Large induced forests in sparse graphs

Noga Alon^{*}, Dhruv Mubayi[†], Robin Thomas[‡]

February 22, 2002

Abstract

For a graph G, let a(G) denote the maximum size of a subset of vertices that induces a forest. Suppose that G is connected with n vertices, e edges, and maximum degree Δ . Our results include:

- (a) if $\Delta \leq 3$, and $G \neq K_4$, then $a(G) \geq n e/4 1/4$ and this is sharp for all permissible $e \equiv 3 \pmod{4}$,
- (b) if $\Delta \ge 3$, then $a(G) \ge \alpha(G) + (n \alpha(G))/(\Delta 1)^2$. Several problems remain open.

1 Introduction

For a (simple, undirected) graph G = (V, E), we say that an $S \subseteq V$ is an *acyclic set* if the induced subgraph G[S] is a forest. We let a(G) denote the maximum size of an acyclic set in G. In [4], the minimum possible value of a(G) is determined, where G ranges over all

*Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel, *email: noga@math.tau.ac.il.* Research supported in part by a USA Israeli BSF grant.

[†]School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, *email: mubayi@math.gatech.edu*. Research supported in part by NSF under Grant No. DMS-9970325.

[‡]School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, *email:* thomas@math.gatech.edu. Research supported in part by NSF under Grant No. DMS-9970514, and by NSA under Contract No. MDA904-98-1-0517.

1991 Mathematics Subject Classification: 05C35

Keywords: Induced forests, d-degenerate graph

graphs on *n* vertices and *e* edges, for every *n* and *e*. In particular, the results imply that if the average degree of *G* is at most $d \ge 2$, then $a(G) \ge \frac{2n}{d+1}$. This is sharp whenever d + 1divides *n* as shown by a disjoint union of cliques of order d + 1. For bipartite graphs, one can do better, since trivially $a(G) \ge n/2$. Recently, using probabilistic techniques, the first author has shown that this trivial bound can be improved, but only slightly.

Theorem 1.1. [3] There exists an absolute positive constant b such that for every bipartite graph G with n vertices and average degree at most d, where $d \ge 1$,

$$a(G) \ge \left(\frac{1}{2} + \frac{1}{e^{bd^2}}\right)n.$$

Moreover, there exists an absolute constant b' > 0 such that for every $d \ge 1$ and all sufficiently large n there exists a bipartite graph with n vertices and average degree at most d such that

$$a(G) \le \left(\frac{1}{2} + \frac{1}{e^{b'\sqrt{d}}}\right)n.$$

Theorem 1.1 was motivated by the following conjecture of Albertson and Haas [2], which remains open.

Conjecture 1.2. If G is an n vertex planar bipartite graph, then $a(G) \ge 5n/8$.

Conjecture 1.2, if true, is sharp as shown by the following example.

Example 1.3. The cube Q_3 is the graph with $V(Q_3) = \{v_1, v'_1, \ldots, v_4, v'_4\}$, and edges $v_i v_{i+1}, v'_i v'_{i+1}, v_i v'_i$, where $1 \le i \le 4$ and subscripts are taken modulo 4. It is easy to see that $a(Q_3) = 5$.

In this paper, we prove results that refine Theorem 1.1 for sparse bipartite graphs, and also apply to the larger class of triangle-free graphs. We also obtain bounds for a(G) in terms of the *independence number* $\alpha(G)$ of G.

Given a graph G, let $N_G(v)$ or simply N(v) denote the set of neighbors of vertex v. For sets S, A of vertices, $N(S) = \bigcup_{v \in S} N(v)$ and $N_A(S) = N(S) \cap A$. Let \dot{K}_4 denote the five vertex graph obtained from K_4 by subdividing an edge.

