is to
estimate the number of lenses in Ci ∪ C̄i.

Since every ‘bichromatic’ pair of circles in Ci × C̄i intersect, the centers of the
circles in Ci × C̄i all lie in some square R of side at most 8. We partition R into
64 small subsquares, each of side 1, and observe that any pair of circles centered at
the same subsquare intersect each other. Now, instead of considering the set Ci ∪ C̄i,
consider the O(1) sets C(p)

i ∪ C̄
(q)
i , where C(p)

i is the set of circles of Ci whose centers lie

in the p-th small subsquare, and C̄(q)
i is the set of circles of C̄i whose centers lie in the

q-th small subsquare. Since each pair of circles in C(p)
i ∪ C̄

(q)
i intersect, it follows from

Theorem 2.2 that the number of lenses in that set is O(|C(p)
i |+ |C̄

(q)
i |). Summing these

bounds over all p, q, we conclude that the number of lenses in Ci ∪ C̄i is O(|Ci|+ |C̄i|).
This completes the proof of the theorem. 2

Remark: We conjecture that the real bound on the number of lenses is near-linear
in n. However, proving such a bound is likely to be very hard. This is suggested by
the following consideration. Let S be a set of n points in the plane, and let C be
the family of unit circles centered at the points of S. For a pair of points p, q ∈ S,
the distance |pq| is 2 if and only if the two circles centered at p and q are externally
tangent to each other. If no two of these tangencies coincide then, by perturbing the
points of S slightly and randomly, we can ensure that at least a constant fraction of
the number of these tangencies become lenses in the perturbed arrangement. The
best known upper bound for the number of repeated distances in a set of n points in
the plane is O(n4/3) [11] (see also [7, 8]), whereas the best known construction gives
only a slightly-superlinear number of repeated distances [7]. This upper bound has
resisted any attempt of improvement for the past 15 years. Hence, improving our
bound on the number of lenses below O(n4/3) is likely to be hard. We feel confident,
though, that it should be easy to improve the bound to O(n4/3). (We note, though,
that, because of the issue of possibly coinciding tangencies, the repeated distances
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problem is not fully reducible to the lenses problem.)

7 Vertices of Low Degree in Arrangements of Unit

Circles

In this section we establish the following result, which provides a partial solution to
Conjecture 1.1(a) posed in the introduction.

Theorem 7.1. If the number of pairs of intersecting circles in C is at least βn, for
some sufficiently large constant β, then A(C) contains a vertex incident to at most 3
circles.

Proof: We assume to the contrary that A(C) does not contain any such vertex, and
derive a linear upper bound on P , the number of intersecting pairs of circles. There
exists a circle C ∈ C that intersects at least 2P/n other circles of C. Let σ0 denote a
unit disk that intersects the maximum number, ξ, of circles of C; clearly, ξ ≥ 2P/n,
or P ≤ ξn/2. Denote the set of these circles by Cσ0 . The centers of all circles of Cσ0

lie in the disk σ∗0 that is concentric with σ0 and has radius 2 (note that any circle
centered in σ∗0 belongs to Cσ0). Cover σ∗0 by 8 unit disks. One of these disks, call it
σ1, contains at least ξ/8 centers. The set C1 of circles centered in σ1 has the property
that every pair of its elements intersect each other, and the intersection points of any
such pair lie in the disk σ∗1 of radius 2 concentric with σ1; the number P1 of these
pairs is thus at least

(
ξ/8
2

)
. The size n1 of C1 satisfies n1 ≤ ξ, as follows from the

maximality of ξ.

As the subsequent analysis will show, a technical problem may arise when these
pairs of circles intersect in too few points, or, more precisely, when there are inter-
section points of very high degree (linear in ξ). The following lemma takes care of
this problem; a considerably stringer version of the lemma is given in the following
section (see Lemma 8.3).

Lemma 7.2. If σ∗1 contains a vertex incident to more than aξ circles of C1, for any
constant parameter a, then the number of distinct vertices of A(C) within σ∗1 is at
least aξ(aξ − 2)/2.

Proof: Let v be a point in σ∗1 incident to w ≥ aξ circles of C1. There may be at most
w/2 tangent pairs of these circles, and the other pairs of them intersect at pairwise
distinct points that all lie in σ∗1. The number of these points is thus at least(

w

2

)
− w

2
=
w(w − 2)

2
≥ aξ(aξ − 2)

2
.

2

We now cover σ∗1, as above, by 8 unit disks. One of them, call it σ, has the
following property:
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(i) If the condition of Lemma 7.2 holds then σ contains at least aξ(aξ−2)/16 distinct
vertices of A(C).

(ii) Otherwise, at least ξ(ξ − 8)/1024 pairs of circles of C1 intersect inside σ.

