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The chromatic number of graph powers
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It is shown that the maximum possible chromatic number of the square of a graph
with maximum degree d and girth g is (1+o(1))d2 if g = 3, 4, 5 or 6, and is Θ(d2/ log d)
if g ≥ 7. Extensions to higher powers are considered as well.

1. Introduction

The square G2 of a graph G = (V,E) is the graph whose vertex set is V and in which two
distinct vertices are adjacent if and only if their distance in G is at most 2. What is the
maximum possible chromatic number of G2, as G ranges over all graphs with maximum
degree d and girth g?

Our (somewhat surprising) answer is that for g = 3, 4, 5 or 6 this maximum is (1 +
o(1))d2 (where the o(1) term tends to 0 as d tends to infinity), whereas for all g ≥ 7, this
maximum is of order d2/ log d.

To state this result more precisely, for every two integers d ≥ 2 and g ≥ 3, define f2(d, g)
to be the maximum possible value of χ(G2) over all graphs with maximum degree d and
girth g. Since the maximum degree of G2 is at most d+ d(d− 1) = d2, it follows that for
every g

f2(d, g) ≤ d2 + 1. (1)

Equality holds in (1) for d = 2 and g ≤ 5, as shown by the 5-cycle, for d = 3 and
g ≤ 5, as shown by the Petersen graph, and for d = 7 and g ≤ 5, as shown by the
Hoffman-Singleton graph, see [10]. Moreover, by Brooks Theorem (cf., e.g., [5]) it follows
that equality can hold in (1) only for g ≤ 5 and only if there exists a d-regular graph of
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diameter 2 on d2 + 1 vertices since G2 must then contain a complete graph on d2 + 1
vertices. As proved in [10] if such a graph exists then d ∈ {2, 3, 7, 57}, and it is known to
exist for d ∈ {2, 3, 7}, whereas the case d = 57 is still open.

It is also not difficult to see that f2(2, g) = 4 for all g ≥ 6 as shown, for example, by
the disjoint union of a g-cycle and a cycle of length l ≥ g where l is not divisible by 3.

In this short paper we prove the following.

Theorem 1.1. (i) There exists a function ε(d) that tends to 0 as d tends to infinity
such that for all g ≤ 6

(1− ε(d))d2 ≤ f2(d, g) ≤ d2 + 1.

(ii) There are absolute positive constants c1, c2 such that for every d ≥ 2 and every
g ≥ 7

c1
d2

log d
≤ f2(d, g) ≤ c2

d2

log d
.

Theorem 1.1 exhibits an interesting “phase transition”: As g grows from 3 to 6, f2(d, g)
stays roughly the same, while it drops significantly when g increases from 6 to 7, and
then it stays essentially the same as g keeps increasing.

The problem of coloring the square of a graph is related to the channel assignment
problem [7]. McCormick [15] proved that it is NP-hard to determine χ(G2). Heggernes
and Telle [9] proved the same for 4-coloring of the square of cubic graphs, and Agnarsson
and Halldórsson [1] considered powers of planar graphs and their chromatic numbers.

The rest of the paper contains a proof of Theorem 1.1, and an extension of it for higher
powers of graphs. Throughout the paper, all logarithms are in base e.

2. The upper bounds

The proof of the upper bounds in parts (i) and (ii) of Theorem 1.1 are rather simple
(given the main result in [3]). As we have observed above, the upper bound in part (i)
of Theorem 1.1 follows from (1). To prove the upper bound in (ii), we need the following
result of [3].

Theorem 2.1. ([3]) There is an absolute constant c such that for every integer ∆ and
every real number t, 2 ≤ t ≤ ∆2, the chromatic number of any graph H with maximum
degree at most ∆ in which for every vertex v, the induced subgraph on the set of all
neighbors of v spans at most ∆2/t edges, satisfies

χ(H) ≤ c ∆
log t

.

We can now prove that there is a constant c2 such that for all g ≥ 7

f2(d, g) ≤ c2
d2

log d
. (2)

Let G = (V,E) be a graph with maximum degree d and girth g ≥ 7. Let H = G2.
Then the maximum degree of H is at most d+ d(d− 1) = d2. It is not difficult to check
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that if u, v ∈ V are adjacent in H, then they have less than 2d common neighbors in H.
It follows that each neighborhood of a vertex of H spans less than d2·2d

2 = d3 edges. (In
fact, the induced subgraph on each neighborhood consists of at most d+ 1 edge-disjoint
cliques of size at most d each, implying it spans at most (d+ 1)d(d− 1)/2 < d3/2 edges.)
Applying Theorem 2.1 with ∆ = d2 and t = d, we conclude that (2) holds.

