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Abstract

Continuing and extending the analysis in a previous paper [14], we establish

several combinatorial results on the complexity of arrangements of circles in the

plane. The main results are a collection of partial solutions to the conjecture

that (a) any arrangement of unit circles with at least one intersecting pair has

a vertex incident to at most 3 circles, and (b) any arrangement of circles of

arbitrary radii with at least one intersecting pair has a vertex incident to at

most 3 circles, under appropriate assumptions on the number of intersecting

pairs of circles (see below for a more precise statement).

1 Introduction

In this paper we study the combinatorial complexity of arrangements of circles in the

plane. The main motivation for our study is the following conjecture, whose parts

(a) and (b) have been posed by Andras Bezdek for the case of unit circles [5] (see

�
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also [3, 4] for related conjectures), and parts (c) and (d) are extensions to the case

of arbitrary circles. This conjecture extends the classical Sylvester-Gallai's problem

(see [12]) to the case of circles.

Conjecture 1.1. (a) Let C be a �nite family of unit circles in the plane, at least

two of which intersect. Then there exists an intersection point that is incident

to at most three circles of C.

(b) Same as (a), under the additional assumption that every pair of circles of C

intersect.

(c) Let C be a �nite family of arbitrary circles in the plane, such that at least two of

them intersect and the number P of intersecting pairs satis�es P � �jCjq, where

� is a su�ciently large constant and where q is the maximum size of a pencil

of C, namely, a subset all of whose elements are incident to the same pair of

points. Then there exists an intersection point that is incident to at most three

circles of C.

(d) Let C be a �nite family of arbitrary circles in the plane, such that every pair of

circles in C intersect, and such that C is not a single pencil. Then there exists

an intersection point that is incident to at most three circles of C.

Conjecture 1.1(b) has been proven in a preceding paper of Pinchasi [14]. In fact, it

has been shown there that if C consists of at least 5 pairwise-intersecting unit circles

then there exists an intersection point incident to just two circles. That paper also

gives an example of 4 pairwise-intersecting unit circles where every intersection point

is incident to 3 circles. This is done as follows. Choose three points on one circle, a,

such that they form an acute triangle. Let b; c and d be the three unit circles di�erent

from a and passing through pairs of these three points. It is not hard to show that

b; c and d pass through a common point.

This example can be extended to yield a family of any number of unit circles (not

every pair of which intersect) where every intersection point is incident to 3 circles,

and where the intersection graph of the circles is connected. For example, one can

build larger \tree-like" examples by repeatedly adding triplets of unit circles using

the following procedure: Consider �rst that arc of, say b which lies outside of a; c

and d, then choose three points close to each other on this arc, so that the three unit

circles e; f and g, which are di�erent from b and pass through pairs of the selected

points are disjoint from a; c and d. Notice that every intersection point determined

by the family fa; b; : : : ; gg has degree three.

Another simple construction proceeds as follows. Let R be a rhombus of edge

length 2 and with angles > 60

�

and consider a simple connected cluster of congruent

copies of R glued to each other in an edge-to-edge manner. The unit circles which

are centered at the vertices and at the midpoints of these rhombi form a family of

unit circles where each intersection point has degree three. One can also add triplets

of unit circles to this arrangement, in the same way described above, to obtain more

complicated examples with the same property.
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Finally, we note that it is much easier to establish the existence of a vertex incident

to no more than �ve circles (in all versions of the conjecture). Such an argument is

given in [7]. However, reducing \�ve" to \four" (let alone \three", as in the conjecture)

is not easy.

In this paper we prove various special cases of the other three parts of Conjec-

ture 1.1.

We �rst study Conjecture 1.1(d), and prove it in the case that n, the size of C, is

su�ciently large (see Theorem 4.1). We then tackle Conjecture 1.1(a), and prove it

in the case that n is su�ciently large and the number of pairs of intersecting circles

in C is at least �n, for an appropriate absolute positive constant � (see Theorem 4.5).

Finally, we give a proof of Conjecture 1.1(c), under the stronger assumption that

P � �jCj(q + jCj

1=3

) for an appropriate absolute constant � (see Theorem 4.8). We

also note that part (c) of the conjecture fails if P � jCjq=2 (see a remark at the end

of Section 4).

Some of the technical tools that we develop for our solutions are, in our opinion,

of independent interest. The main set of tools deals with faces of degree 2 in the

arrangement A(C) of C. With the possible exception of the unbounded face, these

faces are either `lenses' (contained in the interiors of the two incident circles) or `lunes'

(contained in the interior of one incident circle and in the exterior of the other). We

derive various upper bounds for the number of these faces: In case (b), it was shown

in [14] that the number of lunes is at most three

1

and the number of lenses is at

most n. In case (d), we show that the number of lunes is at most 2n � 2 and the

number of lenses is at most 18n. In case (a), we show that the number of lenses is

at most O(n

4=3

logn) (and the number of lunes is at most n). In case (c), we show

that the number of lenses and lunes is O(n

3=2+"

), for any " > 0 (where the constant

of proportionality depends on ").

The study of lenses and lunes has also been followed in [6], for similar goals. It

is also reminiscent of the study of lenses in arrangements of `pseudo-parabolas' by

Tamaki and Tokuyama [19].

Another collection of results that may be of independent interest relates the num-

ber V of vertices in an arrangement of circles and the number P of intersecting pairs

of circles. Speci�cally, we �rst show that in an arrangement of unit circles one always

has V = 
(P ) (see Theorem 5.1). The same result also holds for arrangements of

general circles, provided that P � �jCj(q+ jCj

1=3

), for some su�ciently large constant

� (see Theorem 5.4).

The paper is organized as follows. After introducing some notations in Section 2,

we prove in Section 3 the above-mentioned upper bounds on the number of lunes and

lenses in the various kinds of arrangements of circles under consideration.

We then show, in Section 4, the existence of an intersection point incident to

1

Actually, this was shown under the additional assumption that A(C) does not contain any vertex

incident to just two circles. Nevertheless, recent unpublished work by Last and Pinchasi show that

this is true for any arrangement of pairwise-intersecting unit circles.
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a lens

a lune

Figure 1: A lens and a lune

at most 3 circles, in the various arrangements of circles under consideration, under

appropriate additional conditions, as mentioned above.

Finally, in Section 5 we exploit the machinery developed in the paper and prove,

for an arrangement of n unit or arbitrary circles, that V = 
(P ) (for arbitrary circles,

under the additional assumptions made above).

2 Preliminaries

Throughout this paper C denotes a �nite family of circles in the Euclidean plane.

We usually denote a circle by the letter C, possibly with some modi�er (subscript

or superscript). The closed disk bounded by that circle is denoted by D, and its

center by o, with the same modi�er.

De�nition 2.1. Let C be a family of circles in the plane. Let C

1

; C

2

be two circles in

C that intersect at two distinct points, A and B. We call D

1

\D

2

a lens if no circle

in C n fC

1

; C

2

g meets (D

1

\D

2

) n fA;Bg. We then say that both C

1

and C

2

support

that lens (see �gure 1).

We call D

1

n intD

2

a lune if no circle in C nfC

1

; C

2

g meets (D

1

n intD

2

)nfA;Bg.

We then call C

1

n intD

2

the longer arc of the lune and say that C

1

supports the longer

arc of that lune.

Whenever we refer to two intersecting circles we mean two circles that either

intersect at two distinct points or are tangent.

For a circle C and points a; b on C which are not antipodal, we denote by

_

C

(ab)

the closed smaller arc of C delimited by a and b.

For two distinct points a and b in the plane, we denote by ab the line through a
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and b. We denote by

�!

ab the closed ray that emanates from a and contains b. The

closed line segment between a and b is denoted by [ab].

Let p; q; r be three noncollinear distinct points in the plane. We denote by \pqr

the closed convex region bounded by the rays

�!

qp and

�!

qr . The angular measure of

\pqr is denoted by ]pqr. Therefore 0 < ]pqr < �.

In a previous paper [14] and in more recent unpublished work by Last and Pinchasi,

the following result is proved.

Theorem 2.2 (Pinchasi [14]). A family of n pairwise intersecting unit circles in

the plane determines at most 3 lunes and at most n lenses.

In the following section, we will extend this result for more general arrangements

of circles.

3 Bounding the Number of Lunes and Lenses in

Arrangements of Circles

In this section we obtain upper bounds on the number of lunes and lenses in var-

ious types of arrangements of circles: arrangements of pairwise-intersecting circles,

arrangements of unit circles, and arrangements of arbitrary circles (in the two latter

cases, not every pair of circles is intersecting). These results, besides being of inde-

pendent interest, are needed for showing that such arrangements, under additional

assumptions, must contain vertices incident to at most three circles.

3.1 The number of lunes in a family of pairwise-intersecting

circles

In this subsection we prove the following theorem.