Definition 1.4. Let $\mathcal{F}(t,k)$ denote the family of connected graphs with maximum degree 3 consisting of t disjoint triangles and k disjoint copies of \dot{K}_4 such that the multigraph obtained by contracting each triangle and each copy of \dot{K}_4 to a single vertex is a tree of order t + k. Notice that if H_1 and H_2 are copies of K_3 or \dot{K}_4 , then G has at most one edge between H_1 and H_2 . Let $\mathcal{F} = \bigcup_{t,k} \mathcal{F}(t,k)$, where the union is taken over all nonnegative t, k with t+k > 0. (See the figure for an example of a graph in $\mathcal{F}(2,3)$.) Figure: A graph in $\mathcal{F}(2,3)$

Theorem 1.5. Let G = (V, E) be a graph with maximum degree 3 and $K_4 \not\subseteq G$. If exactly c components of G are from \mathcal{F} , then

$$a(G) \ge |V| - \frac{|E|}{4} - \frac{c}{4}$$

A graph $G \in \mathcal{F}(t, k)$ has n = 3t + 5k vertices, e = 3t + 7k + (t + k - 1) = 4t + 8k - 1 edges, and every acyclic set in G has size at most 2t + 3k. Thus $a(G) \leq 2t + 3k = n - e/4 - 1/4$ and hence Theorem 1.5 is sharp for every member of \mathcal{F} . Since every element in \mathcal{F} contains triangles, Theorem 1.5 and Example 1.3 immediately yield

Corollary 1.6. If G is an n vertex triangle-free graph with maximum degree 3, then $a(G) \ge 5n/8$ and this is sharp whenever n is divisible by 8.

As mentioned in the introduction, n vertex graphs with maximum degree Δ always have an acyclic set of size at least $2n/(\Delta + 1)$. We observe that for triangle-free graphs the factor $2/(\Delta + 1)$ above can be improved to $\Theta(\log \Delta/\Delta)$.

For bipartite graphs, we obtain better bounds through the following result that relates a(G) to the independence number $\alpha(G)$ of G.

Theorem 1.7. Let G be a connected n vertex graph with maximum degree $\Delta \geq 3$. Then

$$a(G) \ge \alpha(G) + \frac{n - \alpha(G)}{(\Delta - 1)^2}.$$

In section 2 we present a preliminary result to Theorem 1.5 that applies to triangle-free graphs, and also exhibit some examples with no large acyclic sets. In section 3 we present the proof of Theorem 1.5, in section 4 we prove Theorem 1.7, and in section 5 we summarize our results.

A cycle of length k or k-cycle is the graph with vertices v_1, \ldots, v_k and edges $v_i v_{i+1}$, for $1 \le i \le k$, where indices are taken modulo k. We simply write $v_1 v_2 \ldots v_k$ to denote a k-cycle.

2 Triangle-free graphs

In this section we prove a special case of Theorem 1.5 that is independently interesting.

Lemma 2.1. If G is a triangle-free graph with n vertices and e edges, then $a(G) \ge n - e/4$.

Proof. We suppose that G is a minimal counterexample with respect to the number of vertices, and will obtain a contradiction. If G is not connected, then by minimality, we can apply the result to each component. Hence we may assume that G is connected. If G has a vertex v with $deg(v) \ge 4$ or deg(v) = 1, then let G' = G - v. Now G' has a large acyclic set $S' \subseteq V(G')$. In the first case, set S = S', and in the second case, set $S = S' \cup \{v\}$. Then S is an acyclic set in G of size at least n - e/4, a contradiction. If G is 2-regular, then G is a cycle and $a(G) = n - 1 \ge n - e/4$. If uv is an edge, and deg(u) = 2, deg(v) = 3, then let G' = G - u - v. By minimality, there is a large acyclic set $S' \subseteq V(G')$; we let $S = S' \cup \{u\}$. Then $|S| \ge (n-2) - (e-4)/4 + 1 = n - e/4$. Hence we may assume that G is 3-regular.