3. The lower bounds

In this section we prove the lower bounds in Theorem 1.1. The bound in part (i) is
simple. If d = q + 1 for some prime power q, then the bipartite incidence graph of the
lines and points of the finite projective plane of order q form a d-regular bipartite graph
G on 2(q2 + q+ 1) vertices. The girth of G is 6 and its square contains two cliques of size
q2 + q + 1 = d2 − d+ 1 each, and hence χ(G2) ≥ d2 − d+ 1. (It is, in fact, easy to check
that χ(G2) = d2 − d+ 1.)

Remark: It is not difficult to check that if G has girth 6 and maximum degree d,
then the maximum clique in G2 is of size at most d2 − d+ 1. To see this, fix a vertex v
in a maximum clique of G2. Then, in G2, v is connected to the set N(v) of its neighbors
in G, where |N(v)| ≤ d, and to the set N2(v) of the vertices at distance 2 from v, where
|N2(v)| ≤ d2−d. Since the girth is 6, any member of N(v) is connected in G2 to at most
d− 1 members of N2(v). It follows that if the clique contains more than d− 1 members
of N2(v) then it contains no member of N(v). Thus, the size of the clique is at most
1 + d2 − d. The main result of Reed in [16] asserts that there is some absolute positive
constant ε such that for every graph H with maximum degree ∆, maximum clique size
ω and chromatic number χ, the inequality χ ≤ εω + (1 − ε)(∆ + 1) holds. This implies
that if G has girth 6 and maximum degree d > 2 then χ(G2) ≤ d2 − Ω(d), showing that
the example above is nearly tight.

Returning to the proof of the lower bound in part (i) of Theorem 1.1 for general d,
we simply choose the largest prime power q satisfying q + 1 ≤ d, and take the graph
constructed above for q together with some extra pendant edges to make sure that the
maximum degree is precisely d. By the known results on the distribution of primes (see,
e.g., [11]), q2 + q + 1 ≥ (1 − ε(d))d2, where ε(d) tends to 0 as d tends to infinity. This
proves the lower bound in Theorem 1.1 part (i) for g = 6. The bounds for g = 3, 4, 5
follow by simply adding to the example for g = 6 a vertex disjoint copy of a cycle of
length g.

It remains to prove the lower bound in Theorem 1.1(ii). This is done by a probabilistic
construction which resembles the original proof of Erdős that there are graphs with
arbitrarily large girth and chromatic number [8]. Note that we may assume, without
loss of generality, that d is sufficiently large (by choosing c1 > 0 sufficiently small), and
we thus assume, from now on, that d is large (for example, d ≥ 1010 will be enough).
We also omit all floor and ceiling signs whenever they are not crucial, to simplify the
presentation.

Let n be a large integer (n >> dg), let V ′ = {1, . . . , n}, define p = d
2n , and let

G′ = (V ′, E′) be a random graph on V ′ obtained by choosing each pair of distinct
elements of V ′, randomly and independently, to be an edge with probability p. The
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expected value of each vertex degree in G′ is d
2n (n − 1) < d

2 . However, G′ will have,
with high probability, about n · 2−Θ(d) vertices of degree higher than d. It will also have,
with high probability, some cycles of length less than g (fewer than O(dg) of them). By
omitting all vertices of degree > d and by removing an arbitrarily chosen vertex from
each cycle of length < g we get a graph of girth ≥ g and maximum degree at most d. (If
necessary, we can add a cycle of length g and some pendant edges to make sure that the
maximum degree is equal to d and that the girth is precisely g.)

As we show next, with high probability, for the graph G obtained in this manner, G2

does not contain an independent set of size bigger than c nd2 log d for an appropriately
chosen constant c > 0, and hence χ(G2) ≥ Ω(d2/ log d), as needed.

The detailed proof is given in the following claims (where we make no attempt to
optimize the absolute constants).

Claim 3.1. The expected number of vertices of degree > d in G′ is at most n · 2−d/10.
Thus, with probability ≥ 0.9, there are at most 10n · 2−d/10 such vertices.