Theorem 3.1. A family of n pairwise intersecting circles in the plane determines at

most 2n� 2 lunes.

De�nition 3.2. Let C be a family of circles. We say that C is a pencil if either there

are two distinct points that belong to every circle in C, or the circles in C are pairwise

tangent at a common point P . We sometimes refer to the latter case as a degenerate

pencil.

Observe that if C is a non-degenerate pencil then it determines exactly 2n � 2

lunes. This shows that Theorem 3.1 is tight in the worst case.

Let C be a family of n pairwise interseting circles in the plane. De�ne a graph G

whose vertices are the centers of the circles in C, and whose edges connect pairs of
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centers whose associated circles support the same lune. By drawing the edges of G

as straight segments, we obtain a plane embedding of this graph.

Observe that unless C is a pencil, there are no multiple edges in G. Indeed,

suppose to the contrary that there exist C

1

; C

2

2 C such that both L

1

= D

1

n intD

2

and L

2

= D

2

n intD

1

are lunes. Denote the intersection points of C

1

and C

2

by a; b.

These points partition C

1

into two arcs, one of which is the outer arc of L

1

and the

other is the inner arc of L

2

. Hence neither of the relative interiors of these arcs meets

another circle, so all circles in C pass through a and b.

Lemma 3.3. G is planar.

Proof: We will show that the plane embedding of G de�ned above has no pair of

crossing edges. This will be a special case of the following more general lemma, which

will be needed when we shall later consider families that are not pairwise intersecting.

Lemma 3.4. Let C

1

; C

2

; C

3

; C

4

be four distinct circles, such that both L

1

= D

2

nintD

1

and L

2

= D

4

n intD

3

are lunes, and such that all pairs of these circles, with the

possible exception of the pair (C

2

; C

4

), are intersecting. Then the line segments [o

1

o

2

]

and [o

3

o

4

] do not intersect.

Remark: The proof of Lemma 3.4 applies also to the case where some of the in-

tersecting circles may be tangent to each other. When reading the proof below, the

reader should keep in mind that the two points of intersection of a pair of circles may

coincide.

Proof of Lemma 3.4: We need the following simple observation:

Observation 3.5. Let C

1

and C

2

be two intersecting circles, and denote by p the

center of the arc C

1

\D

2

. Then o

2

lies on the ray

�!

o

1

p.

Since L

1

is a lune, either D

3

contains L

1

or D

3

is disjoint from the interior of L

1

;

the same two possibilities hold for D

4

. We consider the following subcases:

Case 1: D

3

is disjoint from the interior of L

1

. We have to show that o

4

does not lie

inside the convex unbounded region K that is bounded by the rays

��!

o

3

o

1

,

��!

o

3

o

2

and by

the line segment [o

1

o

2

]. Denote by a; b the intersection points of C

1

and C

2

. Denote

by p the intersection point of

��!

o

3

o

1

with C

1

that lies outside D

3

. The point p is the

farthest point from o

3

on C

1

(see Figure 2). It su�ces to show that o

4

is not inside

\o

2

o

1

p.

Let  be the arc C

1

\D

3

. Clearly, p =2 . Let q be the midpoint of the arc C

1

\D

2

;

it is the intersection point of

��!

o

1

o

2

with C

1

. Since D

3

is disjoint from the interior of

L

1

, we have q =2 . Denote by � the arc C

1

\D

4

. Observe that � � , for otherwise

C

1

would intersect the interior of D

4

n intD

3

, contradicting the assumption that L

2

is

a lune. Hence, by Observation 3.5, o

4

is on a ray that emanates from o

1

and crosses

.

We claim that , and thus � too, is disjoint from

_

C

1

(pq). To show this, denote by

r the midpoint of ; clearly, r is the point on C

1

antipodal to p. Recall that both p

6



o

1

C

1



b

a

o

2

C

2

q

o

3

C

3

r

p

Figure 2: Case 1 in the proof of Lemma 3.4

o

1

C

1



b

a

o

2

C

2

q

y

x

o

3

C

3

p

u

v

Figure 3: Case 2 in the proof of Lemma 3.4

and q do not lie in . Therefore, if  \

_

C

1

(pq) 6= ;, then  �

_

C

1

(pq). This however

is impossible, since p and r are antipodal points on C

1

and thus cannot both lie in

_

C

1

(pq).

Hence, o

4

does not lie on any of the rays that emanate from o

1

and cross

_

C

1

(pq),

i.e, o

4

=2 \o

2

o

1

p.

Case 2: D

3

� L

1

and D

4

is disjoint from the interior of L

1

. Rotate the plane so

that the line o

1

o

2

becomes horizontal, and o

2

is to the right of o

1

. Without loss of

generality, assume that o

3

is in the closed halfplane above o

1

o

2

. We have to show that

o

4

does not lie inside the convex unbounded region K that is bounded by the rays

��!

o

3

o

1

,

��!

o

3

o

2

and by the line segment [o

1

o

2

]. Denote by a; b the intersection points of C

1

and C

2

, so that a is below o

1

o

2

. Denote by p the intersection point of

��!

o

3

o

2

with C

2

that lies outside D

3

; this point is farthest from o

3

along C

2

.

Denote by u and v the intersection points of C

3

and C

2

, so that a; u; v; b are in

clockwise order along C

2

(see Figure 3).

Denote by � the arc C

1

\D

4

. Denote by x; y the intersection points of C

3

and C

1

,
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so that x; u; v; y are in clockwise order along C

3

(by assumption, both u; v lie inside

C

1

, so no interleaving of x; y with u; v is possible). Denote by  the arc C

1

\D

3

. The

points x and y are the endpoints of . Clearly, � � , for otherwise, arguing as above,

C

1

would intersect the interior of D

4

nD

3

, contradicting the assumption that L

2

is a

lune. Denote by q 2 C

1

the intersection point of

��!

o

1

o

2

with C

1

; this is the midpoint of

the arc C

1

\D

2

.

Assume to the contrary that o

4

lies inside the region K. Let r be the midpoint of

�. Since o

4

is below or on o

1

o

2

, we conclude, by Observation 3.5, that r is also below

or on o

1

o

2

. Therefore, r 2

_

C

1

(xq).

Since we assume that D

4

is disjoint from the interior of L

1

, we have r 2

_

C

1

(xa)

and also � �

_

C

1

(xa).

We next claim that D

4

cannot contain any of the points a; u; x as an interior point.

Indeed, a cannot be interior to D

4

, for otherwise D

4

would intersect the interior of

L

1

, which is impossible. If x were interior to D

4

then D

4

would intersect the interior

of the arc C

1

nD

3

. Therefore, C

1

would intersect the interior of D

4

nD

3

, contradicting

the assumption that L

2

is a lune. Finally, if u were interior to D

4

then D

4

would

intersect the interior of the arc C

2

nD

3

. In this case C

2

would intersect the interior

of D

4

nD

3

, contradicting the assumption that L

2

is a lune.

We may also assume that C

3

\ D

4

, which is the inner arc of L

2

, is contained in

D

1

. Otherwise, D

1

would be disjoint from L

2

, so we could apply Case 1, switching

the roles of L

1

and L

2

.

Let e 2 D

1

be one of the endpoints of the arc C

3

\D

4

. Denote by � the region

bounded by

_

C

1

(xa);

_

C

2

(au);

_

C

3

(ux).

From the convexity of D

4

, the line segment [er] is contained in D

4

. It intersects

the boundary of � at r and at another point f which lies either on

_

C

3

(ux) or on

_

C

2

(au) (because e 2 intD

4

).

Assume �rst that f 2

_

C

3

(ux). By the preceding claim, we have C

3

\D

4

�

_

C

3

(ux).

By Observation 3.5, o

4

lies on a ray that emanates from o

3

and crosses

_

C

3

(ux). In

other words, o

4

2 \uo

3

x. Therefore, o

4

=2 \po

3

o

1

, a contradiction.

Assume next that f 2

_

C

2

(au). The preceding claim implies that C

2

\D

4

�

_

C

2

(au).

By Observation 3.5, o

4

lies on a ray that emanates from o

2

and crosses

_

C

2

(au).

Therefore, o

4

=2 \Po

2

o

1

, again a contradiction.

Case 3: D

3

� L

1

and D

4

� L

1

. Again, rotate the plane so that the line o

1

o

2

is

horizontal and o

2

is to the right of o

1

, and assume that o

3

is in the closed halfplane

above o

1

o

2

. We have to show that o

4

is not inside the convex unbounded region K

that is bounded by the rays

��!

o

3

o

1

,

��!

o

3

o

2

and the line segment [o

1

o

2

].

Note that in this case C

4

and C

2

must intersect. Indeed, we have assumed that

D

4

� D

2

n intD

1

. Thus, if C

4

does not interset C

2

then D

4

� C

2

. But then, since

8



o

1

C

1

o

2

C

2

q

s

o

3

C

3

p

Figure 4: Case 3 in the proof of Lemma 3.4

C

2

nD

3

6= ;, C

2

has to intersect the interior of L

2

= D

4

n intD

3

, which is impossible.