Let Cσ denote the set of circles that intersect σ. By the maximality property of
σ0, we have nσ = |Cσ| ≤ ξ.

We modify the analysis based on Euler’s formula, given in Lemma 5.2, and apply
it to the arrangement Ã(Cσ), which is obtained by clipping A(Cσ) to within σ. Specif-
ically, let V,E and F be the sets of vertices, edges and faces of Ã(Cσ). (Note that
the intersection points of the circles of Cσ with ∂σ constitute additional vertices of
Ã(Cσ). By shifting σ slightly, if necessary, we may assume that the number of these
new vertices is exactly 2nσ and each is incident to exactly one edge of the clipped
arrangement.) We have |V |+ |F | = |E|+ 1 + c, where c is the number of connected
components of σ ∩

⋃
Cσ. We also have

|V | = 2nσ +
∑
k≥2

t
(σ)
k ; |F | =

∑
k≥2

f
(σ)
k ; |E| = nσ +

∑
k≥2

kt
(σ)
k =

1

2

∑
k≥2

kf
(σ)
k ,

where t
(σ)
k is the number of vertices of Ã(Cσ) that lie in the interior of σ and are

incident to exactly k circles of Cσ, and f
(σ)
k is the number of faces of Ã(Cσ) that

are incident to exactly k edges of Ã(Cσ), where each edge that terminates on ∂σ is
counted twice (all these edges bound the unbounded face of the clipped arrangement).
Hence we have

6nσ + 3
∑
k≥2

t
(σ)
k + 3

∑
k≥2

f
(σ)
k = nσ +

∑
k≥2

kt
(σ)
k +

∑
k≥2

kf
(σ)
k + 3 + 3c.

Equivalently,

t
(σ)
2 + f

(σ)
2 + 5nσ =

∑
k≥4

(k − 3)t
(σ)
k +

∑
k≥4

(k − 3)f
(σ)
k + 3 + 3c. (1)

Since we have assumed that A(C) does not contain any vertex of degree 2 or 3, it

follows that t
(σ)
2 = t

(σ)
3 = 0. We next apply Theorem 6.1 to Cσ and observe that the

clipping of the arrangement does not affect the asymptotic bound on f
(σ)
2 provided

by the theorem. We thus obtain∑
k≥4

kt
(σ)
k = O(n4/3

σ log nσ) = O(ξ4/3 log ξ). (2)

Suppose first that, in the construction of σ, the condition of Lemma 7.2 did hold,
with a value of a that will be determined later on. In this case, as follows from the
lemma and from the construction, there are at least aξ(aξ − 2)/16 distinct vertices
of A(C) inside σ. In this case (2) implies that

aξ(aξ − 2)/16 <
∑
k≥4

kt
(σ)
k = O(ξ4/3 log ξ).
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In other words, ξ is bounded by a constant c1 (that depends on a), so we have
P ≤ c1n/2.

Suppose then that the condition of Lemma 7.2 did not hold for a. That is, no
point is incident to more than aξ circles of C1. We then have

Pσ ≤
aξ∑
k=2

(
k

2

)
s

(σ)
k , (3)

where Pσ is the number of pairs of circles in C1 that intersect inside σ, and s
(σ)
k is the

number of points that lie inside σ and are incident to exactly k circles of C1.

Let s
(σ)
≥k denote the number of vertices of A(C1) that lie inside σ and whose degree

is at least k, for k ≥ 2. By the result of Spencer et al. [11] (see also [2, 12]), one has
(recall that n1 = |C1|)

s
(σ)
≥k ≤ b

(
n1

k
+
n2

1

k3

)
, (4)

for an appropriate absolute constant b. (See Lemma 8.1 below for a strengthening of
this bound, which is not needed for the present analysis.)

Put

P ∗ =

aξ∑
k=A

(
k

2

)
s

(σ)
k ,

for a constant parameter A that will be determined shortly. We have

P ∗ ≤
aξ∑
k=A

(
k

2

)[
s

(σ)
≥k − s

(σ)
≥k+1

]
≤

(
A

2

)
s

(σ)
≥A +

aξ∑
k=A+1

[(
k

2

)
−
(
k − 1

2

)]
s

(σ)
≥k ≤

(
A

2

)
s

(σ)
≥A +

b√n1c∑
k=A+1

ks
(σ)
≥k +

aξ∑
k=b√n1c+1

ks
(σ)
≥k .

Using (4), we readily obtain that

P ∗ ≤ 3bn2
1

A
+ 2abξn1 ≤

(
3b

A
+ 2ab

)
ξ2.