Claim: For every pair $uv, uv' \in E(G)$, there exists a vertex w such that uvwv' is a 4-cycle. **Proof of Claim:** Let u' be the other neighbor of u, and let $G_1 = G - u - u' \cup \{vv'\}$. If G_1 is triangle-free, then by minimality of G we obtain an acyclic set $S_1 \subseteq V(G_1)$ of size at least n - 2 - (e - 4)/4. Then $S = S_1 \cup \{u\}$ has size at least n - e/4. Furthermore, S is acyclic, since any cycle in G[S] containing u must traverse the vertices v, u, v' in this order, and this would yield a cycle in $G_1[S_1]$ (with the edges vu, uv', replaced by vv'). This contradiction implies that G_1 contains a triangle of the form vwv'.

Consider a vertex w in G with neighbors x, y, z. If x, y, z have another common neighbor w', then let $G_2 = G - \{w, w', x, y, z\}$. By minimality, G_2 has an acyclic set S_2 of size at least n - 5 - (e - 9)/4. The set $S = S_2 \cup \{w, w', x\}$ in G is acyclic and has size at least n - e/4, a contradiction. Hence by the claim we may assume that there exist a, b, c, with $a \leftrightarrow \{x, y\}$, $b \leftrightarrow \{y, z\}$, and $c \leftrightarrow \{x, z\}$. Let $G_3 = G - \{w, x, y, z, a, b, c\}$. By minimality, G_3 has an acyclic set S_3 of size at least n - 7 - (e - 12)/4. The set $S = S_3 \cup \{w, x, y, z\}$ in G is acyclic and has size at least n - e/4, a contradiction.

As mentioned earlier, Lemma 2.1 is sharp for $e \leq 3n/2$ and $e \equiv 0 \pmod{12}$, as shown by disjoint copies of Q_3 . For 4-regular graphs it gives $a(G) \geq n/2$, but the best example we can find has a(G) = 4n/7. A vertex expansion in a graph G is the replacement of a vertex $v \in V(G)$ by an independent set Q of new vertices, such that the neighborhood of each vertex of Q is $N_G(v)$. **Example 2.2.** Let G = (V, E) be the graph obtained from the 7-cycle $v_1 \ldots v_7$ by expanding each vertex to an independent set of size 2. Thus G is 4-regular with |V| = 14 and |E| = 28. For $1 \le i \le 7$, let $V_i = \{x_i, y_i\}$ be the independent set obtained by expanding v_i . Suppose that S is an acyclic set in V, and let $S_i = S \cap V_i$. The crucial observation is that if $|S_i| = 2$, then $|S_{i-1}| + |S_{i+1}| \le 1$, where subscripts are taken modulo 7. If exactly three of the S_i 's have size two, then at least two other S_j 's must have size zero, giving $|S| \le 8$. If exactly two of the S_i 's have size two, then at at least one other S_j has size zero, giving $|S| \le 8$ again. Thus $a(G) \le (4/7)|V|$, and in fact it is easy to see that equality holds.

For 5-regular graphs, Lemma 2.1 gives $a(G) \ge 3n/8$, but the best example we can find has a(G) = n/2.

Example 2.3. Let G = (V, E) be the graph with $V = \{1, \ldots, 14\}$ and all edges ij where $j - i = 1, 4, 7, 10, 13 \pmod{14}$. Thus |V| = 14 and G is triangle-free and 5-regular. It can be shown through a tedious case analysis (which we omit here) that every acyclic set S in V has size at most seven, thus giving $a(G) \leq |V|/2$. Since $\{1, 2, 4, 5, 7, 10, 13\}$ is acyclic, a(G) = |V|/2.

Remark 2.4. It is well-known (see [6, 5]) that there are triangle-free graphs on n vertices with maximum degree Δ and independence number at most $O(n \log \Delta/\Delta)$. Since every forest contains an independent set of at least half its size, these graphs also have no acyclic set of size greater than $O(n \log \Delta/\Delta)$. Moreover, this result is asymptotically sharp since in [1, 7], it is proved that every triangle-free graph on n vertices and maximum degree Δ has an independent set of size at least $\Omega(n \log \Delta/\Delta)$.