Denote by  the arc C

2

\D

4

. Denote by p the intersection point of

��!

o

3

o

2

with C

2

that lies outside D

3

; this is the point on C

2

farthest from o

3

.

Clearly, p =2 D

3

. Since L

2

= D

4

n intD

3

is a lune, it follows that p =2 D

4

(for

otherwise C

2

would have to intersect the interior of L

2

). We conclude that p =2 .

Denote by q; s the intersection points of o

1

o

2

with C

2

, so that s is outside D

1

; the

point s is the midpoint of the arc C

2

nD

1

. Since D

4

� L

1

, we have s 2 . Denote

by r the midpoint of . Since o

3

is above or on o

1

o

2

, p is below or on o

1

o

2

. The

point r cannot lie on

_

C

2

(qp), for otherwise, since p =2 , the subarc of  between r

and s contains the intersection of C

2

with the closed halfplane above o

1

o

2

, which is

impossible since r is the midpoint of . Hence, o

4

, which lies on

�!

o

2

r (by Observation

3.5), is outside \po

2

o

1

. This completes the proof. 2

The planarity of G already implies that C determines at most 3n�6 lunes (unless

C is a non-degenerate pencil, in which case G contains multiple edges; however, in

this case C is easily seen to have exactly 2n�2 lunes). We can, however, improve this

bound and make it tight (2n � 2), by observing that G is almost a bipartite graph.

This is the goal of the remainder of this section.

Claim 3.6. Let C;C

1

; C

2

be three distinct pairwise-intersecting circles. Suppose that

L

1

= D

1

n intD and L

2

= D n intD

2

are lunes. Then C

2

passes through the two

intersection points of C and C

1

. Moreover, the inner arc of L

1

is the outer arc of L

2

.

Proof: See Figure 5. Denote by a and b the intersection points of C and C

1

(note

that a 6= b). The arc C

2

\D is the inner arc of L

2

, hence C

1

and C

2

cannot intersect

inside the interior of D. The arc C

1

nD is the outer arc of L

1

, hence C

1

and C

2

cannot

intersect outside D. Therefore C

1

\ C

2

� C, which implies that C

2

passes through a

and b.

For the second part, observe that since C

2

passes through a and b, the outer arc of

L

2

is either C \D

1

(i.e., the inner arc of L

1

) or C nD

1

. Assume to the contrary that

the outer arc of L

2

is C nD

1

. Then D

2

contains C \D

1

which is the inner arc of L

1

.

9



C

1

a

b

C

C

2

Figure 5: The con�guration in Claim 3.6

Since L

1

is a lune, D

2

must contain also the outer arc of L

1

which is C

1

nD. Since

D nD

2

is a lune, D

2

must contain C

1

\D (for otherwise C

1

intersects the interior of

D n D

2

). The last two containments imply that D

2

� D

1

which is impossible since

C

1

and C

2

intersect at a and b. 2

Lemma 3.7. Suppose that C 2 C supports an inner arc of a lune L

1

, as well as an

outer arc of a lune L

2

. Then either C is a pencil or C supports exactly one inner arc

of a lune and one outer arc of a lune. Moreover, if C is not a pencil then the inner

arc of L

1

is the outer arc of L

2

.

Proof: Write L

1

= D

1

n intD, L

2

= D n intD

2

, for a (not necessarily distinct) pair of

circles C

1

; C

2

2 C. Denote by a and b the intersection points of C and C

1

. If C

1

= C

2

then a; b are the only intersection points on C

1

(as well as on C), because C

1

nD is

the outer arc of L

1

and C

1

\ D is the innner arc of L

2

. Hence C is a pencil in this

case. We may thus assume that C

1

6= C

2

.

By Claim 3.6, C

2

passes through a; b and the inner arc of L

1

is the outer arc of

L

2

. Denote that arc by d. If C contains another inner or outer arc of some lune then,

by the preceding argument, this arc equals d. However, d can be an inner arc of at

most one lune and an outer arc of at most one lune. 2

Proof of Theorem 3.1: We prove the Theorem by induction on n. The theorem

clearly holds for n = 2. Assume that it holds for all n

0

< n and consider the case of

n circles. Denote by C

+

the set of all circles in C that support the outer arc of some

lune. Denote by C

�

the set of all circles in C that support the inner arc of some lune.

Case 1: C

+

\ C

�

= ;. In this case G is bipartite. As is well known, bipartite planar

graphs on n vertices have at most 2n� 4 edges, so the theorem holds in this case.

Case 2: C

+

\C

�

6= ;. Let C be a circle in C

+

\C

�

. By Lemma 3.7, either C is a pencil

or C supports exactly one inner arc of a lune L

1

= D

1

n intD and one outer arc of a

lune L

2

= D nD

2

, and we have C \D

1

= C n intD

2

. If C is a (non-degenerate) pencil

then clearly it admits exactly 2n� 2 lunes. If C is not a pencil then C

0

= C n fCg has

exactly one lune less than C; indeed, the lunes L

1

, L

2

no longer exist, but instead we

10



gained the lune D

1

nintD

2

. By the induction hypothesis, there are at most 2(n�1)�2

lunes in C

0

and therefore at most 2n � 3 � 2n � 2 lunes in C. This establishes the

induction step and thus completes the proof. 2

3.2 The number of lenses in a family of pairwise-intersecting

circles

In this subsection we prove the following theorem.

Theorem 3.8. A family of n pairwise intersecting circles in the plane determines at

most 18n lenses.

Proof: Let C be a family of n pairwise intersecting circles in the plane. We prove

the theorem by induction on n. The theorem clearly holds for n � 36, because the

number of lenses is at most

�

n

2

�

< 18n, for n � 36. Suppose that the theorem holds

for all n

0

< n and consider the case of n > 36 circles.

Lemma 3.9. There exists a point interior to at least n=9 of the disks bounded by

circles in C.

Proof: Let C

0

2 C be a circle that has the smallest radius r. Let D

�

0

be the disk of

radius 3r that is concentric with C

0

. For any circle C 2 C n fC

0

g, the area of D \D

�

0

is minimized when the radius of C is r and C is fully contained in D

�

0

. This minimum

area is �r

2

. Since the area of D

�

0

is 9�r

2

, there is a point inside it that is interior to

at least n=9 of the circles in C. 2

Without loss of generality, assume that the origin, O, is interior to at least n=9 of

the circles in C.

We perform an inversion I of the plane with respect to O, e�ected by the mapping

I(z) = 1=z, using the complex number representation of the plane. This is a one-to-

one continuous mapping from the plane (minus the origin) to itself. I maps circles,

not passing through the origin, to circles. If C is a circle such that O =2 D then I

maps intD onto intI(C). If C is a circle such that O 2 D then I maps intD onto

the complement of I(C).

Observation 3.10. Assume that C

1

; C

2

2 C, and O 2 intD

1

nD

2

. Let C

0

1

= I(C

1

)

and C

0

2

= I(C

2

). If D

1

\D

2

is a lens then D

0

2

n intD

0

1

is a lune.

Denote by C

0

the set of all circles C 2 C such that O 2 D. We have jC

0

j � n=9.

Since the intersection of all the disks bounded by the circles in C

0

has a nonempty

interior, there is at most one lens that is supported by two circles in C

0

. Denote by `

the number of lenses supported by a circle in C

0

and a circle in CnC

0

. After performing

the inversion I, we have, by Observation 3.10, at least ` lunes in the family I(C). By

Theorem 3.1, ` � 2n� 2.

11



By the induction hypothesis, the family C n C

0

determines at most 18(1� 1=9)n =

16n lenses. Hence, C determines at most 16n + (2n � 2) + 1 < 18n lenses. This

establishes the induction step and thus completes the proof of the theorem. 2

In Section 3.4 we shall need the following extension of Theorem 3.8:

Lemma 3.11. Let A and B be two families of circles in the plane, such that every

circle in A intersects every circle in B, and there is a point p that is interior to all the

disks bounding the circles of A. Then the number of lenses within the family A [ B

that are supported by a circle of A and by a circle of B is O(jAj+ jBj).

Proof: First note that we may assume, without loss of generality, that every pair of

circles in A intersect. Indeed, if C

1

; C

2

2 A and C

1

\C

2

= ;, then, since p 2 D

1

\D

2

,

it must be the case that one ofD

1

; D

2

contains the other disk. Suppose that D

1

� D

2

.

We claim that there is no lens that is supported by C

2

and by a circle in B. Indeed,

assume that there exists C 2 B such that D \D

2

is a lens. Since C

1

� D

2

, we have

C

1

\ D � D

2

\ D, which means that the arc C

1

\ D is contained within the lens

D

2

\ D, which contradicts the de�nition of a lens. Therefore, we may exclude C

2

from A without decreasing the number of lenses under consideration. Hence we may

assume that every pair of circles in A intersect.

