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Abstract
Given a matrix A, we study how many ε-cubes are required to cover the convex hull of the
columns of A. We show bounds on this cover number in terms of VC dimension and the γ2
norm and give algorithms for enumerating elements of a cover. This leads to algorithms for
computing approximate Nash equilibria that unify and extend several previous results in the
literature. Moreover, our approximation algorithms can be applied quite generally to a family
of quadratic optimization problems that also includes finding the densest k-by-k combinatorial
rectangle of a matrix. In particular, for this problem we give the first quasi-polynomial time
additive approximation algorithm that works for any matrix A ∈ [0, 1]m×n.
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1 Introduction

Consider a quadratic optimization problem where we wish to maximize pTAq over probability
distributions p, q, subject to linear constraints. Examples of problems of this type include
Nash equilibrium and the densest combinatorial rectangle problem. A general scheme for
finding an approximately optimal solution is based on the following notion of an ε-net for
an m-by-n matrix A. Denote by conv(A) the convex hull of the columns of A. We call a
set of vectors S ⊆ Rm an ε-net for A if for all v ∈ conv(A) there is a vector u ∈ S such that
‖v−u‖∞ ≤ ε. An efficient means to enumerate elements of an ε-net S for A gives an efficient
means for finding a near optimal solution to the original quadratic optimization problem:
for each u ∈ S solve the linear program to maximize pTu over probability distributions
p, q, subject to the original linear constraints on p and q and the additional constraint
‖u − Aq‖∞ ≤ ε. The largest such value will be within 2ε of the optimal and the running
time of this approximation algorithm will be a polynomial factor times the time required to
enumerate an ε-net for A. This approximation algorithm motivates the study of ε-nets and
efficient algorithms for enumerating them.

Say that A ∈ [−1, 1]m×n. Denote by Nε(A) the minimal size of an ε-net for A, which we
will also informally refer to as the cover number of A. An obvious upper bound on Nε(A) is
(1/ε)m. This naive bound can be improved by realizing that the convex hull of the columns of
A actually lives in a space of dimension rank(A), which allows an improvement to Nε(A) =
[O(1/ε)]rank(A). Recently, [7] made this bound algorithmic, showing that an ε-net for A can be
enumerated by a randomized Las Vegas algorithm in time [O(1/ε)]rank(A)poly(mn). Following
the above approximation paradigm, this led to polynomial time additive approximation
schemes for two-player Nash Equilibrium when the sum of the payoff matrices has logarithmic
rank, improving work of Kannan and Theobold [17] who showed the same when the sum of
the payoff matrices has constant rank. The [7] bound on the cover number combined with
the above approximation paradigm also gave an efficient approximation algorithm for finding
the densest k-by-k combinatorial rectangle provided the associated matrix has rank at most
logarithmic in the dimension.

In this paper, we continue the study of Nε(A) and its relation to other complexity
measures of A, like VC dimension, γ2 norm, and communication complexity (these measures
are formally defined in the sequel). In particular, we show that Nε(A) = nO(VC(A)/ε2) and
that an ε-net can be enumerated deterministically in the same time. As VC(A) ≤ log(m) for
any matrix with m rows, this recovers the quasi-polynomial time approximation for Nash
equilibrium shown by Lipton et al. [19], and also gives a quasi-polynomial time additive
approximation algorithm for the densest k-by-k combinatorial rectangle problem.

By the triangle inequality it is easy to see that an ε/2-net for a matrix B satisfying ‖A−
B‖∞ ≤ ε/2 gives an ε-net for A (here ‖X‖∞ denotes the largest absolute value of an entry of
X). Thus to construct ε-nets for A, it suffices to look for “simpler” matrices that are entrywise
close to A. Define the ε-approximate rank of A as rankε(A) = minB:‖A−B‖∞≤ε rank(B).
Existentially Nε(A) ≤ [O(1/ε)]rankε/2(A), but for the algorithm of [7] to enumerate such a
cover, it explicitly needs to find an approximating matrix B whose rank is equal to rankε/2(A).
We currently do not know an algorithm to do this working in time [O(1/ε)]rankε/2(A), or even
(n/ε)rankε/2(A) for that matter.

For a sign matrix A and any ε < 1, it is easy and known that VC(A) ≤ rankε(A). Thus
the results in this paper give a way to enumerate an ε-net for a sign matrix A in deterministic
time nO(rankε(A)/ε2). We present a similar result in terms of the γ2 norm. The γ2 norm,
also known as the Hadamard product operator norm, has recently seen many applications
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1. Create an ε/2-net S for A+B. For each u ∈ S, solve the following linear program:
maximize
p∈∆m,q∈∆n

pTu−max
i
eTi Aq −max

j
pTBej

subject to ‖(A+B)q − u‖∞ ≤ ε/2.
2. Output p, q that achieve an objective value at least −ε.