Since Pσ ≥ ξ(ξ − 8)/1024, it follows that if we choose A sufficiently large and a
sufficiently small, we can ensure that P ∗ < Pσ/2. Using (2), this implies that

ξ(ξ − 8)/1024 ≤ Pσ ≤ 2
A−1∑
k=2

(
k

2

)
s

(σ)
k ≤ A

∑
k≥2

ks
(σ)
k ≤ A

∑
k≥4

kt
(σ)
k ≤ Bξ4/3 log ξ,
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for an appropriate constant B. (The fourth inequality follows from the observation

that any vertex that contributes to the sum
∑

k≥2 ks
(σ)
k also contributes to the sum∑

k≥4 kt
(σ)
k , with a larger or equal coefficient.) Hence, as above, ξ is at most some

constant c2, so P ≤ c2n/2 in this case. Hence, choosing β > max{c1, c2}/2 we obtain
a contradiction, which therefore completes the proof of the theorem. 2

Inspecting the proof of the theorem, we actually have the following stronger result.

Corollary 7.3. Let C be a finite family of unit circles with the property that there
exists a unit disk that intersects at least β circles of C. Then there exists a vertex of
A(C) that is incident to at most 3 circles.

Remark: In order to complete the proof of Conjecture 1.1(a), it suffices to show the
following result.

Conjecture 7.4. Let C0 be a family of at most β unit circles, clipped to within a unit
disk σ. If the clipped arcs intersect in at least two points (within σ) then there exists
a point in σ incident to at most 3 arcs.

Indeed, let C be any finite family of unit circles. By Corollary 7.3, it suffices to
consider the case where every disk of radius 1 intersects at most β circles of C. Take
a pair (C,C ′) of intersecting circles in C, and enclose their two intersection points by
a disk σ of radius 1. Conjecture 7.4 would then imply that σ contains a vertex of
A(C) that is incident to at most 3 circles.

ARE THE CONJECTURES EQUIVALENT IN SOME SENSE??

8 Vertices of Large Degree

In this section we improve bounds due to Spencer et al. [11] and to Clarkson et al. [2]
on the number of vertices of large degree in arrangements of circles of unit or arbitrary
radii. We also derive a technical lemma that shows that, in an arrangement of unit
circles, at least a constant fraction of the pairs of intersecting circles meet at vertices
of low degree. This lemma strengthens the analysis of the quantity P ∗ in the proof
of Theorem 7.1.

Lemma 8.1. Let C be a family of n unit circles in the plane with P pairs of intersect-
ing circles. Then the number of points incident to at least k circles is O(P/k3 +n/k).

Proof: Using Székely’s technique [12], it is easy to show that the number I of inci-
dences between the circles of C and a set M of m points satisfies

I = O(m2/3P 1/3 +m+ n). (5)

Let M be the set of all vertices of A(C) that are incident to at least k circles of C.
Then I ≥ mk, so we have mk ≤ c(m2/3P 1/3 +m+ n), for an appropriate constant c,
from which the claim follows readily. 2
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Lemma 8.2. Let C be a family of n circles of arbitrary radii in the plane with P
pairs of intersecting circles. Then the number of points incident to at least k circles
is O(P/k2.5 + n/k).

Proof: Again, the approach is to derive a refined bound on the number I of incidences
between the circles of C and the points in an m-element set M . Here Székely’s
technique does not appear to work, so we use instead the following variant of the
technique of [2].

Draw a random sample R of r = n2/P circles from C. The expected number
of intersecting pairs in R is at most P (r/n)2 = r. Decompose A(R) into pseudo-
trapezoids (see [10] for details), and for each pseudo-trapezoid τ consider the set Mτ

of points of M that lie in τ0, which is τ minus its four vertices, and the set Cτ of
circles that intersect τ0. Put mτ = |Mτ | and nτ = |Cτ |. By the results of [2], the

number of incidences between Cτ and Mτ is O(m
3/5
τ n

4/5
τ +mτ +nτ ). We sum this over

all τ ’s, and note that the incidences that we miss are between the circles of C and
the vertices of the trapezoids. Any such incidence can be charged to an intersection
between a circle of R and a circle of C. The expected number of these intersections
is O(Pr/n) = O(n). Denoting by I ′ the number of these incidences, we obtain

I = I ′ +O

(∑
τ

m3/5
τ n4/5

τ +mτ + nτ

)
.

Using Hölder’s inequality, and observing that
∑

τ mτ = O(m), we obtain

I = I ′ +O

(
(
∑
τ

mτ )
3/5 · (

∑
τ

n2
τ )

2/5 +m+
∑
τ

nτ

)
=

I ′ +O

(
m3/5(

∑
τ

n2
τ )

2/5 +m+
∑
τ

nτ

)
.

Taking expectation with respect to the random sample R, and using the analysis of
Clarkson and Shor [3] and the concavity of the function x2/5, we obtain

I = O(n) +O

(
m3/5 ·

[(n
r

)2

· r
]2/5

+m+ n

)
=

O

(
m3/5n4/5

r2/5
+m+ n

)
= O(m3/5P 2/5 +m+ n).