Perform an inversion map I with respect to p. By Observation 3.10, every lens

that is supported by a circle in A and a circle in B becomes a lune, unless it contains

the point p. Moreover, the outer (resp. inner) arc of each such lune is supported by

the image of a circle in B (resp. in A). Clearly, at most one lens can contain p.

Denote by I(A) and I(B) the two families that contain the images of the circles

of A and of B, respectively, under the inversion I.

Every pair of circles in I(A) intersect, and each circle of I(A) intersects every circle

of I(B). De�ne a bipartite graph G whose vertices are the circles in I(A)[ I(B), and

whose edges are the pairs (C;C

0

), where C 2 I(A), C

0

2 I(B), and D

0

n intD is a

lune within the family I(A) [ I(B). By Lemma 3.4, G is a planar graph. Hence, the

number of edges of G, which is equal to the number of lunes, the outer arc of which

is supported by a circle from I(B) and the inner arc of which is supported by a circle

in I(A), is at most 2(jAj+ jBj)� 4. Adding the one possible lens that contains p, we

obtain the asserted bound. 2

3.3 The number of lenses in arrangements of unit circles

We now consider the case of unit circles, and tackle Conjecture 1.1(a).

Our �rst result shows that the number of lenses in A(C) is subquadratic. We note

that the weaker subquadratic bound O(n

3=2

) is easy to establish using a forbidden

subgraph argument. (An even weaker bound of O(n

5=3

) follows from the more general

results of Tamaki and Tokuyama [19] mentioned in the introduction.)

Theorem 3.12. The number of lenses in A(C) is O(n

4=3

logn).

12



Proof: Let P denote the set of centers of the circles in C and let D be the set of disks

of radius 2 centered at the points of P (each disk in D is concentric with a circle of

C and its radius is twice as large).

Let G be the bipartite containment subgraph of D � P ; that is, the edges of G

are all pairs (D; p) 2 D � P such that p 2 D. We apply the batched range-searching

technique of Katz and Sharir [11] to D and P . This technique computes G and

represents it as the disjoint union of complete bipartite graphs fD

i

� P

i

g, so that

P

i

(jD

i

j+ jP

i

j) = O(n

4=3

logn).

Note that for each lens incident to circles C;C

0

, the center p

0

of C

0

lies in the disk

D of radius 2 concentric with C. Hence (D; p

0

) appears in one of the graphs D

i

� P

i

.

Hence it su�ces to show that the number of lenses `within' each of the graphs

D

i

� P

i

is linear in jD

i

j + jP

i

j. (Note that a lens ' in A(C) is also a lens in the

arrangement of any subset of C that contains the two circles incident to '.) More

precisely, let C

i

denote the set of circles in C that are concentric with the disks in D

i

,

and let

�

C

i

denote the set of circles of C centered at the points of P

i

. Our goal is to

estimate the number of lenses in C

i

[

�

C

i

.

Since every `bichromatic' pair of circles in C

i

�

�

C

i

intersect, the centers of the

circles in C

i

�

�

C

i

all lie in some square R of side at most 8. We partition R into

64 small subsquares, each of side 1, and observe that any pair of circles centered at

the same subsquare intersect each other. Now, instead of considering the set C

i

[

�

C

i

,

consider the O(1) sets C

(p)

i

[

�

C

(q)

i

, where C

(p)

i

is the set of circles of C

i

whose centers lie

in the p-th small subsquare, and

�

C

(q)

i

is the set of circles of

�

C

i

whose centers lie in the

q-th small subsquare. Since each pair of circles in C

(p)

i

[

�

C

(q)

i

intersect, it follows from

Theorem 2.2 that the number of lenses in that set is O(jC

(p)

i

j+ j

�

C

(q)

i

j). Summing these

bounds over all p; q, we conclude that the number of lenses in C

i

[

�

C

i

is O(jC

i

j+ j

�

C

i

j).

This completes the proof of the theorem. 2

Remark: We conjecture that the real bound on the number of lenses is near-linear in

n. However, proving such a bound is likely to be very hard. This is suggested by the

following consideration. Let S be a set of n points in the plane, and let C be the family

of unit circles centered at the points of S. For a pair of points p; q 2 S, the distance

jpqj is 2 if and only if the two circles centered at p and q are externally tangent to

each other. If no two of these points of tangency coincide then, by perturbing the

points of S slightly and randomly, we can ensure that at least a constant fraction of

the number of these tangencies become lenses in the perturbed arrangement. The

best known upper bound for the number of repeated distances in a set of n points

in the plane is O(n

4=3

) [16] (see also [12, 13]), whereas the best known construction

gives only a slightly-superlinear number of repeated distances [12]. This upper bound

has resisted any attempt of improvement for the past 15 years. Hence, improving our

bound on the number of lenses below O(n

4=3

) is likely to be hard. We feel con�dent,

though, that it should not be too di�cult to improve the bound to O(n

4=3

). (We

note, though, that, because of the issue of possibly coinciding tangencies, the repeated

distances problem is not fully reducible to the lenses problem.)
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3.4 The number of lenses and lunes in arrangements of arbi-

trary circles

In this subsection we study general arrangements of circles of arbitrary radii in the

plane, and tackle Conjecture 1.1(d). We �rst have the following upper bound on the

number of lenses and lunes in such an arrangement.

Theorem 3.13. The number of lenses and lunes determined by a family of n circles

of arbitrary radii in the plane is O(n

3=2+"

), for any " > 0, where the constant of

proportionality depends on ".

Proof: Let C be a family of n circles of arbitrary radii. Let G be the intersection

graph of C. That is, the vertices of G are the circles of C and the edges of G connect

all intersecting pairs of circles.

We run a batched range-searching procedure for constructing G and for represent-

ing it as the disjoint union of a family of complete bipartite graphs fA

i

� B

i

g. A

standard way of doing this is as follows. Represent a circle C whose center is at (a; b)

and whose radius is r by the point

p

C

(a; b; r;�(r

2

� a

2

� b

2

)) 2 IR

4

;

and by the pair of hyperplanes

h

+

C

: x

4

= 2ax

1

+ 2bx

2

+ 2rx

3

+ (r

2

� a

2

� b

2

)

h

�

C

: x

4

= 2ax

1

+ 2bx

2

� 2rx

3

+ (r

2

� a

2

� b

2

):

Note that a circle C of radius r centered at (a; b) and a circle C

0

of radius R centered

at (�; �) intersect if and only if

(R� r)

2

� (a� �)

2

+ (b� �)

2

� (R + r)

2

;

or

2a� + 2b� + 2rR + (r

2

� a

2

� b

2

) � �(R

2

� �

2

� �

2

)

and

2a� + 2b� � 2rR + (r

2

� a

2

� b

2

) � �(R

2

� �

2

� �

2

):

In other words, they intersect if and only if the point p

C

lies above h

�

C

0

and below

h

+

C

0

.

Hence, the range searching problem that we face is: We have a set P of n points in

IR

4

, all lying on the paraboloid � : x

4

= x

2

1

+x

2

2

�x

2

3

, and a setW of n wedges, we wish

to �nd a compact representation of the set of all pairs of point-wedge containment.

Applying standard range-searching machinery (see, e.g., [1, 2]), we can represent

the set of these pairs as the disjoint union of a family of complete bipartite graphs

fP

i

�W

i

g, such that the overall size of the vertex sets of these graphs is O(n

3=2+"

), for

any " > 0, with the constant of proportionality depending on ". We then transform

each of the graphs P

i

� W

i

to the corresponding graph A

i

� B

i

, where A

i

is the

14



set of circles whose representing points are in P

i

and B

i

is the set of circles whose

representing wedges are in W

i

.

Clearly, if two of the given circles C;C

0

form a lens or a lune then they intersect,

so the pair (C;C

0

) appears in one of the bipartite graphs A

i

� B

i

, and forms a lens

or a lune in A

i

[ B

i

.

Fix a graph A

i

�B

i

, and let us denote it as A�B for short. Note that each circle

in A intersects every circle in B, but there may be disjoint pairs of circles in A�A

and in B � B.

Suppose that the smallest circle in A [ B is C 2 A, and let r be the radius of

C. We argue as in the proof of Lemma 3.9. That is, let D

0

be the disk of radius 3r

concentric with C. Each circle C

0

2 B intersects C and has radius r

0

� r, so, arguing

as above, the intersection of D

0

with the disk D

0

that C

0

bounds has area at least

�r

2

. Hence, we can place O(1) points in D

0

so that any such D

0

contains at least one

of them. This implies that we can decompose B into O(1) families B

(1)

; : : : ;B

(p)

so

that all the circles in the same family have a common point in their interiors.