3 Proof of Theorem 1.5

In this section we complete the proof of Theorem 1.5.

Proof of Theorem 1.5: We suppose that G is a minimal counterexample with respect to the number of vertices, and will obtain a contradiction. If G is not connected, then by minimality, we can apply the result to each component. Hence we may assume that G is connected. We have already verified the theorem for graphs in \mathcal{F} , so we may assume that $G \notin \mathcal{F}$ and c = 0. Suppose that G contains a copy H of \dot{K}_4 , and v is the vertex of degree two in H. Since $G \notin \mathcal{F}$, $|N_G(v)| = 3$. Let G' = G - H. By minimality of G we obtain a large acyclic set S' in G'. Note that G' is connected, and $G' \notin \mathcal{F}$, since otherwise $G \in \mathcal{F}$. Form S by adding to S' any three vertices in H that do not create a triangle. Then

$$a(G) \ge |S| = |S'| + 3 \ge (n-5) - \frac{e-8}{4} + 3 = n - \frac{e}{4},$$

a contradiction. Hence we may assume that G is K_4 -free. If G is triangle-free, then Lemma 2.1 gives a contradiction, so we may assume that xyz is a triangle in G. Let $T = \{x, y, z\}$ and $N = N_G(T) - T$.

Claim: G[N] is a clique.

Proof of Claim: Suppose to the contrary that $y', z' \in N$ with $y \leftrightarrow y', z \leftrightarrow z'$ and $y' \not\leftrightarrow z'$. Let deg(x) = 2. Then by minimality of G we obtain a large acyclic set S' in G' = G - T. Let $S = S' \cup \{x, y\}$. Then

$$a(G) \ge |S| = |S'| + 2 \ge n - 3 - \frac{e - 5}{4} - \frac{c'}{4} + 2,$$
(1)

where c' is the number of components of G' from \mathcal{F} (note that $c' \leq 2$ since G is connected). This yields the contradiction $a(G) \geq n - e/4$ unless c' = 2, but in this case $G \in \mathcal{F}$ which we have already excluded. We may therefore assume that deg(x) = 3.

Form G_1 from G - T by adding the edge y'z' and let c_1 be the number of components in G_1 from \mathcal{F} . If H is a copy of $K_4 \subseteq G_1$, then H consists of y', z' and two other vertices in G_1 . By minimality of G, the graph G - T - V(H) has an acyclic set of size at least n - 7 - (e - 11)/4 - 1/4. We form S by adding to this set any five vertices that form an acyclic set within $V(H) \cup T$. It is easy to see that $S \ge n - e/4$. This contradiction allows us to assume that G_1 is K_4 -free.

By minimality of G, there is a large acyclic set S_1 in G_1 . Set $S = S_1 \cup \{y, z\}$. Since y'z' is an edge in G_1 , $c_1 < 3$. The set S is acyclic, since a cycle in S would yield a cycle in S_1 (with y'yzz' replaced by y'z'). If $c_1 \leq 1$, then by (1), with $S' = S_1$ and $c' = c_1$, the set S has size at least n - e/4, a contradiction. We may therefore assume that $c_1 = 2$. Let G' = G - T. By minimality of G, there is a large acyclic set S' in G'. Let x' be the other neighbor of x. Since x' and $\{y', z'\}$ lie in different components of G', adding x, y to S' yields an acyclic set S in G. Because $G \notin \mathcal{F}$, we deduce that $c' \leq 2$, and hence $|S| \geq |S'| + 2 \geq n - 3 - (e - 6)/4 - 2/4 + 2 = n - e/4$, a contradiction.