Figure 1 Finding ε-Nash equilibrium for payoff matrices A,B given an ε/2-net for A+B.

in communication complexity and learning theory [20, 24, 25, 23]. Part of its usefulness
is that the approximate γ2 norm serves as a proxy for the approximate rank and can be
computed efficiently via semidefinite programming. Based on the γ2 norm, we show a Las
Vegas randomized algorithm for enumerating an ε-net for A in time (1/ε)r log(r) log(mn)/ε2

where r = rankε/4(A). While being a slightly weaker result than the one using the VC
dimension, this has the benefit of having a simple self-contained proof.

2 Algorithmic applications

We first show how efficient constructions of an ε-net for A lead to approximation algorithms
for Nash equilibria and finding a densest combinatorial rectangle. This idea was already
presented in [7] for ε-nets constructed from low rank decompositions of A. We present the
proof again here in a slightly more general form for completeness.

2.1 Approximate Nash equilibria
Let A,B ∈ [−1, 1]m×n be the payoff matrices of the row and column players of a 2-player
game. In other words, A(i, j) is the payoff to Alice when she plays strategy i and Bob plays
strategy j, and similarly B(i, j) is the payoff to Bob when Alice plays strategy i and he plays
strategy j. Let ∆n = {p ∈ Rn : ‖p‖1 = 1, p ≥ 0} be the set of n-dimensional probability
vectors. A Nash equilibrium is a pair of strategies (p, q) for p ∈ ∆m, q ∈ ∆n satisfying

pTAq ≥ eTi Aq ∀i ∈ {1, . . . ,m}
pTBq ≥ pTBej ∀j ∈ {1, . . . , n}

Here ei denotes the vector with a 1 in the ith position and zeros elsewhere.
Alternatively, a Nash equilibrium is a solution to the following optimization problem:

max
p∈∆m,q∈∆n

pT (A+B)q −max
i
eTi Aq −max

j
pTBej (1)

An ε-Nash equilibrium is a pair of strategies with the property that each player’s payoff
cannot improve by more than ε by moving to a different strategy, i.e.,

pTAq ≥ eTi Aq − ε ∀i ∈ {1, . . . ,m}
pTBq ≥ pTBej − ε ∀j ∈ {1, . . . , n}

I Lemma 1. Any p ∈ ∆m, q ∈ ∆n that achieve an objective value at least −ε for (1) form
an ε-Nash equilibrium.

We now show how to find an ε-Nash equilibrium for a game with payoff matrices A,B
given an ε-net for A+B. The algorithm is described in Figure 1.
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I Theorem 2.1. Let A,B ∈ [−1,+1]m×n. Suppose there is a deterministic (or Las Vegas
randomized) algorithm running in time t for enumerating an ε/2-net for A+ B. Then an
ε-Nash equilibrium for the game with payoff matrices A,B can be found by a deterministic
(or Las Vegas randomized) algorithm in time t · poly(mn).

Proof. The algorithm to find an ε-Nash equilibrium enumerates all vectors u in an (ε/2)-net
for A+B. For each of these vectors the algorithm solves the following program:

maximize
p∈∆m,q∈∆n

pTu−max
i
eTi Aq −max

j
pTBej

subject to ‖(A+B)q − u‖∞ ≤ ε/2.

Let p∗ ∈ ∆m, q∗ ∈ ∆n be a Nash equilibrium, and so 0 = pT∗ (A + B)q∗ − maxi eTi Aq∗ −
maxj pT∗Bej . For u in the ε/2-net satisfying ‖(A+B)q∗ − u‖∞ ≤ ε/2 we then have

max
p,q

pTu−max
i
eTi Aq −max

j
pTBej ≥ pT∗ u−max

i
eTi Aq∗ −max

j
pT∗Bej

pT∗ (A+B)q∗ −max
i
eTi Aq∗ −max

j
pT∗Bej − ε/2 ≥ −ε/2

Thus the algorithm finds a pair p, q such that the optimal value is at least −ε/2. By going
via the ε/2-net again, and using Lemma 1 we see that p, q are an ε-Nash equilibrium. J

2.2 Densest combinatorial rectangle
For a matrix A ∈ [0, 1]m×n and subsets S, T of rows and columns, let AS,T be the submatrix
induced by S and T . The density of the submatrix AS,T is

density(AS,T ) =
∑
i∈S,j∈T Aij

|S||T |
,

that is, the average of the entries in AS,T .
I Definition 2.2 (Densest k-by-k combinatorial rectangle). Let A ∈ [0, 1]m×n. The densest
k-by-k combinatorial rectangle problem is to find sets S∗, T∗, each of size k, such that

density(AS∗,T∗) = max
S,T :|S|=|T |=k

density(AS,T ) .