Lemma 3.11 implies that the number of `bichromatic' lenses in A[B

(j)

is O(jAj+

jB

(j)

j). The analysis of lunes is a bit more involved. First, as implied by Lemma 3.4,

the number of bichromatic lunes whose inner arc is supported by a circle of B

(j)

and

whose outer arc is supported by a circle of A is O(jAj+ jB

(j)

j). (Note that, as in the

proof of Lemma 3.11, we �rst argue that we may assume that every pair of circles

in B

(j)

intersect; indeed, if this family contains two circles C;C

0

such that C is fully

contained in the interior of C

0

, then, as is easily veri�ed, C cannot support the inner

arc of any lune under consideration, so it can be ignored.)

It remains to consider lunes whose inner arc is supported by a circle C 2 A and

whose outer arc is supported by a circle C

0

2 B

(j)

. Suppose �rst that the radius of C

is smaller than or equal to the radius of C

0

. Then the outer arc of the lune is larger

than half of C

0

, and consequently the number of these lunes is at most O(jB

(j)

j). Any

other lune under consideration has its inner arc supported by a circle in A whose

radius is at least r. Let A

0

denote the subset of these circles. Arguing as above,

we can partition A

0

into O(1) subfamilies, so that all circles in the same subfamily

have a common point in their interiors. For each such subfamily A

00

, Lemma 3.4 and

the analysis given in the preceding paragraph, imply that the number of bichromatic

lunes under consideration in A

00

[ B

(j)

is O(jA

00

j + jB

(j)

j). Summing this over all

the subfamilies A

00

, we �nally obtain that the overall number of lenses and lunes in

A [ B

(j)

is O(jAj+ jB

(j)

j).

Summing this bound over the O(1) indices j, we conclude that the number of

bichromatic lenses and lunes in A [ B = A

i

[ B

i

is O(jA

i

j + jB

i

j). Summing this

bound over all bipartite graphs A

i

� B

i

in our decomposition, we conclude that the

overall number of lenses and lunes in C is O(n

3=2+"

), as asserted. 2

We next derive the following strengthening of Theorem 3.13:

Theorem 3.14. The number of lenses and lunes determined by a family of n circles

of arbitrary radii in the plane with P intersecting pairs is O(n

1=2�"

P

1=2+"

+ n), for
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any " > 0, where the constant of proportionality depends on ".

Proof: Clearly, we only need to prove the theorem in the case that P = o(n

2

), and

we may also assume that P > n, for otherwise the complexity of the arrangement

is O(n), so the theorem trivially holds in this case. Put r = n

2

=P , and choose a

random sample R of r circles of C. The expected number of intersecting pairs in R

is O(Pr

2

=n

2

) = O(r), which implies that the expected complexity of A(R) is O(r).

Decompose A(R) into pseudo-trapezoids (as in [15]). The "-net theory implies that,

with high probability, each pseudo-trapezoid is crossed by at most O(

n

r

log r) circles

of C. We can thus assume that our sample R is such that the number of pseudo-

trapezoids is O(r) and each is crossed by at most O(

n

r

log r) circles of C. For any lens

or lune L in A(C) there exists a pseudo-trapezoid � such that L is also a lens or lune

in A(C

�

), where C

�

is the collection of circles of C that cross � . By Theorem 3.13, the

number of lenses and lunes in A(C

�

) is O((n=r)

3=2+"

), for any " > 0. Hence, the total

number of lenses and lunes in A(C) is

O(r) �O((n=r)

3=2+"

) = O(n

3=2+"

=r

1=2+"

) = O(n

1=2�"

P

1=2+"

);

as asserted. 2

Remark: We do not know whether the bound in Theorem 3.13 is tight. The best

lower bound that we can construct is 
(n

4=3

). Indeed, construct a set L of n lines

and a set P of n points that have �(n

4=3

) incidences between them (see, e.g., [10]

for such a construction). Choose a su�ciently small parameter � > 0, replace each

point p 2 P by a circle of radius � centered at p, and replace each line ` 2 L by a

parallel line that lies above ` at distance � from it. We now have �(n

4=3

) tangencies

between the new circles and lines. Finally, take each of the new lines, move it slightly

down and bend it slightly upwards into a huge circle. It is easily seen that these

deformations can be made so that all the huge circles have the same radius and so

that each of the former tangencies is turned into a lens in the new arrangement.

We thus obtain an arrangement of 2n circles, of only two di�erent radii, that has


(n

4=3

) lenses. (Similarly, by bending the lines slightly downwards, we can obtain an

arrangement with 
(n

4=3

) lunes.)

4 The Existence of Vertices Incident to at Most

Three Circles

In this section we tackle parts (a), (c) and (d) of Conjecture 1.1, and derive partial

solutions to them.

4.1 Vertices of low degree for pairwise-intersecting circles

In this subsection we establish the following result:
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Theorem 4.1. Let C be a family of n pairwise intersecting circles in the plane. If

n is su�ciently large and C is not a pencil then there exists an intersection point

incident to at most 3 circles.

We need the following easy consequence of Euler's formula for planar maps, which

has already been used in the previous paper [14]; we include the simple proof for the

sake of completeness.

Lemma 4.2. Let C be a �nite family of circles in the plane. For every k � 2 denote

by t

k

the number of vertices of A(C) that are incident to exactly k circles of C. Denote

by f

k

(k � 1) the number of faces of A(C) that have k edges. Then

t

2

+ f

2

+ 2f

1

� 6 +

X

k�3

(k � 3)t

k

+

X

k�3

(k � 3)f

k

:

Proof: Denote by V;E; F the numbers of vertices, edges and faces of A(C), respec-

tively. We have

V =

X

k�2

t

k

; F =

X

k�1

f

k

; E =

X

k�2

kt

k

=

1

2

X

k�1

kf

k

:

By Euler's formula, V +F = E+1+c, where c is the number of connected components

of

S

C. Therefore,

3

X

k�2

t

k

+ 3

X

k�1

f

k

=

X

k�2

kt

k

+

X

k�1

kf

k

+ 3 + 3c;

which is easily seen to imply the lemma. 2

Proof of Theorem 4.1: Let t

k

, f

k

, for k � 2, be as de�ned in Lemma 4.2. Note that

we may assume in this case that f

1

= 0. Indeed, if there is a circle which contains just

one intersection point, then it follows from the fact that the circles in C are pairwise

intersecting that C is a degenerate pencil, contrary to assumption.

We assume to the contrary that t

2

= t

3

= 0 and derive a contradiction. Under

this assumption, Lemma 4.2 implies:

V =

X

k�4

t

k

�

X

k�4

(k � 3)t

k

� f

2

� 6:

By Theorems 3.1 and 3.8, the number of bounded faces of A(C) of degree 2 (i.e., the

lunes and lenses of C) is less than 20n. Taking into account the unbounded face as

well, we still have V � f

2

� 6 < 20n.

Claim 4.3. C does not contain a pencil of size � 9n

1=2

.

Proof: Suppose to the contrary that there exists a pencil C

0

� C of size jC

0

j = k �

9n

1=2

. Each circle in C n C

0

intersects the circles in C

0

in at least k distinct points.
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Hence, if we add a circle C

1

of C nC

0

to C

0

we obtain at least k new intersection points.

Adding another circle C

2

2 C n C

0

yields at least k � 2 additional new intersection

points with the circles in C

0

(note that C

1

and C

2

can share at most two of these

intersection points). Continuing in this manner, adding the j-th circle of C n C

0

will

yield at least k � 2j + 2 new intersection points.

Suppose �rst that k < 2n=3. Then we can add k=2 circles of C n C

0

to C

0

, and

obtain at least k

2

=4 distinct vertices of A(C). Since the number of vertices is at most

20n, we obtain k < 9n

1=2

, a contradiction.

Suppose then that k � 2n=3. Adding one circle C 2 C n C

0

to C

0

yields at least

2n=3 new intersection points, all having degree 2 in A(C

0

[ fCg). Since each of these

points must have degree at least 4 in A(C), it follows that C nC

0

must contain at least

2n=3 additional circles, a contradiction that completes the proof of the claim. 2

Since f

2

� 20n it follows that by removing at most 20n edges from A(C) we obtain

a planar graph without multiple edges. Since the number of edges in such a planar

graph is at most three times the number of its vertices, we obtain E � 20n < 3V , or

E < 80n.

Claim 4.4. If n is su�ciently large, then each vertex of A(C) is incident to at most

27n

3=4

circles.

Proof: Suppose to the contrary that there exists an intersection point p incident to

more than 27n

3=4

circles. Let C

0

denote the subfamily of circles incident to p.

