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Abstract

We present a simple and general algebraic technique for obtaining results in Additive Number

Theory, and apply it to derive various new extensions of the Cauchy-Davenport Theorem. In particular

we obtain, for subsets A0, A1, . . . , Ak of the finite field Zp, a tight lower bound on the minimum possible

cardinality of

{a0 + a1 + . . .+ ak : ai ∈ Ai, ai 6= aj for 0 ≤ i < j ≤ k}

as a function of the cardinalities of the sets Ai.

1 Introduction

The Cauchy-Davenport Theorem, which has numerous applications in Additive Number Theory, is the

following.

Theorem 1.1 ([3]) If p is a prime, and A,B are two nonempty subsets of Zp, then

|A+B| ≥ min{p, |A|+ |B| − 1}.

This theorem can be proved quickly by induction on |B|. A different proof has recently been found by

the authors [1]. This proof is based on a simple algebraic technique, and its main advantage is that it
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extends easily and gives several related results. Some of the simplest results are described in [1]. In the

present paper we describe the general technique and apply it to deduce various additional consequences.

A representative example is the following.

Proposition 1.2 Let p be a prime, and let A0, A1, . . . , Ak be nonempty subsets of the cyclic group Zp.

If |Ai| 6= |Aj | for all 0 ≤ i < j ≤ k and
∑k
i=0 |Ai| ≤ p+

(k+2
2

)
− 1 then

|{a0 + a1 + . . .+ ak : ai ∈ Ai, ai 6= aj for all i 6= j}| ≥
k∑
i=0

|Ai| −
(
k + 2

2

)
+ 1.

Note that the very special case of this proposition in which k = 1, A0 = A and A1 = A− {a} for an

arbitrary element a ∈ A implies that if A ⊂ Zp and 2|A| − 1 ≤ p + 2 then the number of sums a1 + a2

with a1, a2 ∈ A and a1 6= a2 is at least 2|A| − 3. This easily implies the following theorem, conjectured

by Erdős and Heilbronn in 1964 (cf., e.g., [5]) and proved very recently by Dias Da Silva and Hamidoune

[4], using some tools from linear algebra and the representation theory of the symmetric group.

Theorem 1.3 ([4]) If p is a prime, and A is a nonempty subset of Zp, then

|{a+ a′ : a, a′ ∈ A, a 6= a′}| ≥ min{p, 2|A| − 3}.

The rest of the paper is organized as follows. In Section 2 we present and prove a general result

and show how it implies the Cauchy Davenport theorem. In section 3 we consider the addition of

distinct residues and prove Proposition 1.2 and some of its consequences. Section 4 contains some further

applications of the general theorem and the final Section 5 concludes with various remarks and open

problems.

2 The general theorem

Let p be a prime. For a polynomial h = h(x0, x1, . . . , xk) over Zp and for subsets A0, A1, . . . , Ak of Zp,

define

⊕h
k∑
i=0

Ai = {a0 + a1 + . . .+ ak : ai ∈ Ai, h(a0, a1, . . . , ak) 6= 0}.

Our main tool is the following.

Theorem 2.1 Let p be a prime and let h = h(x0, . . . , xk) be a polynomial over Zp. Let A0, A1, . . . , Ak

be nonempty subsets of Zp, where |Ai| = ci + 1 and define m =
∑k
i=0 ci − deg(h). If the coefficient of∏k

i=0 x
ci
i in

(x0 + x1 + · · ·+ xk)mh(x0, x1, . . . , xk)
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is nonzero (in Zp) then

| ⊕h
k∑
i=0

Ai| ≥ m+ 1

(and hence m < p).

In order to prove this theorem we need the following simple and well known lemma, which is proved

in various places (see, e.g., [2]). Since the argument is very short we reproduce it here.

Lemma 2.2 Let P = P (x0, x1, . . . , xk) be a polynomial in k + 1 variables over an arbitrary field F .

Suppose that the degree of P as a polynomial in xi is at most ci for 0 ≤ i ≤ k, and let Ai ⊂ F be a set of

cardinality ci + 1. If P (x0, x1, . . . , xk) = 0 for all (k + 1)-tuples (x0, . . . , xk) ∈ A0 × A1 × . . .× Ak, then

P ≡ 0, that is: all the coefficients in P are zeros.