Sets S, T which achieve the maximum up to an additive ε we call an ε-approximate densest
k-by-k combinatorial rectangle.

A closely related problem is the densest k-subgraph problem. Here the goal is to find a
set S∗ realizing maxS,|S|=k density(AS,S). This problem is NP-hard and Khot has also shown
that it does not have a PTAS unless NP ⊆ BPTIME(2nε) [16]. The best known polynomial
time algorithm guarantees an optimal solution within a multiplicative factor of n1/4+ε of the
optimal density [9]. For dense graphs (with at least an ε-fraction of edges), Arora, Karger,
and Karpinski give a polynomial time approximation scheme for k = Ω(n) [4]. This also
follows from the results in [2].

It is straightforward to see that the density of the densest k-by-k combinatorial rectangle
and the densest 2k-subgraph differ by at most a factor of 2. Thus hardness results for densest
k-subgraph carry over to densest k-by-k combinatorial rectangle. We note that as shown in
[1], assuming that the Hidden Clique Problem, that is, the problem of finding a planted clique
of size n1/3 in the random graph G(n, 1/2) is hard, then so is approximating the Densest
k-Subgraph to within any constant factor or to within any additive error bounded away
from 1, for a subgraph of size k = n1−ε for any 2/3 ≥ ε > 0 in an n vertex graph. Moreover,
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any algorithm that solves the above approximation problem in no(logn) time would yield
an algorithm with essentially the same running time for the hidden clique problem, and
there is no such known result despite the extensive study of the hidden clique problem (see
[14, 5, 13, 12]).

Our strategy for approximating the densest k-by-k combinatorial rectangle follows the
paradigm outlined in the introduction. First, note that the problem can be equivalently
reformulated as follows.

I Lemma 2. Let A ∈ [0, 1]m×n. Then

max
S,T :|S|=|T |=k

density(AS,T ) = max xTAy

x ∈ ∆m, y ∈ ∆n

‖x‖∞ ≤ 1/k, ‖y‖∞ ≤ 1/k

Proof. For fixed y, the function xTAy is linear in x and vice versa, thus it is easy to replace
any solution by one of at least the same value in which each xi and each yj is either 0 or
1/k. This corresponds to the problem of maximizing the quantity density(AS,T ) over all sets
S of k rows and T of k columns. J

By Lemma 2 it can be seen that the densest k-by-k combinatorial rectangle fits into the
general class of problems of our approximation algorithm. Thus, as described above, by
iterating over elements of the cover and sequentially solving the associated linear programs,
we obtain the following theorem.

I Theorem 2.3. Let A ∈ [0, 1]m×n. Suppose that there is a deterministic (or Las Vegas
randomized) algorithm to enumerate an ε/2-net for A in time t. Then a solution to the
k-by-k densest combinatorial rectangle within an additive ε of the optimal can be found in
time t · poly(mn).

3 γ2 bounds on the cover number

Results of [7] show that an ε-net for A can be constructed by a randomized algorithm in
time (1/ε)O(d) given a matrix B of rank d that is an ε/2-approximation of A. A drawback to
this result is that it requires finding such a low rank approximation B.

We address this issue here by considering the γ2 norm. As we describe next, the
(approximate) γ2 norm characterizes the approximate rank up to a logarithmic factor in the
size of the matrix and small change in the error parameter [23]. Moreover, the approximate
γ2 norm can be computed in polynomial time via semidefinte programming, and thus also
gives a polynomial time randomized Las Vegas algorithm to find an approximation B whose
rank is within a logarithmic factor of the optimal. Combining this with the result of [7]
gives a randomized Las Vegas algorithm for constructing an ε-net for an m-by-n matrix A of
approximate rank d working in time (1/ε)O(d log(mn)). We also give a simple and direct proof
of a weaker result solely in terms of the γ2 norm. Namely, if γ = minB:‖A−B‖∞≤ε/4 γ2(B)
then there is a randomized algorithm constructing an ε-net for A in time (γ/ε)γ2 log(mn)/ε2 .