By Claim 4.3, C does not contain a pencil of size 9n

1=2

. Therefore, within the

family C

0

, every intersection point other than p has degree at most 9n

1=2

. Hence

each circle C 2 C

0

is incident to at least (27n

3=4

)=(9n

1=2

) = 3n

1=4

distinct intersection

points, so C contributes at least these many edges to A(C). Hence, the number of

edges of A(C) is at least 27n

3=4

� 3n

1=4

= 81n, a contradiction. 2

By Claim 4.4, each circle in C is incident to at least n=(27n

3=4

) >

1

27

n

1=4

distinct

intersection points, and thus contributes at least these many edges to A(C). Hence

the number of edges of A(C) is at least

1

27

n

5=4

, which is greater than 80n when n is

su�ciently large. This contradiction completes the proof of the theorem. 2

Theorem 4.1 is a partial solution to Conjecture 1.1(d). One may say that Con-

jecture 1.1(d) is tight, in the sense that we cannot guarantee the existence of vertices

incident to only two circles. We have already seen in [14] that there are con�gurations

of four pairwise intersecting unit circles such that every intersection point is incident

to exactly three circles. If we do not restrict ourselves to unit circles, we also have

the example in Figure 6 of six circles where each intersection point is incident to at

least three circles. This example has also the property that at most two circles pass

through any two distinct points (i.e., no pencils of size > 2 exist). We can add a

seventh circle (the dotted one in Figure 6) that violates this condition but preserves

the property that each intersection point is incident to at least three circles.
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Figure 6: An arrangement of six or seven circles where each vertex is incident to at

least three circles

4.2 Vertices of low degree in arrangements of unit circles

In this subsection we establish the following result, which provides a partial solution

to Conjecture 1.1(a) posed in the introduction.

Theorem 4.5. Let C be a collection of n unit circles in the plane. If the number of

pairs of intersecting circles in C is at least �n, for some su�ciently large constant �,

then A(C) contains a vertex incident to at most 3 circles.

Proof: We assume to the contrary that A(C) does not contain any such vertex, and

derive a linear upper bound on P , the number of intersecting pairs of circles. There

exists a circle C 2 C that intersects at least 2P=n other circles of C. Let �

0

denote a

unit disk that intersects the maximum number, �, of circles of C; clearly, � � 2P=n,

or P � �n=2. Denote the set of these circles by C

�

0

. The centers of all circles of C

�

0

lie in the disk �

�

0

that is concentric with �

0

and has radius 2 (note that any circle

centered in �

�

0

belongs to C

�

0

). Cover �

�

0

by 7 unit disks (this is easy to do, using a

construction based on the hexagonal grid; see Figure 7.) One of these disks, call it

�

1

, contains at least �=7 centers. The set C

1

of circles centered in �

1

has the property

that every pair of its elements intersect each other, and the intersection points of any

such pair lie in the disk �

�

1

of radius 2 concentric with �

1

; the number P

1

of these

pairs is thus at least

�

�=7

2

�

. The size n

1

of C

1

satis�es n

1

� �, as follows from the

maximality of �.

As the subsequent analysis will show, a technical problem may arise when these

pairs of circles intersect in too few points, or, more precisely, when there are intersec-

tion points of very high degree (linear in �). The following lemma takes care of this

problem.

Lemma 4.6. If �

�

1

contains a vertex incident to more than a� circles of C

1

, for any

constant parameter a, then the number of distinct vertices of A(C) within �

�

1

is at

least a�(a� � 2)=2.
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Figure 7: Covering a disk of radius 2 by seven disks of radius 1

Proof: Let v be a point in �

�

1

incident to w � a� circles of C

1

. There may be at most

w=2 tangent pairs of these circles, and the other pairs of them intersect at pairwise

distinct points that all lie in �

�

1

. The number of these points is thus at least

�

w

2

�

�

w

2

=

w(w � 2)

2

�

a�(a� � 2)

2

:

2

We now cover �

�

1

, as above, by 7 unit disks. One of them, call it �, has the

following property:

(i) If the condition of Lemma 4.6 holds then � contains at least a�(a��2)=14 distinct

vertices of A(C).

(ii) Otherwise, at least �(� � 7)=686 pairs of circles of C

1

intersect inside �.

Let C

�

denote the set of circles that intersect �. By the maximality property of

�

0

, we have n

�

= jC

�

j � �.

We modify the analysis based on Euler's formula, given in Lemma 4.2, and apply

it to the arrangement

~

A(C

�

), which is obtained by clipping A(C

�

) to within �. Specif-

ically, let V;E and F be the sets of vertices, edges and faces of

~

A(C

�

). (Note that

the intersection points of the circles of C

�

with @� constitute additional vertices of

~

A(C

�

). By shifting � slightly, if necessary, we may assume that the number of these

new vertices is exactly 2n

�

and each is incident to exactly one edge of the clipped

arrangement.) We have jV j + jF j = jEj+ 1 + c, where c is the number of connected

components of � \

S

C

�

. We also have

jV j = 2n

�

+

X

k�2

t

(�)

k

; jF j =

X

k�1

f

(�)

k

; jEj = n

�

+

X

k�2

kt

(�)

k

=

1

2

X

k�1

kf

(�)

k

;
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where t

(�)

k

is the number of vertices of

~

A(C

�

) that lie in the interior of � and are

incident to exactly k circles of C

�

, and f

(�)

k

is the number of faces of

~

A(C

�

) that

are incident to exactly k edges of

~

A(C

�

), where each edge that terminates on @� is

counted twice (all these edges bound the unbounded face of the clipped arrangement).

Hence we have

6n

�

+ 3

X

k�2

t

(�)

k

+ 3

X

k�1

f

(�)

k

= n

�

+

X

k�2

kt

(�)

k

+

X

k�1

kf

(�)

k

+ 3 + 3c:

Equivalently,

t

(�)

2

+ f

(�)

2

+ 5n

�

=

X

k�4

(k � 3)t

(�)

k

+

X

k�4

(k � 3)f

(�)

k

+ 3 + 3c: (1)

Since we have assumed that A(C) does not contain any vertex of degree 2 or 3, it

follows that t

(�)

2

= t

(�)

3

= 0. We next apply Theorem 3.12 to C

�

and observe that the

clipping of the arrangement does not a�ect the asymptotic bound on f

(�)

2

provided

by the theorem. Using also the trivial bound f

(�)

1

� n

�

, we thus obtain

X

k�4

kt

(�)

k

= O(n

4=3

�

logn

�

) = O(�

4=3

log �): (2)

Suppose �rst that, in the construction of �, the condition of Lemma 4.6 did hold,

with a value of a that will be determined later on. In this case, as follows from the

lemma and from the construction, there are at least a�(a� � 2)=14 distinct vertices

of A(C) inside �. In this case (2) implies that

a�(a� � 2)=14 <

X

k�4

kt

(�)

k

= O(�

4=3

log �):

In other words, � is bounded by a constant c

1

(that depends on a), so we have

P � c

1

n=2.

Suppose then that the condition of Lemma 4.6 did not hold for a. That is, no

point is incident to more than a� circles of C

1

. We then have

P

�

�

a�

X

k=2

�

k

2

�

s

(�)

k

; (3)

where P

�

is the number of pairs of circles in C

1

that intersect inside �, and s

(�)

k

is the

number of points that lie inside � and are incident to exactly k circles of C

1

.

Let s

(�)

�k

denote the number of vertices of A(C

1

) that lie inside � and whose degree

is at least k, for k � 2. By the result of Spencer et al. [16] (see also [8, 17]), one has

(recall that n

1

= jC

1

j)

s

(�)

�k

� b

�

n

1

k

+

n

2

1

k

3

�

; (4)
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for an appropriate absolute constant b. (See Lemma 4.10 below for a strengthening

of this bound, which is not needed for the present analysis.)

Put

P

�

=

a�

X

k=A

�

k

2

�

s

(�)

k

;

for a constant parameter A that will be determined shortly. We have

P

�

=

a�

X

k=A

�

k

2

�

h

s

(�)

�k

� s

(�)

�k+1

i

�

�

A

2

�

s

(�)

�A

+

a�

X

k=A+1

��

k

2

�

�

�

k � 1

2

��

s

(�)

�k

�

�

A

2

�

s

(�)

�A

+

b

p

n

1

c

X

k=A+1

ks

(�)

�k

+

a�

X

k=b

p

n

1

c+1

ks

(�)

�k

:

Using (4), we readily obtain that

P

�

�

3bn

2

1

A

+ 2ab�n

1

�

�

3b

A

+ 2ab

�

�

2

:

Since P

�

� �(� � 7)=686, it follows that if we choose A su�ciently large and a

su�ciently small, we can ensure that P

�

< P

�

=2. Using (2), this implies that

�(� � 7)

686

� P

�

� 2

A�1

X

k=2

�

k

2

�

s

(�)

k

� A

X

k�2

ks

(�)

k

� A

X

k�4

kt

(�)

k

� B�

4=3

log �;

for an appropriate constant B. (The fourth inequality follows from the observation

that any vertex that contributes to the sum

P

k�2

ks

(�)

k

also contributes to the sum

P

k�4

kt

(�)

k

, with a larger or equal coe�cient k.) Hence, as above, � is at most some

constant c

2

, so P � c

2

n=2 in this case. Hence, choosing � > maxfc

1

; c

2

g=2 we obtain

a contradiction, which therefore completes the proof of the theorem. 2

Inspecting the proof of the theorem, we actually have the following stronger result.