Because $\Delta(G) \leq 3$, we have $|N| \leq 3$. If |N| = 1 and T has two vertices, say x and y, with degree 2 and 3 respectively, then let G' = G - T. By minimality of G we obtain an acyclic set S' in G' of size at least n-3-(e-4)/4. The set $S = S' \cup \{x, y\}$ is acyclic and has size at least n - e/4, a contradiction. The remaining case when |N| = 1 is if all vertices of T have degree 3. In this case, since G is connected, $G = K_4$ which the hypothesis excludes.

If |N| = 2, and all vertices of T have degree three, then the claim implies that the induced subgraph $G[T \cup N]$ forms a copy of \dot{K}_4 which we have already excluded. Hence we may assume that deg(x) = 2. Then G' = G - T has a large acyclic set S'. Add x, y to S' to form S. Because G' is connected, $c' \leq 1$ and (1) yields the contradiction $a(G) \geq n - e/4$.

If |N| = 3, then the claim implies that G consists of two disjoint triangles with a matching of size three between them. In this case $a(G) = 4 \ge 6 - 9/4$, a contradiction.

4 From independent sets to forests

In a graph G with maximum degree Δ , we can obtain an acyclic set of size

$$\alpha(G) + \frac{n - \alpha(G)}{\Delta(\Delta - 1) + 1} \tag{2}$$

by considering a maximum independent set I, and successively adding to it vertices whose pairwise distance is at least three. The result of this section improves the factor $\Delta(\Delta - 1) + 1$ in (2) to $(\Delta - 1)^2$. For small values of Δ , this improvement is significant. Indeed, the result applied to bipartite graphs when $\Delta = 3$ is sharp.

Proof of Theorem 1.7: Let *B* be an independent set in G = (V, E) with $\alpha(G)$ vertices, and let A = V - B. We will iteratively construct a sequence a_1, \ldots, a_t of vertices in *A* with the following properties:

$$N(a_i) \cap \{a_{i+1}, \dots, a_t\} = \emptyset \qquad \text{and} \tag{3}$$

$$|N(a_i) \cap (\cup_{j=i+1}^t N(a_j)) \cap B| \le 1 \qquad \text{for each } i.$$
(4)

Set $S = \{a_1, \ldots, a_t\} \cup B$. We will show that either S has the required size, or we can augment it by one to have the required size. By (3) any cycle C in G[S] alternates between vertices in A and vertices in B. Let l be the smallest integer for which a_l is on C. By (4), a_l has at most one neighbor from B that lies on C. Hence we conclude that S is acyclic.

Let $D_0 = \emptyset$. We iteratively construct a sequence of sets D_1, \ldots, D_t , and put $A_i = D_1 \cup D_2 \cup \ldots \cup D_i$. Let $R_0 = B$, and for $i \ge 1$, let $R_i = N_B(A_i)$. Assume that we have already constructed D_0, \ldots, D_i for some $i \ge 0$. If $A_i = A$, then let t = i, and stop. Otherwise, choose $a_{i+1} \in A - A_i$ such that a_{i+1} is adjacent to a vertex $x_{i+1} \in A_i \cup R_i$

(such a vertex exists, since G is connected, and $A_i \neq A$). If $N_B(a_{i+1}) \subseteq \{x_{i+1}\}$, then let $Z_{i+1} = N_B(a_{i+1})$; otherwise choose $z_{i+1} \in N_B(a_{i+1}) - \{x_{i+1}\}$ so that, if possible, a_{i+1} is the only common neighbor of x_{i+1} and z_{i+1} , and put $Z_{i+1} = N_B(a_{i+1}) - \{z_{i+1}\}$. Let

$$D_{i+1} = (N_A(a_{i+1}) \cup N_A(Z_{i+1}) \cup \{a_{i+1}\}) - A_i.$$

The definition of D_{i+1} and a_{i+1} ensures that conditions (3) and (4) are satisfied.