2

We return to the case of unit circles, and establish the following lemma. It asserts
that at least a constant fraction of the P intersecting pairs of circles meet at vertices
of small degree.
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Lemma 8.3. Let C be a collection of n unit circles in the plane. Then we have:

∑
k>µ

(
k

2

)
tk ≤ 4

∑
k≤µ

(
k

2

)
tk, (6)

where µ = a ·max{P 1/5, n1/3}, for an appropriate constant a, and for n > a.

Proof: Let t≥k denote the number of vertices of A(C) whose degree is at least k, for
k ≥ 2. By Lemma 8.1, we have

t≥k ≤ b

(
n

k
+
P

k3

)
, (7)

for an appropriate constant b. In particular, for the value µ specified in the lemma,
one has

n

µ
≤ µ2

a3
;

P

µ3
≤ µ2

a5
,

or

t≥µ ≤ b

(
1

a3
+

1

a5

)
µ2 <

µ(µ− 2)

4
, (8)

provided n > a and a is chosen to be a sufficiently large constant.

Now let k > µ and let v be a vertex of degree k. The k circles incident to v may
have at most k/2 tangent pairs, and the remaining pairs intersect at points that are
pairwise distinct. The number of these points is at least(

k

2

)
− k

2
=
k(k − 2)

2
>
µ(µ− 2)

2
.

By (8), at most half of these points are of degree greater than µ, so at least

k(k − 2)

4
≥ 1

4

(
k

2

)
of these points are of degree at most µ. The vertex v contributes ω(v) = 1

4

(
k
2

)
to the

sum S =
∑

k>µ
1
4

(
k
2

)
tk, and this ‘weight’ can be used to charge one unit to some of the

points of degree ≤ µ incident to a pair of circles incident to v. Rather than charging
such a point u directly, we charge the unit to the pair of incident circles that are also
incident to v. Clearly, different v’s charge different pairs of circles. Since the number
of pairs of circles incident to points u of degree ≤ µ is

∑
k≤µ
(
k
2

)
tk, the lemma follows.

2
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9 The Number of Lenses and Lunes in Arrange-

ments of Arbitrary Circles

In this section we study general arrangements of circles of arbitrary radii in the plane,
and tackle Conjecture 1.1(d). We first have the following upper bound on the number
of lenses and lunes in such an arrangement.

Theorem 9.1. The number of lenses and lunes determined by a family of n circles
of arbitrary radii in the plane is O(n3/2+ε), for any ε > 0, where the constant of
proportionality depends on ε.

Proof: Let C be a family of n circles of arbitrary radii. Let G be the intersection
graph of C. That is, the vertices of G are the circles of C and the edges of G connect
all intersecting pairs of circles.

Run a batched range-searching procedure for constructing G and for representing
it as the disjoint union of a family of complete bipartite graphs {Ai×Bi}. A standard
way of doing this is as follows. Represent a circle C whose center is at (a, b) and whose
radius is r by the point

pC(a, b, r,−(r2 − a2 − b2)) ∈ IR4,

and by the pair of hyperplanes

h+
C : x4 = 2ax1 + 2bx2 + 2rx3 + (r2 − a2 − b2)

h−C : x4 = 2ax1 + 2bx2 − 2rx3 + (r2 − a2 − b2).

Note that a circle C of radius r centered at (a, b) and a circle C ′ of radius R centered
at (ξ, η) intersect if and only if

(R− r)2 ≤ (a− ξ)2 + (b− η)2 ≤ (R + r)2,

or
2aξ + 2bη + 2rR + (r2 − a2 − b2) ≥ −(R2 − ξ2 − η2)

and
2aξ + 2bη − 2rR + (r2 − a2 − b2) ≤ −(R2 − ξ2 − η2).

In other words, they intersect if and only if the point pC lies above h−C′ and below
h+
C′ .

Hence, the range searching problem that we face is: We have a set P of n points in
IR4, all lying on the paraboloid π : x4 = x2

1+x2
2−x2

3, and a set W of n wedges, we wish
to find a compact representation of the set of all pairs of point-wedge containment.
Using standard range-searching machinery (see, e.g., [1, 6]), we can represent the set
of these pairs as the disjoint union of a family of complete bipartite graphs {Pi×Wi},
such that the overall size of the vertex sets of these graphs is O(n3/2+ε), for any ε > 0.
We then transform each of the graphs Pi ×Wi to the corresponding graph Ai × Bi,
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where Ai is the set of circles whose representing points are in Pi and Bi is the set of
circles whose representing wedges are in Wi.