Corollary 4.7. Let C be a �nite family of unit circles with the property that there

exists a unit disk that intersects at least � circles of C. Then there exists a vertex of

A(C) that is incident to at most 3 circles.

4.3 Vertices of low degree in arrangements of arbitrary cir-

cles

In this section we establish the following theorem, whose proof exploits the bound on

the number of lunes and lenses given in of Theorem 3.14.
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Theorem 4.8. There exists an absolute constant � with the following property. Let

C be a family of n circles of arbitrary radii in the plane, and let q � 2 denote the

maximal size of a pencil in C. If the number of pairs of intersecting circles in C is at

least �n(q + n

1=3

) then A(C) contains a vertex incident to at most 3 circles.

Proof: Applying Lemma 4.2 to A(C), and continuing to use the same notation, we

obtain

t

2

+ f

2

+ 2f

1

� 6 +

X

k�3

(k � 3)t

k

+

X

k�3

(k � 3)f

k

:

Note that, as above, f

1

� n. Assume to the contrary that t

2

= t

3

= 0. Then we have

(replacing " by 3" in Theorem 3.13) V � E � 4(f

2

+2f

1

) = O(n

3=2+3"

), where V and

E denote, respectively, the number of vertices and edges of A(C).

Let P denote the number of pairs of intersecting circles in C. We have

P �

X

k�4

�

k

2

�

t

k

:

Denote by t

�k

the number of vertices of A(C) incident to at least k circles. We need

the following result, which improves a bound due to Clarkson et al. [8] on the number

of vertices of large degree in arrangements of circles of arbitrary radii.

Lemma 4.9. Let C be a family of n circles of arbitrary radii in the plane with P pairs

of intersecting circles. Then the number t

�k

of points incident to at least k circles

satis�es

t

�k

� b

�

P

k

2:5

+

n

k

�

; (5)

for an appropriate absolute constant b.

Proof: The approach is to derive a re�ned bound on the number I of incidences

between the circles of C and the points in an m-element set M . This is done using

the following variant of the technique of [8].

Draw a random sample R of r = dn

2

=P e circles from C. The expected number

of intersecting pairs in R is at most P (r=n)

2

= r. Decompose A(R) into pseudo-

trapezoids (see [15] for details), and for each pseudo-trapezoid � consider the set M

�

of points of M that lie in �

0

, which is � with its four vertices removed, and the set C

�

of circles that intersect �

0

. Put m

�

= jM

�

j and n

�

= jC

�

j. By the results of [8], the

number of incidences between C

�

and M

�

is O(m

3=5

�

n

4=5

�

+m

�

+n

�

). We sum this over

all � 's, and note that the incidences that we miss are between the circles of C and

the vertices of the trapezoids. Any such incidence can be charged to an intersection

between a circle of R and a circle of C. The expected number of these intersections

is O(Pr=n) = O(n). Denoting by I

0

the number of these incidences, we obtain

I = I

0

+O

 

X

�

m

3=5

�

n

4=5

�

+m

�

+ n

�

!

:
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Using H�older's inequality, and observing that

P

�

m

�

= O(m), we obtain

I = I

0

+O

 

(

X

�

m

�

)

3=5

� (

X

�

n

2

�

)

2=5

+m+

X

�

n

�

!

=

I

0

+O

 

m

3=5

(

X

�

n

2

�

)

2=5

+m +

X

�

n

�

!

:

Taking expectation with respect to the random sample R, and using the analysis of

Clarkson and Shor [9] and the concavity of the function x

2=5

, we obtain

I = O(n) +O

 

m

3=5

�

�

�

n

r

�

2

� r

�

2=5

+m+ n

!

=

O

�

m

3=5

n

4=5

r

2=5

+m + n

�

= O(m

3=5

P

2=5

+m+ n):

We now apply this bound to C and to the set M of all t

�k

vertices incident to at least

k circles. Since the number of incidences is at least kt

�k

, we obtain

kt

�k

= O(t

3=5

�k

P

2=5

+ t

�k

+ n);

from which the asserted bound on t

�k

follows readily. 2

Remark: An analogous bound to that derived in Lemma 4.9, which strengthens the

bound in (4) that we have used earlier, can be established for arrangements of unit

circles. Even though we do not need this variant, we include it here for the sake of

completeness:

Lemma 4.10. Let C be a family of n unit circles in the plane with P pairs of

intersecting circles. Then the number of points incident to at least k circles is

O(P=k

3

+ n=k).

Proof: Using Sz�ekely's technique [17], it is easy to show that the number I of inci-

dences between the circles of C and a set M of m points satis�es

I = O(m

2=3

P

1=3

+m + n): (6)

Let M be the set of all vertices of A(C) that are incident to at least k circles of C.

Then I � mk, so we have mk � c(m

2=3

P

1=3

+m+ n), for an appropriate constant c,

from which the claim follows readily. 2

Claim 4.11. Let L be a collection of m > 54b lines in the plane. If A(L) does not

contain a vertex (which may be at in�nity) incident to more than m=a lines, for any

constant a satisfying a > 12b, then the number of distinct vertices of A(L) is at least

cm

2

, for an appropriate constant c.
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Proof: By applying a suitable projective transformation to the plane, we may assume

that no two lines in L are parallel. Similar to (4) and the proof of Lemma 4.10, it

has been shown in [18] (see also [13]) that, in an arrangement of m lines, the number

of vertices incident to at least k lines is at most b(m=k +m

2

=k

3

), for an appropriate

absolute constant b. The number Q of pairs of crossing lines is, by assumption,

�

m

2

�

.

Hence, denoting by w

k

(resp. w

�k

) the number of vertices of A(L) incident to exactly

(resp. at least) k lines, and using an approach similar to the one in the proof of

Theorem 4.5 we have, for a parameter B that will be determined shortly,

Q =

m=a

X

k=2

�

k

2

�

w

k

=

B�1

X

k=2

�

k

2

�

w

k

+

m=a

X

k=B

�

k

2

�

w

k

�

B

2

B�1

X

k=2

kw

k

+

�

B

2

�

w

�B

+

p

m

X

k=B+1

kw

�k

+

m=a

X

k=

p

m+1

kw

�k

�

B

2

X

k�2

kw

k

+

bm

2

B

+

p

m

X

k=B+1

2bm

2

k

2

+

m=a

X

k=

p

m+1

2bm �

B(E

0

�m)

2

+

3bm

2

B

+

2bm

2

a

�

B(3V

0

+m)

2

+

3bm

2

B

+

2bm

2

a

;

where V

0

and E

0

are the numbers of vertices and edges of the line arrangement,

respectively. Hence, if we choose a > 12b and B = 18b, we will have

m

2

6

� 9b(3V

0

+m)

and this implies the claim. 2

Claim 4.12. A(C) satis�es the following inequality:

�n(q + n

1=3

) � P �

X

k�4

�

k

2

�

t

k

� 4

�

X

k=4

�

k

2

�

t

k

;

where

� = maxfaq; c

0

(P

2=9

+ n

1=3

)g;

for an appropriate constant c

0

.

Proof: Let v be a vertex of A(C) incident to k > � circles. Let C

0

denote the

subfamily of circles incident to v. Apply to the plane an inversion centered at v. All

the circles in C

0

are mapped into lines. No vertex (which may be at in�nity) of this

line arrangement is incident to more than q lines, for otherwise C would contain a

pencil of size larger than q. Since k > aq, Lemma 4.11 implies that the line images of

the circles of C

0

, and thus the circles of C

0

themselves, intersect in at least ck

2

distinct

points. Since k � c

0

(P

2=9

+ n

1=3

), simple calculation shows that t

��

<

1

2

c�

2

<

1

2

ck

2

,
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so at least half of these intersection points are each incident to at most � circles.