Proof. The degree of any fixed vertex is a binomial random variable with parameters
n− 1 and p = d

2n , and hence its expected degree is less than d/2.
By the standard estimates for binomial distributions (see, e.g., [2, Appendix A]), the

probability that the degree of such a vertex exceeds d is smaller than 2−d/10. By linearity
of expectation, the expected number of vertices of degree > d is thus at most n · 2−d/10,
and hence, by Markov’s inequality, the probability that there are more than 10n · 2−d/10

such vertices is at most 0.1. (In fact, this probability is exponentially small, but this is
not needed here.)

Claim 3.2. The expected number of cycles of length < g in G′ is

g−1∑
i=3

n(n− 1) · · · (n− i+ 1)
2i

( d
2n

)i
<

1
2

g−1∑
i=3

(d
2

)i
< dg,

and hence with probability ≥ 0.9, there are at most 10dg such cycles.

Proof. Straightforward.

We say that an event holds almost surely if its probability tends to 1 as n tends to
infinity.

Claim 3.3. There exists a constant c, 0 < c < 1000, such that the following holds
almost surely: For every set of vertices U ⊂ V ′ of cardinality |U | = c nd2 log d, there are
at least 1

30c
2n log2 d

d2 vertices outside U that have exactly 2 neighbors in U .

Proof. Put x = c nd2 log d. Fix a set U , |U | = x, and fix a vertex w ∈ V ′ \ U . Note that,
as d is large, |V ′ \ U | ≥ 3n

4 . The probability of the event Ew that w has precisely two
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neighbors in U is

q =
(
x

2

)
p2(1− p)x−2 ≥ x(x− 1)

2

( d
2n

)2(
1− d

2n

)x
≥ x(x− 1)

2

( d
2n

)2(
1− xd

2n

)
≥ 1

10
c2

log2 d

d2
.

The number of vertices w ∈ V ′ \ U is at least 3n
4 , and as the events Ew are mutually

independent, the number of vertices w ∈ V ′ \U that have 2 neighbors in U is a binomial
random variable with parameters |V ′ \ U | ≥ 3n

4 and q ≥ 1
10c

2 log2 d
d2 . The expected value

of this number is at least 3
40c

2n log2 d
d2 and hence, by the standard estimates for binomial

distributions (see, e.g., [2, Appendix A]), the probability that it is smaller than 1
30c

2n log2 d
d2

is at most, say, e−
1

300 c
2n log2 d

d2 .
Therefore, for each fixed set U , the probability that there are less than 1

30c
2n log2 d

d2

vertices w ∈ V ′ \U with precisely 2 neighbors in U is at most e−
1

300 c
2n log2 d

d2 . As the total
number of sets U is(

n

x

)
=
(

n

c nd2 log d

)
≤
(

ed2

c log d

)c n
d2 log d

≤ e3c n
d2 log2 d

it follows that if c2

300 > 3c, then with probability 1 − o(1) every set U has at least that
many vertices w with 2 neighbors in U . This completes the proof of the claim.

We can now complete the proof of Theorem 1.1. For any given g and (large) d, choose
n >> dg. By Claims 3.1–3.3, there exists a graph G′ on n vertices satisfying the conclu-
sions of all three claims. Let G be the graph obtained from G′ by omitting all vertices
of degree > d and an arbitrarily chosen vertex from each cycle of length < g. Then G

has girth ≥ g, maximum degree ≤ d, and more than n/2 vertices. As G′ satisfies the
conclusion of Claim 3.3, and as the total number of vertices omitted (which is at most
10n · 2−d/10 + 10dg) is smaller than c2

30n
log2 d
d2 , it follows that G2 contains no independent

set of size x = c nd2 log d. Thus χ(G2) ≥ d2

2c log d .
By adding pendant edges to G (if needed), and a disjoint copy of a cycle of length g

we conclude that

f2(d, g) ≥ d2

2c log d
for all d, g, completing the proof of Theorem 1.1.

4. Higher powers

The kth power Gk of a graph G = (V,E) is the graph whose vertex set is V in which two
distinct vertices are adjacent if and only if their distance in G is at most k. Note that
G1 = G. Let fk(d, g) denote the maximum possible value of χ(Gk), as G ranges over all
graphs of maximum degree d and girth g. Trivially, f1(d, 3) = d+ 1 for all d ≥ 2. By the
theorem of Johansson [12] and the known results about chromatic numbers of random
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graphs ([6, 13]), there are absolute constants c1, c2 such that for every d ≥ 2 and every
g ≥ 4

c1
d

log d
≤ f1(d, g) ≤ c2

d

log d
.