3.1 Factorization norm
For a m-by-n matrix A of rank d, let σ1(A) ≥ · · · ≥ σd(A) ≥ 0 denote the non-zero singular
values of A. The trace norm ‖A‖tr =

∑d
i=1 σi(A) is the sum of the singular values of A. A
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simple bound on the rank of A can be given in terms of the trace norm,

‖A‖tr =
d∑
i=1

σi(A) ≤ d1/2

(
d∑
i=1

σ2
i (A)

)1/2

.

This gives

rank(A) ≥
(
‖A‖tr
‖A‖F

)2
, (2)

where ‖A‖F =
√∑

i σi(A)2 =
√

Tr(AA∗) is the Frobenius norm of A.
A drawback to this bound is that it is non-monotone in the sense that it can give a better

bound on a submatrix of A than on A itself. We can remedy this in the following way. Let
A ◦B denote the entrywise product of A and B. As rank(A) ≥ rank(A ◦uv∗) for any vectors
u, v we can maximize the above bound on A ◦ uv∗ over all vectors u, v. This motivates the
definition of γ2. Here ‖u‖ denotes the `2 norm of u.
I Definition 3.1.

γ2(A) = max
u,v

‖u‖=‖v‖=1

‖A ◦ uv∗‖tr

In a similar way to rank, we can define an approximate version of γ2. Originally this was
defined in a multiplicative sense [25], but for consistency with approximate rank we define it
in an additive way here.
I Definition 3.2. Let A be a matrix and ε ≥ 0.

γε2(A) = min
B

‖A−B‖∞≤ε

γ2(B).

Exactly as in (2) we obtain that γε2 gives the following lower bound on approximate rank.
I Theorem 3.3. Let A be a matrix and ε ≥ 0. Then

rankε(A) ≥
(

γε2(A)
‖A‖∞ + ε

)2
.

To show that γε2 is also not too much smaller than the approximate rank it is useful to
work with an alternative characterization of γ2 as a factorization norm. Let ‖v‖p denote the
`p norm of v. For a m-by-n matrix A and non-negative integers p, q (possibly ∞) define the
norm

‖A‖p→q = max
y

‖y‖p=1

‖Ay‖q .

By writing γ2 as a semidefinite program and taking the dual, one arrives at the following
formulation (see, for example, [10] or [26]).

I Lemma 3. Let A be an m-by-n matrix. Then

γ2(A) = min
X,Y
XY=A

‖X‖2→∞‖Y ‖1→2.
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Notice that ‖X‖2→∞ is equal to the largest `2 norm of a row of X. Similarly ‖Y ‖1→2 is
equal to the largest `2 norm of a column of Y .

Using the Johnson-Lindenstrauss [15] dimension reduction lemma, [23] show that the
approximate γ2 norm in fact characterizes the approximate rank, up to a logarithmic factor
and small change in the approximation parameter.
I Theorem 3.4 ([23]). Let A be anm-by-n matrix with γε2(A) = γ witnessed by a factorization
A = XY where X is anm-by-k matrix and Y is k-by-n. For any δ > 0 let r = 8γ2 ln(4mn)/δ2.
Then

Pr
R

[‖A−XRRTY ‖∞ ≤ δ] ≥
1
2 ,

where the probability is taken over R a random k-by-r matrix with entries independent and
identically distributed according to the normal distribution with mean 0 and variance 1. In
particular,

rankδ+ε(A) ≤ 8 ln(4mn)γ
ε
2(A)2

δ2

The logarithmic factor in this theorem is in fact necessary, as can be seen with the identity
matrix. The identity matrix In of size n has γ2(In) = 1, but Alon [6] shows that rankε(In) =
Ω( log(n)

ε2 log(1/ε) ) for 1
2
√
n
≤ ε ≤ 1

4 .
Theorem 3.4 combined with the results in [7] gives the following corollary.

I Corollary 3.5. Let A be anm×n matrix with entries in [−1, 1] and rankε/4(A) = d. Then an
ε-net for A can be constructed by a Las Vegas randomized algorithm in time (1/ε)O(d ln(mn)).

3.2 Constructing ε-nets via γ2

In this section we prove from scratch an upper bound on the covering number in terms of
the γ2 norm. This gives weaker bounds than Corollary 3.5 but has the advantage of having
a direct and simple proof.
I Theorem 3.6. Let A be an m-by-n matrix. Suppose that A = XY where X is m-by-d, Y
is d-by-n, and ‖X‖2→∞‖Y ‖1→2 = γ. Then Nε(A) = O(γ/ε)d. Moreover, an ε-net of this size
can be constructed in time O(γ/ε)dpoly(mn).