Claim: For i = 0, $|D_{i+1}| \leq (\Delta - 1)^2 + 1$ and for $i \geq 1$, $|D_{i+1}| \leq (\Delta - 1)^2$. Moreover, if equality holds above for $i \geq 0$, then there exists a $w \in D_{i+1} - \{a_{i+1}\}$ such that the vertices w, a_{i+1} are not adjacent and have at most one common neighbor in B.

Proof of Claim: We only prove the case $i \ge 1$, noting that the analysis for $|D_1|$ follows similarly. Set $k = |N_B(a_{i+1})|$. If k = 0, then $|D_{i+1}| \le \Delta - 1 + 1 < (\Delta - 1)^2$, because a_{i+1} is adjacent to $x_{i+1} \in A_i$. Thus we may assume that $k \ge 1$. If $Z_{i+1} = N_B(a_{i+1})$, then $Z_{i+1} = N_B(a_{i+1}) = \{x_{i+1}\}, k = 1$, and

$$|D_{i+1}| \le |N_A(a_{i+1}) - A_i| + |N_A(x_{i+1}) - A_i| \le (\Delta - 1) + (\Delta - 1) \le (\Delta - 1)^2,$$

since x_{i+1} is adjacent to a_{i+1} and also to a vertex in A_i . If equality holds, then pick $w \in N_A(x_{i+1}) - A_i - \{a_{i+1}\}$; w has the required properties, since k = 1, and $w \nleftrightarrow a_{i+1}$.

We may therefore assume that $Z_{i+1} \subsetneq N_B(a_{i+1})$. In this case,

$$|D_{i+1}| \le |N_A(a_{i+1}) - A_i| + |N_B(Z_{i+1}) - A_i| + 1 \le (\Delta - k) + (k-1)(\Delta - 1) - 1 + 1 \le (\Delta - 1)^2,$$

because $|Z_{i+1}| \leq k-1$ and each vertex in Z_{i+1} is adjacent to at most $\Delta - 1$ vertices of $A - A_i$ other than a_{i+1} . The term -1 arises because either $x_{i+1} \in A_i$, or $x_{i+1} \in Z_{i+1}$ is adjacent to a vertex in A_i . If equality holds, then $k = \Delta$. This implies that $N_A(a_{i+1}) = \emptyset$ and $x_{i+1} \in B$. Pick $w \in N_A(x_{i+1}) - \{a_{i+1}\}$. By the conditions for equality, w and a_{i+1} have no common neighbor in Z_{i+1} . The choice of z_{i+1} implies that x_{i+1} is the only common neighbor of w and a_{i+1} in all of B.

As indicated above by the choice of t, we continue this procedure till we have accounted for all of G. By the claim, this yields

$$n - \alpha(G) = |A| = A_t = \sum_{i=1}^t |D_i| \le (\Delta - 1)^2 + 1 + (t - 1)(\Delta - 1)^2.$$
(5)

Solving for t gives $t \ge |A|/(\Delta - 1)^2$ unless equality holds everywhere in (5). But in this case, consider the vertex w from the claim obtained when i = t - 1. We add $w = a_{t+1}$ to our

acyclic set to augment it by one. The conditions for equality stated in the claim yield (3) and (4) with t replaced by t + 1. Hence $\{a_1, \ldots, a_t, a_{t+1}\} \cup B$ is acyclic and of the required size.

Corollary 4.1. Suppose that G is an n vertex bipartite graph with maximum degree $\Delta \geq 3$. Then

$$a(G) \ge \left(\frac{1}{2} + \frac{1}{2(\Delta - 1)^2}\right)n$$
 (6)

and this is sharp for $\Delta = 3, n \equiv 0 \pmod{8}$.

Proof. Since $\alpha(G) \ge n/2$ when G is bipartite, (6) follows immediately from Theorem 1.7. The cube Q_3 shows that this is sharp for $\Delta = 3$.

We end this section by constructing n vertex Δ -regular bipartite graphs with $a(G) \leq n/2 + O(n/\Delta^2)$.