The behavior of fk(d, g) for k = 2 is determined by Theorem 1.1. For higher values of
k, the situation is less clear, though the main parts of the proof of Theorem 1.1 can be
extended. If G has maximum degree d, then the maximum degree of Gk is at most

d+ d(d− 1) + · · ·+ d(d− 1)k−1 =
d

d− 2
((d− 1)k − 1).

Therefore, for every fixed k,

fk(d, g) ≤ d

d− 2
((d− 1)k − 1) + 1 = O(dk).

The known constructions of large graphs with a given maximum degree and diameter at
most k show that for every k there exists a constant ck > 0 such that for some small
values of g

fk(d, g) ≥ ckdk.
For example, the DeBruijn graphs show that

fk(d, 3) ≥ bd/2ck,

and the existence of generalized m-gons imply similar estimates for somewhat larger
values of g. See also the constructions in [4], [14] and their references.

Finally, the proof in Section 2 and the random construction described in Section 3 can
be extended to prove the following

Theorem 4.1. There exists an absolute constant c > 0 such that for all integers k ≥ 1,
d ≥ 2 and g ≥ 3k + 1

fk(d, g) ≤ c

k

dk

log d
.

For every integer k ≥ 1 there exists a positive number bk such that for every d ≥ 2 and
g ≥ 3

fk(d, g) ≥ bk
dk

log d
.

The proof in Section 2 easily extends to a proof of the upper bound in Theorem 4.1,
and the details are left to the reader.

The proof of the lower bound follows the basic approach in Section 3, but requires
somewhat more sophisticated tools in order to show that the random graph G′ satisfies
the following property almost surely: For an appropriately chosen constant ck, for every
set U ⊆ V ′ of size |U | = ck

n
dk

log d, there are at least Ω(c2k
n
dk

log2 d) internally vertex
disjoint paths of length k, both whose endpoints lie in U , and whose other vertices lie in
V ′ \ U .

This can be proved using Talagrand’s Inequality [17] (cf. also [2], Chapter 7) and
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implies the assertion of Theorem 4.1 following the reasoning of the proof in Section 3.
We proceed with the details.

Throughout the proof we assume, whenever this is needed, that d is sufficiently large
as a function of k, and omit, as before, all floor and ceiling signs whenever these are not
crucial. Let V ′ = {1, 2, . . . , n}, suppose n >> dg, and let G′ = (V ′, E′) be a random
graph on V ′ obtained by choosing each pair of distinct elements of V ′, randomly and
independently, to be an edge with probability p = d

2n . Define x = ck
n
dk

log d, where ck > 0
will be chosen later.

Lemma 4.1. For an appropriate choice of ck, the following holds almost surely. For
every set of vertices U ⊂ V ′ of cardinality |U | = x, there are at least c2kn log2 d

2k+5dk
internally

vertex disjoint paths of length k, both of whose endpoints lie in U , and whose other
vertices lie in V ′ \ U .

Proof. We shall apply Talagrand’s Inequality. To do so, fix a set U ⊂ V ′, |U | = x. Call
any path of length k, whose endpoints lie in U and whose internal vertices lie outside
U , a U -path. Let X = X(G′) be the random variable counting the maximum number of
internally vertex disjoint U -paths. We first show that the expected value of X satisfies

E(X) ≥ c2kn log2 d

2k+2dk
. (3)

Indeed, the expected number of U -paths is

µ =
(
x

2

)
(n− x)(n− x− 1) · · · (n− x− k + 2)pk

> 0.49
c2kn

k+1

d2k
log2 d pk = 0.49

c2kn

2kdk
log2 d,

where here we used the fact that d is sufficiently large.
Let ∆ denote the expected number of pairs of U -paths that share at least one common

internal vertex. We claim that, as n >> d >> k, ∆ < µ/3 (with room to spare).
Indeed, the expected number of such pairs that share only one endpoint and its unique

neighbor is at most

µnk−2xpk−1 =
µck log d

2k−1d
.

It is not difficult to check that for n >> d >> k, the expected number of pairs of internally
intersecting U -paths of any other type is much smaller, and the number of types is
bounded by a function of k.