Proof. We can assume without loss of generality that ‖X‖2→∞ = γ and ‖Y ‖1→2 = 1. Then
by definition ‖Y x‖2 ≤ 1 for any x with ‖x‖1 ≤ 1.

Let S be an ε/γ-net for the unit ball in Rd of size O(γ/ε)d. There are standard explicit
constructions for such nets that work in time O(γ/ε)d, for example by taking a tiling by
cubes of size ε/(γ

√
d). Then

∀x : ‖x‖1 = 1,∃ ỹ ∈ S : ‖Y x− ỹ‖2 ≤
ε

γ
.

Now, apply X to the vector Y x− ỹ. Since ‖X‖2→∞ = γ, it holds that

‖XY x−Xỹ‖∞ ≤ γ ·
ε

γ
= ε .

Thus we can take the set T = {Xỹ : ỹ ∈ S}. This can be constructed from S in time
O(γ/ε)dpoly(m,n). J

I Corollary 3.7. Let A be an m-by-n matrix and ε > 0. Let γε/42 (A) = γ. Then Nε(A) =
(γ/ε)O(γ2 ln(mn)/ε2). Moreover, an ε-net of this size can be constructed by a Las Vegas
randomized algorithm in time (γ/ε)O(γ2 ln(mn)/ε2)poly(m,n).
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Proof. First we solve the semidefinite program for γε/42 to obtain matrices U, V such that
‖UV −A‖∞ ≤ ε/4 and ‖U‖2→∞‖V ‖1→2 = γ. Then let X = UR and Y = RTV for a random
d-by-d matrix R with d = O(γ

2

ε2 ln(mn)). By Theorem 3.4 with high probability we have
‖A−XY ‖∞ ≤ ε/2. Applying Theorem 3.6 to XY gives a set T of size O(γε )d such that

∀x ∈ ∆n,∃x̃ ∈ T : ‖XY x− x̃‖∞ ≤
ε

2 .

Thus

‖Ax− x̃‖∞ = ‖Ax−XY x+XY x− x̃‖∞
≤ ‖(A−XY )x‖∞ + ‖XY x− x̃‖∞
≤ ε .

J

The identity matrix again shows that the logarithmic factor in the statement of Corol-
lary 3.7 is necessary.

I Lemma 4. Fix a natural number k > 0. Then Nε(In) ≥
(
n
k

)
, for every ε < 1

2k .

Proof. For a subset S ⊆ [n] of size k denote by vS the vector v = (v1, v2, . . . , vn) satisfying
vi = 1/k if i ∈ S and vi = 0 otherwise. Then, for every pair of subsets S 6= T ⊆ [n] of size k,
we have that ‖vS − vT ‖∞ = 1/k. If ε < 1

2k this implies that vS and vT must have distinct
representatives, which implies the lemma. J

4 A quasi-polynomial upper bound and VC dimension

Considering the upper bounds on the cover number in terms of approximate rank or approx-
imate γ2 described above, one might build the expectation that these bounds characterize the
cover number well. This is actually true for some ranges of error, as we will see in Section 5.1.
But for fixed ε this is far from the truth. In this case, by the results in [3] the bound via
approximate rank is at least as large as 2Ω(n) for almost all n × n sign matrices, and the
same holds for the bound via approximate γ2, while on the other hand, the next theorem
states that the cover number is at most nO(logn) for every such matrix.

I Theorem 4.1. For any A ∈ [−1, 1]m×n,

Nε(A) ≤
(
n+ 2 ln(2m)

ε2

2 ln(2m)
ε2

)
< n

2 ln(2m)
ε2 .

Theorem 4.1 can be derived as a special case of Maurey’s Lemma ([27]), see also [28, Lemma
13] for a related result. For completeness we include here a short proof.

Proof. Put k = 2 ln(2m)
ε2 , and let A be as in the theorem. Let A1, A2, . . . , An denote the

columns of A. It suffices to prove that for any vector y = (y1, y2, . . . , ym) in the convex hull
of the columns of A there is a (multi)-subset S = (Ai1 , Ai2 , . . . , Aik) of k (not necessarily
distinct) columns of A so that

‖1
k

k∑
j=1

Aij − y‖∞ ≤ ε, (3)
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since the number of these subsets is at most(
n+ 2 ln(2m)

ε2

2 ln(2m)
ε2

)
.