Clearly, if two of the given circles C,C ′ form a lens or a lune then they intersect,
so the pair (C,C ′) appears in one of the bipartite graphs Ai × Bi, and forms a lens
or a lune in Ai ∪ Bi.

Fix a graph Ai×Bi, and let us denote it as A×B for short. Note that each circle
in A intersects every circle in B, but there may be disjoint pairs of circles in A×A
and in B × B.

Suppose that the smallest circle in A ∪ B is C ∈ A, and let r be the radius of
C. We argue as in the proof of Lemma 4.1. That is, let D0 be the disk of radius 3r
concentric with C. Each circle C ′ ∈ B intersects C and has radius r′ ≥ r, so, arguing
as above, the intersection of D0 with the disk D′ that C ′ bounds has area at least
πr2. Hence, we can place O(1) points in D0 so that any such D′ contains at least one
of them. This implies that we can decompose B into O(1) families B(1), . . . ,B(p) so
that all the circles in the same family have a common point in their interiors.

Lemma 4.3 implies that the number of ‘bichromatic’ lenses in A∪B(j) is O(|A|+
|B(j)|). The analysis of lunes is a bit more involved. First, as implied by Lemma 3.3,
the number of bichromatic lunes whose inner arc is supported by a circle of B(j) and
whose outer arc is supported by a circle of A is O(|A| + |B(j)|). (Note that, as in
the proof of Lemma 4.3, we first argue that we may assume that every pair of circles
in B(j) intersect; indeed, if this family contains two circles C,C ′ such that C is fully
contained in the interior of C ′, then, as is easily verified, C cannot support the inner
arc of any lune under consideration, so it can be ignored.)

It remains to consider lunes whose inner arc is supported by a circle C ∈ A and
whose outer arc is supported by a circle C ′ ∈ B(j). Suppose first that the radius of C
is smaller than or equal to the radius of C ′. Then the outer arc of the lune is larger
than half of C ′, and consequently the number of these lunes is at most O(|B(j)|). Any
other lune under consideration has its inner arc supported by a circle in A whose
radius is at least r. Let A′ denote the subset of these circles. Arguing as above,
we can partition A′ into O(1) subfamilies, so that all circles in the same subfamily
have a common point in their interiors. For each such subfamily A′′, Lemma 3.3 and
the analysis given in the preceding paragraph, imply that the number of bichromatic
lunes under consideration in A′′ ∪ B(j) is O(|A′′| + |B(j)|). Summing this over all
the subfamilies A′′, we finally obtain that the overall number of lenses and lunes in
A ∪ B(j) is O(|A|+ |B(j)|).

Summing this bound over the O(1) indices j, we conclude that the number of
bichromatic lenses and lunes in A ∪ B = Ai ∪ Bi is O(|Ai| + |Bi|). Summing this
bound over all bipartite graphs Ai × Bi in our decomposition, we conclude that the
overall number of lenses and lunes in C is O(n3/2+ε), as asserted. 2

Remark: Using the refined technique of [6], the bound can probably be improved to
O(n3/2polylog(n)).
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VERIFY!!

We next derive the following strengthening of Theorem 9.1:

Theorem 9.2. The number of lenses and lunes determined by a family of n circles
of arbitrary radii in the plane with P intersecting pairs is O(n1/2−εP 1/2+ε + n), for
any ε > 0, where the constant of proportionality depends on ε.

Proof: Clearly, we only need to prove the theorem in the case that P = o(n2), and
we may also assume that P > n, for otherwise the complexity of the arrangement
is O(n), so the theorem trivially holds in this case. Put r = n2/P , and choose a
random sample R of r circles of C. The expected number of intersecting pairs in R
is O(Pr2/n2) = O(r), which implies that the expected complexity of A(R) is O(r).
Decompose A(R) into pseudo-trapezoids (as in [10]). The ε-net theory implies that,
with high probability, each pseudo-trapezoid is crossed by at most O(n

r
log r) circles

of C. We can thus assume that our sample R is such that the number of pseudo-
trapezoids is O(r) and each is crossed by at most O(n

r
log r) circles of C. For any lens

or lune L in A(C) there exists a pseudo-trapezoid τ such that L is also a lens or lune
in A(Cτ ), where Cτ is the collection of circles of C that cross τ . By Theorem 9.1, the
number of lenses and lunes in A(Cτ ) is O((n/r)3/2+ε), for any ε > 0. Hence, the total
number of lenses and lunes in A(C) is

O(r) ·O((n/r)3/2+ε) = O(n3/2+ε/r1/2+ε) = O(n1/2−εP 1/2+ε),

as asserted. 2

IF WE ARE TO REPLACE THE ε by POLYLOG, WE COULD REPLACE
THE ABOVE ANALYSIS BY THE MORE REFINED ONE THAT HAS ALREADY
BEEN USED IN LEMMA 8.2