Definition 4.2. For integers $a, b \ge 1$, let $G_{a,b}$ be the bipartite graph with parts X, Y each of size ab, with $X = \{x_{i,j} : 1 \le i \le a, 1 \le j \le b\}$ and $Y = \{y_{i,j} : 1 \le i \le a, 1 \le j \le b\}$. Vertices $x_{i,j}$ and $y_{i',j'}$ are adjacent if and only if either i = i' or j = j'. For $1 \le i \le a$ and $1 \le j \le b$, let $R_i = \{x_{i,1}, y_{i,1}, \ldots, x_{i,b}, y_{i,b}\}$ and $C_j = \{x_{1,j}, y_{1,j}, \ldots, x_{a,j}, y_{a,j}\}$. These are the rows and columns of $G_{a,b}$.

Theorem 4.3. $a(G_{a,b}) \le ab + 1$.

Proof. We proceed by induction on a+b. We may assume by symmetry that $b \ge a$. If a = 1, then $G_{a,b} \cong K_{b,b}$ for which the result trivially holds. This completes the cases $a + b \le 3$, and we may therefore assume that $a \ge 2$ and $a + b \ge 4$. Consider a subgraph H of $G_{a,b}$ with ab + 2 vertices. If $|V(H) \cap R_i| \le b$ for some i, then let H' be the restriction of H to $G_{a,b} - R_i$. Since $|V(H')| \ge ab + 2 - b = (a - 1)b + 2$, and $G_{a,b} - R_i \cong G_{a-1,b}$, we obtain a cycle in H' by induction. Hence we conclude that $|V(H) \cap R_i| \ge b + 1$ for all i, and similarly that $|V(H) \cap C_j| \ge a + 1$ for all j.

Let r_i be the number of edges of H induced by $V(H) \cap R_i$ and c_j be the number of edges of H induced by $V(H) \cap C_j$. It is easy to see that $|V(H) \cap R_i| \ge b + 1$ implies $r_i \ge b$, and similarly that $|V(H) \cap C_j| \ge a + 1$ implies $c_j \ge a$. Call an edge *vertical* if it has the form $x_{l,m}y_{l,m}$ for some l, m; if an edge is not vertical, call it *diagonal*. Let e = |E(H)| and let t be the number of vertical edges in H. If $t \ge a + 1$, then two vertical edges from H lie in the same row, and this results in a 4-cycle in H. Hence we may assume that $t \le a$.

Each vertical edge of H is in the induced subgraph of one row and of one column. Each diagonal edge of H is in the induced subgraph of one row or one column, but not both. These observations yield

$$ab + ba \le \sum_{i} r_i + \sum_{j} c_j = (e - t) + 2t.$$

Solving for e gives $e \ge 2ab - t \ge 2ab - a \ge ab + 2 = |V(H)|$, which implies that H is not acyclic.

Taking disjoint copies of $G_{\lfloor(\Delta+1)/2\rfloor,\lceil(\Delta+1)/2\rceil}$ and disjoint copies of $K_{\Delta,\Delta}$ immediately yields **Corollary 4.4.** For integers Δ, n , where $\lfloor(\Delta+1)^2/2\rfloor$ divides n, there exists an n vertex Δ -regular bipartite graph with $a(G) = n/2 + n/(\lfloor(\Delta+1)^2/2\rfloor)$. If 2Δ divides n, then there exists an n vertex Δ -regular bipartite graph with $a(G) = n/2 + n/(2\Delta)$.

Remark 4.5. The graphs $G_{a,b}$ also provide our best constructions for 4-regular and 5-regular bipartite graphs with no large acyclic sets. In particular, Theorem 4.3 immediately yields $a(G_{2,3}) = 7$ and $a(G_{3,3}) = 10$.