To prove this fact suppose y =
∑m
j=1Ajpj . Choose the elements of the subset S randomly

and independently among the columns of A (with repetitions), where each Aij is obtained by
picking one of the columns, where Aj is chosen with probability pj . The coordinate number i
of the random sum

∑k
j=1Aij obtained is thus a sum of k independent identically distributed

random variables, each having expectation yi/k and each being bounded in absolute value
by 1/k. It thus follows by the standard Chernoff-Hoeffding-Azuma Inequality (c.f., e.g., [8])
that the probability this coordinate differs from yi by more than ε is smaller than 1/m, and
hence with positive probability (3) holds. J

As we show in Section 5, the assertion of Theorem 4.1 is essentially tight. But it can still
be improved if we have some extra information about the matrix A. One way to do it is in
terms of the VC-dimension of A, defined next.
I Definition 4.2. Let A ∈ Rm×n be a matrix. Let C = {c1, . . . , ck} ⊆ [n] be a subset of
columns of A. We say that A shatters C if there are real numbers (tc1 , . . . , tck) such that for
any D ⊆ C there is a row i with A(i, c) < tc for all c ∈ D and A(i, c) > tc for all c ∈ C \D.
Let VC(A) be the maximal size of a set of columns shattered by A.
Note that VC(A) ≤ log(m) for any m-by-n matrix. Sometimes the quantity in Definition 4.2
is referred to as pseudo-dimension, and VC dimension is reserved for sign or boolean matrices
where the choice of thresholds is not needed. For convenience we will use VC dimension for
this more general definition as well.

The key to our upper bound is the following lemma. This was originally shown, with an
additional logarithmic factor, in the original paper of Vapnik and Chervonenkis defining VC
dimension [30]. The logarithmic factor was later removed by Talagrand [29] (see also [18] for
a simpler proof).

I Lemma 5. [30, 29, 18] Let A ∈ [−1, 1]m×n be a matrix with VC(A) = d. For S ⊆ [n] let
χS ∈ {0, 1}n denote its characteristic vector. For any ε > 0 and S ⊆ [n] there is a set T ⊂ S
of size |T | = O

(
d
ε2

)
such that∥∥∥∥AχS|S| − AχT

|T |

∥∥∥∥
∞
≤ ε .

This lemma says that every uniform combination of columns of A can be ε approximated
by a uniform combination of about VC(A)/ε2 many columns. In the next theorem we obtain
an upper bound on the cover number in terms of VC dimension by reducing the case of
arbitrary probability distributions to that of uniform distributions and applying Lemma 5.
I Theorem 4.3. Let A ∈ [−1, 1]m×n be a matrix with VC(A) = d. Then

Nε(A) ≤ nO(d/ε2).

Proof. We will use Lemma 5 to show that every element of the convex hull of the columns
of A can be ε-approximated by the average of some O(d/ε2) columns (with repetition) of A.

Let N = 2n/ε. Let A′ be the matrix where every column of A is repeated N times. As
duplicating columns does not change the VC dimension we have VC(A′) = d. Let p ∈ [0, 1]n
be a probability vector. Define p′ ∈ [0, 1]Nn as

p′(jN + i) =
{

1
N for j = 0, . . . , n− 1 and i = 1, . . . , bp(j)Nc
0 for j = 0, . . . , n− 1 and i = bp(j)Nc+ 1, . . . , N.
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Note that ‖Ap−A′p′‖∞ ≤ n
N ≤ ε/2. As p

′ is a normalized characteristic vector, by Lemma 5
we have that there is a set D of size O

(
d
ε2

)
such that∥∥∥∥A′p′ − A′χD

|D|

∥∥∥∥
∞
≤ ε/2 .

Thus to obtain an ε-net for A it suffices to take all uniform combinations of O
(
d
ε2

)
columns,

taken with repetition. This gives the theorem. J

5 Lower bounds

In this section, we show some lower bounds on the covering number in terms of approximate
rank, one-way communication complexity and VC dimension. Some of the lower bounds we
prove match the corresponding upper bounds shown earlier.

5.1 Tight lower bounds in the general case
In this section, we show that N0.99(A) = nΩ(logn) for a random sign matrix A, and thus
that our upper bounds in terms of VC dimension is tight in this case. We also show a lower
bound of N2/7(A) = 2Ω(VC(A)) for any sign matrix A. Our lower bounds follow from bounds
on the closely related packing number of A. Let Cδ(A) be the maximal number of δ-size `∞
balls that can be packed into the convex hull of the columns of A. Then

C2ε(A) ≤ Nε(A) ≤ Cε(A).