Remark: We do not know whether the bound in Theorem 9.1 is tight. The best
lower bound that we can construct is Ω(n4/3). Indeed, construct a set L of n lines and
a set P of n points that have Θ(n4/3) incidences between them (see, e.g., [4] for such a
construction). Choose a sufficiently small parameter δ > 0, replace each point p ∈ P
by a circle of radius δ centered at p, and replace each line ` ∈ L by a parallel line
that lies above ` at distance δ from it. We now have Θ(n4/3) tangencies between the
new circles and lines. Finally, take each of the new lines, move it slightly down and
bend it slightly upwards into a huge circle. It is easily seen that these deformations
can be made so that all the huge circles have the same radius and so that each of
the former tangencies is turned into a lens in the new arrangement. We thus obtain
an arrangement of 2n circles, of only two different radii, that has Ω(n4/3) lenses.
(Similarly, by bending the lines slightly downwards, we can obtain an arrangement
with Ω(n4/3) lunes.)
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10 Vertices of Low Degree in Arrangements of Ar-

bitrary Circles

In this section we establish the following theorem, whose proof exploits the bound on
the number of lunes and lenses given in of Theorem 9.2.

Theorem 10.1. There exists an absolute constant β with the following property. Let
C be a family of n circles of arbitrary radii in the plane, and let q ≥ 2 denote the
maximal size of a pencil in C. If the number of pairs of intersecting circles in C is at
least βn(q + n1/3) then A(C) contains a vertex incident to at most 3 circles.

Proof: Applying Lemma 5.2 to A(C), and continuing to use the same notation, we
obtain

t2 + f2 ≥ 6 +
∑
k≥3

(k − 3)tk +
∑
k≥3

(k − 3)fk.

Assume to the contrary that t2 = t3 = 0. Then we have (replacing ε by 3ε in
Theorem 9.1) V ≤ E ≤ 4f2 = O(n3/2+3ε), where V and E denote, respectively, the
number of vertices and edges of A(C).

Let P denote the number of pairs of intersecting circles in C. We have

P ≤
∑
k≥4

(
k

2

)
tk.

Denote by t≥k the number of vertices of A(C) incident to at least k circles. Lemma 8.2
implies that

t≥k ≤ b

(
P

k2.5
+
n

k

)
, (9)

for an appropriate absolute constant b.

Claim 10.2. Let L be a collection of m lines in the plane, no pair of which is parallel.
If A(L) does not contain a vertex incident to more than m/a lines, for any constant
a satisfying a > 12b, then the number of distinct vertices of A(L) is at least cm2, for
an appropriate constant c.

Proof: Similar to (4) and the proof of Lemma 8.3, it has been shown in [13] (see also
[8]) that, in an arrangement of m lines, the number of vertices incident to at least k
lines is at most b(m/k+m2/k3), for an appropriate absolute constant b. The number
Q of pairs of crossing lines is, by assumption,

(
m
2

)
. Hence, denoting by wk (resp. w≥k)

the number of vertices of A(L) incident to exactly (resp. at least) k lines, and using
an approach similar to the one in the proof of Theorem 7.1 we have, for a parameter
B that will be determined shortly,

Q =

m/a∑
k=2

(
k

2

)
wk =

B−1∑
k=2

(
k

2

)
wk +

m/a∑
k=B

(
k

2

)
wk ≤
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B

2

B−1∑
k=2

kwk +

(
B

2

)
w≥B +

√
m∑

k=B+1

kw≥k +

m/a∑
k=
√
m+1

kw≥k ≤

B

2

∑
k≥2

kwk +
bm2

B
+

√
m∑

k=B+1

2bm2

k2
+

m/a∑
k=
√
m+1

2bm ≤

B(E ′ −m)

2
+

3bm2

B
+

2bm2

a
≤ B(3V ′ + 2m)

2
+

3bm2

B
+

2bm2

a
,

where V ′ and E ′ are the numbers of vertices and edges of the line arrangement,
respectively. Hence, if we choose a > 12b and B = 18b, we will have

m2

6
≤ 9b(3V ′ + 2m)

and this implies the claim. 2

Claim 10.3. A(C) satisfies the following inequality:

βn(q + n1/3) ≤ P ≤
∑
k≥4

(
k

2

)
tk ≤ 3

λ∑
k=4

(
k

2

)
tk,

where
λ = max{aq, c′(P 2/9 + n1/3)},

for an appropriate constant c′.