By omitting an arbitrarily chosen path from each pair of internally intersecting U -
paths we get a collection of internally pairwise vertex disjoint U -paths. It follows, by
linearity of expectation, that E(X) ≥ µ−∆, implying (3).

To apply Talagrand’s Inequality (in the form presented, for example, in [2, Chapter
7]), note that X is a Lipschitz function, i.e., |X(G′) −X(G′′)| ≤ 1 if G′, G′′ differ in at
most one edge. This is because X counts internally vertex disjoint paths, which are edge
disjoint, and hence no single edge can change the value of X by more than 1. Note also
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that X is f -certifiable for f(s) = ks, that is, when X(G′) ≥ s there is a set of at most ks
edges of G′ so that for every graph G′′ that agrees with G′′ on these edges, X(G′′) ≥ s.

By Talagrand’s Inequality we conclude that for every b and t

Pr[X ≤ b− t
√
kb] · Pr[X ≥ b] ≤ e−t

2/4. (4)

Let B denote the median of X. Without trying to optimize the constants, we prove that

B ≥ c2kn log2 d

2k+4dk
. (5)

Indeed, assume this is false and apply (4) with b = c2kn log2 d
2k+3dk

and t = 1
2

√
b
k to conclude

that

Pr[X ≤ b

2
] · Pr[X ≥ b] ≤ e− b

16k .

Since, by assumption, B ≤ b
2 , it follows that Pr[X ≤ b/2] ≥ 1/2, and hence Pr[X ≥ b] ≤

2e−
b

16k . However, as X(G′) < n for every G′, this implies that

E(X) ≤ b+ n2e−
b

16k = b+ 2ne−
c2kn log2 d

2k+7dkk = b+ o(1) =
c2kn log2 d

2k+3dk
+ o(1),

contradicting (3) and thus proving (5).

We can now apply (4) again with b = c2kn log2 d
2k+4dk

and t = 1
2

√
b
k to conclude that

Pr[X ≤ b

2
] Pr[X ≥ b] ≤ e− b

16k .

By (5), Pr[X ≥ b] ≥ 1/2, and hence

Pr[X ≤ b

2
] ≤ 2e−

b
16k = 2e−

c2kn log2 d

2k+8dkk .

We have thus proved that for every fixed U , the probability that there are less than
b
2 = c2kn log2 d

2k+5dk
internally vertex disjoint U -paths is at most 2e−

c2kn log2 d

2k+8dkk . Since the total
number of sets U is at most(

n

x

)
≤
(en
x

)x
≤
(

edk

ck log d

)ck n

dk
log d

≤ eckk
n

dk
log2 d

it follows that if, say
c2k

2k+8k
> 2kck

then with probability 1−o(1) for every set U there are at least c2kn log2 d
2k+5dk

pairwise internally
vertex disjoint U -paths. This completes the proof of the lemma.

We can now complete the proof of Theorem 4.1. For any given g and k, and any (large)
d and sufficiently large n there exists a graph G′ satisfying the conclusions of Claim 3.1,
Claim 3.2 and Lemma 4.1. Let G be the graph obtained from G′ by omitting all vertices
of degree greater than d and an arbitrarily chosen vertex from each cycle of length < g.
Then G has girth ≥ g, maximum degree ≤ d, and more than n/2 vertices. As G′ satisfies
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the conclusion of Lemma 4.1, and as the total number of vertices omitted from it to
create G is at most

10n · 2−d/10 + 10dg <
c2kn log2 d

2k+5dk
,

it follows that Gk contains no independent set of size x = ck
n log d
dk

. Therefore χ(Gk) ≥
dk

2ck log d .
By adding to G, if needed, pendant edges and a disjoint copy of a cycle of length g

this implies that for an appropriately defined bk > 0,

fk(d, g) ≥ bk
dk

log d

for all d, g, completing the proof of Theorem 4.1.

Note that for k = 1 and 2, the function fk(d, g) exhibits a drastic change when g

changes from 3k to 3k + 1. It would be interesting to decide if this is the case for higher
values of k as well. The results mentioned in this section do suggest that for every k there
is some integer gk such that

fk(d, g) = Θk(dk), for g ≤ gk

and

fk(d, g) = Θk(dk/ log d), for g > gk.

At the moment, however, we are unable to prove the existence of such a gk.
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