We obtain our bounds via the next simple lemma, together with the existence of appro-
priate nearly disjoint families of sets.

I Lemma 6. Let A be an m-by-n sign matrix and F a family of subsets of [n] such that
1. for every F, F ′ ∈ F the columns of A in F ∪ F ′ are shattered.
2. |F ∩ F ′| ≤ (1− δ/2)|F | for all distinct F, F ′ ∈ F .
Then Nδ/2(A) ≥ |F|.

Proof. Let Aj denote the jth column of A. For any F ∈ F , the vector

vF = 1
|F |

∑
j∈F

Aj

lies in the convex hull of the columns of A. Now consider ‖vF − vF ′‖∞ for distinct F, F ′ ∈ F .
As F ∪ F ′ is shattered, there is a row i such that A(i, j) = 1 for all j ∈ F and A(i, j) = −1
for all j ∈ F ′ \ F . Thus

‖vF − vF ′‖∞ = 1− 1
|F ′|

(|F ∩ F ′| − |F ′ \ F |) ≥ δ .

J

I Claim 5.1. There is a family F of subsets of [d] such that
1. |F | ≥ 7

16d for all F ∈ F
2. |F ∩ F ′| ≤ 5

16d for all distinct F, F ′ ∈ F
3. |F| ≥ 2.001d

I Claim 5.2. There is a family F of subsets of [n] such that
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1. |F | = 0.49 log2 n for all F ∈ F
2. |F ∩ F ′| ≤ 0.0001 log2 n for all distinct F, F ′ ∈ F
3. |F| ≥ nΩ(logn)

Proof. The existence of such F follows either by a simple probabilistic argument, or by using
known bounds for constant weight codes, or by an explicit constructions using polynomials.

J

I Lemma 7. Let A be a sign matrix. Then N2/7(A) ≥ 2Ω(VC(A)).

Proof. This follows from Lemma 6 together with the set family from Claim 5.1. J

I Lemma 8. For almost all n-by-n sign matrices A,

N.99(A) = nΩ(logn) .

Proof. Let A = (aij) be a random n-by-n sign matrix, where each entry aij ∈ {−1, 1}
is chosen randomly, independently and uniformly in {−1, 1}. We show that with high
probability A shatters every subset J ⊆ [n] of columns with |J | ≤ 0.98 logn. Indeed, for a
fixed J and sign pattern s ∈ {−1,+1}|J|, the probability that no row of A restricted to J is
equal to s is

(1− 2−|J|)n < e−n
0.02

.

The result thus follows from the union bound.
Therefore, the VC dimension of a random n-by-n sign matrix is greater than 0.98 logn

with high probability. The proof of the Lemma now follows from Lemma 6 using the set
family from Claim 5.2. J

5.1.1 An explicit example
In addition to the lower bound N.99(A) = nΩ(log(n)) for a random sign matrix A, we can also
show explicit examples where the cover number is this large. We show next that a simple
Hadamard matrix requires covers of quasi-polynomial size. Consider the 2t-by-2t Hadamard
matrix, H = (hv,M ), whose columns are indexed by monomials M =

∏
i∈I xi with I ⊂ [t]

and whose rows are indexed by vectors v ∈ {−1, 1}t, where hv,M = M(v). In this matrix,
for any choice of monomials M1,M2, . . . ,Mk in which no product of a subset is identically 1,
the polynomial

1 +M1

2
1 +M2

2 · · · 1 +Mk

2
is the average of 2k monomials. Its value on a vector v is 1 if Mj(v) = 1 for all j, and is 0
otherwise. This gives, if we shift to an additive rather than multiplicative notation, for every
subspace of dimension t/2 of Zt2, a vector in the convex hull of the columns of H which is 1
on the members of the subspace and 0 outside it. Therefore, this example is an n = 2t by
n = 2t sign matrix H for which Nε(A) ≥ n(1+o(1)) logn/4 for all ε < 1/2.

5.2 Lower bounds on the cover number in terms of approximation rank
For a vector v and a linear subspace U we also define

d(v, U) = min
u∈U
‖v − u‖∞.
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I Lemma 9. Let A be a real matrix and fix 0 < ε. Let d be the ε-approximate rank of A.
Then there are d columns of A, ai1 , ai2 , . . . , aid , such that

d(aij , span{ai1 , . . . , aij−1}) ≥ ε,

for every 1 ≤ j ≤ d.