Proof: Let v be a vertex of A(C) incident to k > λ circles. Let C ′ denote the
subfamily of circles incident to v. Apply to the plane an inversion centered at v.
All the circles in C ′ are mapped into lines, and since we assume no tangencies in C
(DO WE???), no pair of these lines are parallel. Moreover, no vertex of this line
arrangement is incident to more than q lines, for otherwise C would contain a pencil
of size larger than q. Since k > aq, Lemma 10.2 implies that the line images of the
circles of C ′, and thus the circles of C ′ themselves, intersect in at least ck2 distinct
points. Since k ≥ c′(P 2/9 + n1/3), simple calculation shows that t≥λ <

1
2
cλ2 < 1

2
ck2,

so at least half of these intersection points are each incident to at most λ circles. In
other words, we have shown that∑

k>λ

(
k

2

)
tk ≤ 2

∑
k≤λ

(
k

2

)
tk.

This readily implies the claim. 2

We next estimate the sum in Claim 10.3 using (9). That is, we have, for a
parameter B that will be determined shortly and for ξ = (P/n)2/3,

βn(q + n1/3) ≤ P ≤
λ∑
k=4

(
k

2

)
tk =

B−1∑
k=4

(
k

2

)
tk +

λ∑
k=B

(
k

2

)
tk ≤
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B

2

B−1∑
k=4

ktk +

(
B

2

)
t≥B +

ξ∑
k=B+1

kt≥k +
λ∑

k=ξ+1

kt≥k ≤

B

2

∑
k≥4

ktk +
bP

B1/2
+

ξ∑
k=B+1

2bP

k1.5
+

λ∑
k=ξ+1

2bn ≤

BE

2
+

5bP

B1/2
+ 2λbn.

If λ = aq, i.e., q = Ω(P 2/9 +n1/3) then, choosing the constants B and β appropriately,
we will have

P < BE ≤ 4Bf2 = O(n1/2−εP 1/2+ε + n),

for any ε > 0. This implies that P = O(n) and this will lead to a contradiction if we
require β to be sufficiently large.

Otherwise, for q = O(P 2/9 + n1/3), we again can obtain

P < BE +O(λn) ≤ 4Bf2 +O(λn) = O(n1/2−εP 1/2+ε + n+ nP 2/9 + n4/3),

for any ε > 0. This implies that P = O(n4/3), which again is a contradiction if β is
chosen to be sufficiently large. 2

Remark: Theorem 10.1 may fail without the assumption on P , as the following
construction shows. Given parameters n and q, draw m = n/q concentric circles
Ξ1, . . . ,Ξm and another circle C that intersects each of them at two points; denote the
intersection points of Ξ and Ξi by ai and bi. Now replace each Ξi by a pencil of q circles
Ci1, . . . , Ciq that pass through ai and bi and are sufficiently close to each other so that
no pair of circles from different pencils intersect. Put C = {C}

⋃
{Cij | i ≤ m, j ≤ q}.

This is a collection of n+ 1 circles whose union is connected, so that every vertex of
their arrangement is incident to q+1 circles. In this case the size of the largest pencil
is q+ 1 and the number of intersecting pairs of circles is n+m

(
q
2

)
= n(q+ 1)/2. This

shows that Theorem 10.1 may fail if we do not require that the number of intersecting
pairs of circles is substantially larger than n times the size of the largest pencil.

11 Intersecting Pairs and Vertices in Arrangements

of Circles

In this section we use the machinery developed in the preceding sections to obtain
the following results, which we believe to be of independent interest.

Theorem 11.1. Let C be a collection of n unit circles, with P intersecting pairs of
circles. Then these circles intersect in at least βP distinct points, for some constant
β > 0.
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Proof: The proof proceeds by induction on n and P . The claim clearly holds for any
n ≥ 2 and P = 1 (for any β < 1). We assume that it holds for all n′ < n and all P ,
and for n′ = n and P ′ < P , and will show that it also holds for n and P .

Arguing as in the proof of Theorem 7.1, we claim that there exists a unit disk σ
which contains at least aξ2 distinct vertices of A(C), where ξ is the maximum number
of circles of C that intersect any unit disk, and where a is an appropriate absolute
constant. Indeed, if the condition in Lemma 7.2 is satisfied then the claim is obvious.
Otherwise, we choose a disk σ for which Pσ = Ω(ξ2), and repeat the analysis in the
preceding section (without assuming anything about t2 and t3). The inequality (2)
becomes∑

k≥2

kt
(σ)
k = O(t

(σ)
2 + t

(σ)
3 + f

(σ)
2 ) = O(t

(σ)
2 + t

(σ)
3 + ξ4/3 log ξ). (10)

The bound for P ∗ is derived exactly as above, and allows us to assume that P ∗ < Pσ/2.
This, combined with (10), yields, as above,

Ω(ξ2) = Pσ = O(t
(σ)
2 + t

(σ)
3 + ξ4/3 log ξ).