5 Summary of Results

In this section, we summarize our results. To do this accurately, we first define some classes of *n* vertex graphs. Let $\mathcal{G}_{n,d}$ denote the family of *d*-regular graphs, $\mathcal{G}_{n,d}^-$ denote the family of graphs with maximum degree *d*. Let $\mathcal{T}_{n,d}$ denote the family of triangle-free *d*-regular graphs, $\mathcal{T}_{n,d}^-$ denote the family of triangle-free graphs with maximum degree *d*. Let $\mathcal{B}_{n,d}$ denote the family of bipartite *d*-regular graphs, $\mathcal{B}_{n,d}^-$ denote the family of bipartite graphs with maximum degree *d*.

Given a finite family of graphs \mathcal{F} , let $a(\mathcal{F})$ denote the minimum of a(G) over all $G \in \mathcal{F}$. Considering vertex disjoint copies of graphs, one can easily see that

$$a(\mathcal{G}_{n_1,d}) + a(\mathcal{G}_{n_2,d}) \ge a(\mathcal{G}_{n_1+n_2,d}).$$

This, and the obvious lower bound $a(G) \ge n/d^2$ imply that the limit

$$\gamma_d := \lim_{n \to \infty} a(\mathcal{G}_{n,d})/n$$

exists and is not equal to zero (Fekete's Lemma, see, e.g., [8]). The same is true for

$$\begin{split} \gamma_d^- &:= \lim_{n \to \infty} a(\mathcal{G}_{n,d}^-)/n, \\ \tau_d &:= \lim_{n \to \infty} a(\mathcal{T}_{n,d})/n, \qquad \tau_d^- &:= \lim_{n \to \infty} a(\mathcal{T}_{n,d}^-)/n, \\ \beta_d &:= \lim_{n \to \infty} a(\mathcal{B}_{n,d})/n, \qquad \beta_d^- &:= \lim_{n \to \infty} a(\mathcal{B}_{n,d}^-)/n. \end{split}$$

d =	2	3	4	5	
γ_d, γ_d^-	$\frac{2}{d+1} [4]$				
$ au_d, au_d^-$	$\frac{3}{4}$	5 8 Lem. 2.1 Ex. 1.3	Lem. 2.1	$\geq \frac{3}{8}$ Lem. 2.1 $\leq \frac{1}{2}$ Ex. 2.3	$\geq \Omega\left(\frac{\log d}{d}\right) [1]$ $\tau_d^- = \Theta\left(\frac{\log d}{d}\right)$ Rem. 2.4
β_d, β_d^-			Cor. 4.1		$\geq \frac{1}{2} + \frac{1}{2(d-1)^2}$ Cor. 4.1 $\leq \frac{1}{2} + \frac{1}{\lfloor (d+1)^2/2 \rfloor}$ Cor. 4.4

Table of Results

6 Acknowledgments

The second author thanks Christopher Heckman and Jeff Steif for useful discussions.

References

 M. Ajtai, J. Komlós and E. Szemerédi, A note on Ramsey numbers, J. Combinatorial Theory, Ser. A 29 (1980), 354-360.

- [2] M. Albertson and R. Haas, A problem raised at the DIMACS Graph Coloring Week, 1998.
- [3] N. Alon, Induced acyclic subgraphs in sparse bipartite graphs, preprint.
- [4] N. Alon, J. Kahn and P. D. Seymour, Large induced degenerate subgraphs in graphs, Graphs and Combinatorics, 3 (1987), 203–211.
- [5] B. Bollobás, Chromatic number, girth and maximal degree, Discrete Math. 24 (1978), 311-314.
- [6] A. V. Kostochka and N. P. Mazurova, An inequality in the theory of graph coloring (in Russian), Metody Diskret. Analiz. 30 (1977), 23-29.
- [7] J. B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983), 83-87.
- [8] J. H. van Lint and R. M. Wilson, "A course in Combinatorics," Cambridge Univ. Press, Cambridge, UK, 1992, page 85.