Proof. We construct the set of columns inductively. We choose the first column as any
nonzero column (such a column must exist if d > 0). If we have constructed d columns already,
we are done. Otherwise we have ai1 , ai2 , . . . , ait for t < d. By definition of approximate rank,
and since dε(A) = d > t, there must be a column that is ε-far from span(ai1 , ai2 , . . . , ait).
We add this column to the set. J

I Theorem 5.3. Let A be a real matrix and fix 0 < ε. Let d be the ε-approximate rank of A.
Then

Nε/d(A) = Ω
(

2d√
2d

)
.

Proof. By Lemma 9 there are d columns of A, ai1 , ai2 , . . . , aid , such that

d(aij , span{ai1 , . . . , aij−1}) ≥ ε,

for every 1 ≤ j ≤ d. Assume w.l.o.g that these are the first d columns of A, a1, a2, . . . , ad.
For simplicity we assume that d is even; if not the argument below can be done with d− 1
which only changes the bound by a constant factor.

Consider the set of vectors S = { 2
d

∑
i∈T ai : T ⊆ [d], |T | = d/2}. We claim that for every

two vectors v, u ∈ S it holds that ‖v − u‖∞ ≥ ε/d: Let u = 2
d

∑
i∈T1

ai and v = 2
d

∑
i∈T2

ai
for T1 6= T2. Then

u− v = 2
d

(∑
i∈T1

ai −
∑
i∈T2

ai

)
= 2
d

 ∑
i∈T1\T2

ai −
∑

i∈T2\T1

ai


Let j be the largest index in T1 4 T2. Assume w.l.o.g that j ∈ T1, we have

‖u− v‖∞ = 2
d
‖aj −

 ∑
i∈T2\T1

ai −
∑

j 6=i∈T1\T2

ai

 ‖∞ ≥ 2ε
d
.

The last inequality is because
∑
i∈T2\T1

ai−
∑
j 6=i∈T1\T2

ai is contained in the linear subspace
spanned by a1, a2, . . . , aj−1.

Since S is in the convex hull of the columns of A and |S| ≥ 2d/
√

2d, we get that

2d√
2d
≤ C2ε/d(A) ≤ Nε/d(A).

J

5.3 Lower bounds via communication complexity
I Lemma 10. Let A be a sign matrix, and denote by cc(A) the one-way (from Bob to Alice)
deterministic communication complexity of A. Then

cc(A) ≤ log(Nε(A))

for every ε in (0, 1).
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Proof. Let k = cc(A), then there are 2k distinct columns in A. Since the `∞ distance
between every two distinct sign vectors is at least 2, we have

2k ≤ Nε(A)

for every ε ∈ (0, 1). J

The log rank conjecture, formulated by Lovász and Saks [22] is a long-standing open
problem in communication complexity. A simple argument shows that log rank(A) is a
lower bound on the deterministic communication complexity D(A) of A. The log rank
conjecture states that this bound is polynomially tight, D(A) = log(rank(A))O(1). The best
upper bound on communication complexity in terms of rank was recently improved to show
D(A) = O(

√
rank(A) log(rank(A)) [21].

Combining Lemma 10 with the relation between the covering number and approximate
rank proved in [7], we get an upper bound on the one-way communication complexity in
terms of the approximate rank.
I Corollary 5.4. Let A be a sign matrix, and denote by cc(A) the one-way deterministic
communication complexity of A. Then

cc(A) ≤ 3rank1/2(A) +O(1).

6 Conclusion and Open Problems

Efficiently enumerable covers of the convex hull of a matrix lead to efficient approximation
algorithms for a broad class of optimization problems including Nash equilibrium and densest
k-by-k combinatorial rectangle. We have shown that Nε(A) ≤ nO(VC(A)/ε2) and moreover
that such covers can be deterministically enumerated in about the same time. This result
unifies many previous approximation algorithms for Nash equilibrium in the literature,
including the quasi-polynomial time approximation algorithm of Lipton et al. [19] and the
approximation algorithm of Kannan and Theobald for game matrices A,B such that A+B

has constant rank [17]. For the densest k-by-k combinatorial rectangle problem this gives for
the first time a nO(log(n)/ε2) time algorithm to obtain an additive ε-approximation.

The central open problem if Nash Equilibrium has a polynomial time approximation
scheme remains open. One avenue to make progress on this question may be to find a
common generalization of the cover based approximation algorithms given here and in [7],
with the approximation algorithm for random games of Bárány et al. [11].
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