Hence, if ξ is at least some appropriate and sufficiently large constant α then we have

t
(σ)
2 + t

(σ)
3 = Ω(ξ2),

which implies the claim. Otherwise, since A(C) contains at least one vertex, we can
choose σ to be a unit disk containing that vertex, and choose a so that 1 ≥ aα2.
Then in this case we also have a unit disk that contains at least aξ2 distinct vertices
of A(C).

Remove from C all the nσ circles of Cσ (i.e., the circles that intersect σ), and let
C ′ be the resulting subset. Let P ′ denote the number of intersecting pairs of circles
in C ′. We have P ′ = P − P1 − P2, where P1 ≤ ξ2/2 is the number of intersecting
pairs of circles in Cσ, and P2 is the number of intersecting pairs (C,C ′) of circles,
with C ∈ Cσ and C ′ ∈ C ′. Note that any such circle intersects the disk σ∗ of radius 3
and concentric with σ. We cover σ∗ by 18 unit disks, and use the maximality of ξ to
conclude that the number of such circles C ′ is at most 18ξ. Hence P2 ≤ 18ξ2.

In other words, we have found N ≥ aξ2 ≥ 2β(P1 + P2) distinct vertices of A(C),
for an appropriate choice of β. After removing Cσ, we are left with a set C ′ of n′ < n
circles, such that no vertex of A(C ′) coincides with any of the vertices constructed so
far. If P ′ ≤ P/2 then P1 +P2 = P −P ′ ≥ P/2, so we have shown that A(C) contains
at least 2βP/2 = βP distinct vertices. Otherwise, apply the induction hypothesis to
n′ and P ′, to obtain at least βP new vertices of A(C). Hence the number of distinct
vertices of A(C) is at least

βP ′ + 2β(P1 + P2) ≥ β(P ′ + P1 + P2) = βP.

This establishes the induction step and thus completes the proof of the theorem. 2
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Corollary 11.2. The number of distinct intersection points of n unit circles whose
centers lie inside a square of side length d > 1 is at least Ω(n2/d2).

Proof: Assume d to be an integer, and partition the given square into d2 squares of
side length 1. Let Ci denote the subcollection of the given circles whose centers lie in
the i-th smaller square, for i = 1, . . . , d2. Every pair of circles in Ci intersect, so, by
Theorem 11.1, these circles have Ω(n2

i ) distinct points of intersection, where ni = |Ci|.
We sum these lower bounds over all families Ci, and note that each intersection point
can contribute to only O(1) terms. Hence, the total number of intersection points of
the given circles is Ω(

∑
i n

2
i ) = Ω((

∑
i ni)

2/d2) = Ω(n2/d2). 2

Remark: The corollary does not use the full ‘strength’ of the theorem. It only
requires the weaker result that if every pair of circles intersect then they determine
Ω(n2) distinct intersection points.

Corollary 11.3. (a) For a collection C of n unit circles whose centers lie in a square
of size ≤ cn1/2, for a sufficiently small constant c, there exists a point that is
incident to only two or three circles.

(b) If the area of the union of the disks bounded by the circles of C is at most c′n,
for a sufficiently small constant c′, then there exists a point that is incident to
only two or three circles.

Proof: In both cases, it is easy to show that the number of pairs of intersecting
circles in C is larger than βn, provided c and c′ are sufficiently small. 2

Theorem 11.4. Let C be a collection of n circles of arbitrary radii in the plane with
P intersecting pairs. Let q denote the largest size of a pencil in C, and suppose that
P ≥ βn(q + n1/3), for a sufficiently large constant β. Then A(C) has Ω(P ) distinct
vertices.

Proof: Similar to the assertion of Claim 10.3, we have

βn(q + n1/3) ≤ P ≤
∑
k≥2

(
k

2

)
tk ≤ 3

λ∑
k=2

(
k

2

)
tk,

where λ is as defined above. We estimate this sum using Lemma 8.2. That is, we
have, for a parameter B that will be determined shortly,

βn(q + n1/3) ≤ P ≤
λ∑
k=2

(
k

2

)
tk =

B−1∑
k=2

(
k

2

)
tk +

λ∑
k=B

(
k

2

)
tk ≤

B2

2

B−1∑
k=2

tk +

(
B

2

)
t≥B +

(P/n)2/3∑
k=B+1

kt≥k +
λ∑

k=(P/n)2/3+1

kt≥k ≤
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B2

2

∑
k≥2

tk +
cP

B1/2
+

(P/n)2/3∑
k=B+1

2cP

k1.5
+

λ∑
k=(P/n)2/3+1

2cn ≤

B2V

2
+

5cP

B1/2
+ 2cnλ.

Hence, choosing the constants B and β appropriately, one can show, as in the pre-
ceding analysis, that

P

2
≤ B2V

2
,

which establishes the claim. 2

Remark: The theorem may fail if we do not require P to be significantly larger than
nq, as the example given at the end of the preceding section demonstrates.
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