This implies that the number of pairs of circles meeting at high-degree vertices can

be charged to twice the number of pairs of circles meeting at low-degree vertices. In

other words, we have shown that

X

k>�

�

k

2

�

t

k

� 3

X

k��

�

k

2

�

t

k

:

This readily implies the claim. 2

We next estimate the sum in Claim 4.12 using (5). That is, we have, for a

parameter B that will be determined shortly and for � = (P=n)

2=3

,

�n(q + n

1=3

) � P � 4

�

X

k=4

�

k

2

�

t

k

= 4

B�1

X

k=4

�

k

2

�

t

k

+ 4

�

X

k=B

�

k

2

�

t

k

�

2B

B�1

X

k=4

kt

k

+ 4

�

B

2

�

t

�B

+ 4

�

X

k=B+1

kt

�k

+ 4

�

X

k=�+1

kt

�k

�

2B

X

k�4

kt

k

+

4bP

B

1=2

+

�

X

k=B+1

8bP

k

1:5

+

�

X

k=�+1

8bn �

2BE +

20bP

B

1=2

+ 8�bn:

If � = aq, i.e., q = 
(P

2=9

+ n

1=3

) then, choosing the constants B, a and � appropri-

ately, we will have, using Theorem 3.14,

P < 4BE � 16B(f

2

+ 2f

1

) = O(n

1=2�"

P

1=2+"

+ n);

for any " > 0. This implies that P = O(n) and this will lead to a contradiction if we

require � to be su�ciently large.

Otherwise, for q = O(P

2=9

+ n

1=3

), we again can obtain

P < 4BE +O(�n) � 16B(f

2

+ 2f

1

) +O(�n) = O(n

1=2�"

P

1=2+"

+ n+ nP

2=9

+ n

4=3

);

for any " > 0. This implies that P = O(n

4=3

), which again is a contradiction if � is

required to be su�ciently large. 2

Remark: Theorem 4.8 may fail if P is not su�ciently large, as the following construc-

tion shows. Given parameters n and q, draw m = n=q concentric circles C

1

; : : : ; C

m

and another circle C that intersects each of them at two points; denote the intersec-

tion points of C and C

i

by a

i

and b

i

. Now replace each C

i

by a pencil of q circles

C

i1

; : : : ; C

iq

that pass through a

i

and b

i

and are su�ciently close to each other so that

no pair of circles from di�erent pencils intersect. Put C = fCg

S

fC

ij

j i � m; j � qg.

This is a collection of n + 1 circles whose union is connected, so that every vertex of

their arrangement is incident to q+1 circles. In this case the size of the largest pencil

is q+1 and the number of intersecting pairs of circles is n+m

�

q

2

�

= n(q+1)=2. This

shows that Theorem 4.8 may fail if we do not require that the number of intersecting

pairs of circles is substantially larger than n times the size of the largest pencil.
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5 Intersecting Pairs and Vertices in Arrangements

of Circles

In this section we use the machinery developed in the preceding sections to obtain

the following results, which relate the number of vertices of the arrangement to the

number of intersecting pairs of circles, and which we believe to be of independent

interest.

Theorem 5.1. Let C be a collection of n unit circles, with P intersecting pairs of

circles. Then these circles intersect in at least �P distinct points, for some constant

� > 0.

Proof: The proof proceeds by induction on n and P . The claim clearly holds for any

n � 2 and P = 1 (for any � < 1). We assume that it holds for all n

0

< n and all P ,

and for n

0

= n and P

0

< P , and will show that it also holds for n and P .

Arguing as in the proof of Theorem 4.5, we claim that there exists a unit disk �

which contains at least a�

2

distinct vertices of A(C), where � is the maximum number

of circles of C that intersect any unit disk, and where a is an appropriate absolute

constant. Indeed, if the condition in Lemma 4.6 is satis�ed then the claim is obvious.

Otherwise, we choose a disk � for which P

�

= 
(�

2

), and repeat the analysis in the

preceding section (without assuming anything about t

2

and t

3

). The inequality (2)

becomes

X

k�2

kt

(�)

k

= O(t

(�)

2

+ t

(�)

3

+ f

(�)

1

+ f

(�)

2

) = O(t

(�)

2

+ t

(�)

3

+ �

4=3

log �): (7)

The bound for P

�

is derived exactly as above, and allows us to assume that P

�

< P

�

=2.

This, combined with (7), yields, as above,


(�

2

) = P

�

= O(t

(�)

2

+ t

(�)

3

+ �

4=3

log �):

Hence, if � is at least some appropriate and su�ciently large constant � then we have

t

(�)

2

+ t

(�)

3

= 
(�

2

);

which implies the claim. If � < � then, since A(C) contains at least one vertex, we

can choose � to be a unit disk containing that vertex, and choose a so that 1 � a�

2

.

Then in this case we also have a unit disk that contains at least a�

2

distinct vertices

of A(C).

Remove from C all the n

�

circles of C

�

(i.e., the circles that intersect �), and let

C

0

be the resulting subset. Let P

0

denote the number of intersecting pairs of circles

in C

0

. We have P

0

= P � P

1

� P

2

, where P

1

� �

2

=2 is the number of intersecting

pairs of circles in C

�

, and P

2

is the number of intersecting pairs (C;C

0

) of circles, with

C 2 C

�

and C

0

2 C

0

. Note that any such circle intersects the disk �

�

of radius 3 and
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concentric with �. We can cover �

�

by 19 unit disks, using a construction based on

the hexagonal grid and similar to that shown in Figure 7, and use the maximality of

� to conclude that the number of such circles C

0

is at most 19�. Hence P

2

� 19�

2

.

In other words, we have found N � a�

2

� 2�(P

1

+ P

2

) distinct vertices of A(C),

for an appropriate choice of �. After removing C

�

, we are left with a set C

0

of n

0

< n

circles, such that no vertex of A(C

0

) coincides with any of the vertices constructed so

far. If P

0

� P=2 then P

1

+P

2

= P �P

0

� P=2, so we have shown that A(C) contains

at least 2�P=2 = �P distinct vertices. Otherwise, apply the induction hypothesis to

n

0

and P

0

, to obtain at least �P

0

new vertices of A(C). Hence the number of distinct

vertices of A(C) is at least

�P

0

+ 2�(P

1

+ P

2

) � �(P

0

+ P

1

+ P

2

) = �P:

This establishes the induction step and thus completes the proof of the theorem. 2

Corollary 5.2. The number of distinct intersection points of n unit circles whose

centers lie inside a square of side length d > 1 is at least 
(n

2

=d

2

).

Proof: Assume d to be an integer, and partition the given square into d

2

squares of

side length 1. Let C

i

denote the subcollection of the given circles whose centers lie in

the i-th smaller square, for i = 1; : : : ; d

2

. Every pair of circles in C

i

intersect, so, by

Theorem 5.1, these circles have 
(n

2

i

) distinct points of intersection, where n

i

= jC

i

j.

We sum these lower bounds over all families C

i

, and note that each intersection point

can contribute to only O(1) terms. Hence, the total number of intersection points of

the given circles is 
(

P

i

n

2

i

) = 
((

P

i

n

i

)

2

=d

2

) = 
(n

2

=d

2

). 2

Remark: The corollary does not use the full `strength' of the theorem. It only

requires the weaker result that if every pair of circles intersect then they determine


(n

2

) distinct intersection points.

Corollary 5.3. (a) For a collection C of n unit circles whose centers lie in a square

of size � cn

1=2

, for a su�ciently small constant c, there exists a point that is

incident to only two or three circles.

(b) If the area of the union of the disks bounded by the circles of C is at most c

0

n,

for a su�ciently small constant c

0

, then there exists a point that is incident to

only two or three circles.

Proof: In both cases, it is easy to show that the number of pairs of intersecting

circles in C is larger than �n, provided c and c

0

are su�ciently small. 2

Theorem 5.4. Let C be a collection of n circles of arbitrary radii in the plane with

P intersecting pairs. Let q denote the largest size of a pencil in C, and suppose that

P � �n(q + n

1=3

), for a su�ciently large constant �. Then A(C) has 
(P ) distinct

vertices.
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Proof: Similar to the assertion of Claim 4.12, we have

�n(q + n

1=3

) � P �

X

k�2

�

k

2

�

t

k

� 3

�

X

k=2

�

k

2

�

t

k

;

where � is as de�ned above. We estimate this sum using Lemma 4.9. That is, we

have, for a parameter B that will be determined shortly,

�n(q + n

1=3

) � P � 4

�

X

k=2

�

k

2

�

t

k

= 4

B�1

X

k=2

�

k

2

�

t

k

+ 4

�

X

k=B

�

k

2

�

t

k

�

2B

2

B�1

X

k=2

t

k

+ 4

�

B

2

�

t

�B

+ 4

(P=n)

2=3

X

k=B+1

kt

�k

+ 4

�

X

k=(P=n)

2=3

+1

kt

�k

�

2B

2

X

k�2

t

k

+

4cP

B

1=2

+

(P=n)

2=3

X

k=B+1

8cP

k

1:5

+

�

X

k=(P=n)

2=3

+1

8cn �

2B

2

V +

20cP

B

1=2

+ 8cn�:

Hence, choosing the constants B and � appropriately, one can show, as in the pre-

ceding analysis, that

P

2

� 2B

2

V;

which establishes the claim. 2

Remark: The theorem may fail if we do not require P to be signi�cantly larger than

nq, as the example given at the end of the preceding section demonstrates.
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