Proof. We apply induction on k. For k = 0, the lemma is simply the assertion that a non-zero polynomial

of degree c0 in one variable can have at most c0 distinct zeros. Assuming that the lemma holds for k− 1,

we prove it for k (k ≥ 1). Given a polynomial P = P (x0, . . . , xk) and sets Ai satisfying the hypotheses

of the lemma, let us write P as a polynomial in xk, that is,

P =
ck∑
i=0

Pi(x0, . . . , xk−1)xik,

where each Pi is a polynomial with xj-degree bounded by cj . For each fixed k-tuple (x0, . . . , xk−1) ∈ A0×

A1× . . .×Ak−1, the polynomial in xk obtained from P by substituting the values of x0, . . . , xk−1 vanishes

for all xk ∈ Ak, and is thus identically 0. Thus Pi(x0, . . . , xk−1) = 0 for all (x0, . . . , xk−1) ∈ A0×. . .×Ak−1.

Hence, by the induction hypothesis, Pi ≡ 0 for all i, implying that P ≡ 0. This completes the induction

and the proof of the lemma. 2

Proof of Theorem 2.1. Suppose the assertion is false, and let E be a (multi-) set of m (not necessarily

distinct) elements of Zp that contains the set ⊕h
∑k
i=0Ai. Let Q = Q(x0, . . . , xk) be the polynomial

defined as follows:

Q(x0, . . . , xk) = h(x0, x1, . . . xk) ·
∏
e∈E

(x0 + . . .+ xk − e).

Note that

Q(x0, . . . , xk) = 0 for all (x0, . . . , xk) ∈ (A0, . . . , Ak). (1)

This is because for each such (x0, . . . , xk) either h(x0, . . . , xk) = 0 or x0 + . . . + xk ∈ ⊕h
∑k
i=0Ai ⊂ E.

Note also that deg(Q) = m+ deg(h) =
∑k
i=0 ci and hence the coefficient of the monomial xc00 · · ·x

ck
k in Q
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is the same as that of this monomial in the polynomial (x0 + . . .+ xk)mh(x0, . . . , xk), which is nonzero,

by assumption.

For each i, 0 ≤ i ≤ k, define

gi(xi) =
∏
a∈Ai

(xi − a) = xci+1
i −

ci∑
j=0

bijx
j
i .

Let Q = Q(x0, . . . xk) be the polynomial obtained from the standard representation of Q as a linear

combination of monomials by replacing, repeatedly, each occurrence of xci+1
i by

∑ci
j=0 bijx

j
i . Note that

since for every xi ∈ Ai, xci+1
i is equal to this sum, equation (1) holds for Q as well. However, the xi-degree

of Q is at most ci and hence, by Lemma 2.2 it is identically zero. To obtain a contradiction, we claim

that the coefficient of the monomial
∏k
i=0 x

ci
i in Q is not 0 (in Zp). To see this note that the coefficient

of this monomial in Q is nonzero modulo p by assumption. The crucial observation is that the coefficient

of this monomial in Q is equal to its coefficient in Q. This is because the process of replacing each of

the expressions xci+1
i by

∑ci
j=0 bijx

j
i does not affect the above monomial itself. Moreover, since the total

degree of Q is
∑k
i=0 ci and the process of replacing the expressions as above strictly reduces degrees, this

process cannot create any additional scalar multiples of this monomial, proving the claim.

It thus follows that Q is not identically zero, supplying the desired contradiction and completing the

proof. 2

The simplest application of Theorem 2.1 is the following proof of the Cauchy Davenport Theorem

(Theorem 1.1).

Proof of Theorem 1.1. If |A| + |B| ≤ p + 1 apply Theorem 2.1 with h ≡ 1, k = 1, A0 = A, A1 = B

and m = |A|+ |B|−2. Here c0 = |A|−1, c1 = |B|−1 and the relevant coefficient is
(m
c0

)
which is nonzero

modulo p (as m < p). If |A|+ |B| > p+ 1 simply replace B by a subset B′ of cardinality p+ 1− |A| and

apply the result above to A and B′ to conclude that in this case |A+B| ≥ |A+B′| = p. 2

3 Adding distinct residues

The following Lemma can be easily deduced from the known results about the Ballot problem (see, e.g.,

[8]), as well as from the known connection between this problem and the hook formula for the number of

Young tableaux of a given shape. Here we present a simple, self contained proof.

Lemma 3.1 Let c0, . . . , ck be nonnegative integers and suppose that
∑k
i=0 ci = m+

(k+1
2

)
, where m is a
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nonnegative integer. Then the coefficient of
∏k
i=0 x

ci
i in the polynomial

(x0 + x1 + . . .+ xk)m
∏

k≥i>j≥0

(xi − xj)

is
m!

c0!c1! . . . ck!

∏
k≥i>j≥0

(ci − cj).

Proof. The product
∏
k≥i>j≥0(xi − xj) is precisely the Vandermonde determinant det (xji )0≤i≤k,0≤j≤k

which is equal to the sum ∑
σ∈Sk+1

(−1)sign(σ)
k∏
i=0

x
σ(i)
i ,

where Sk+1 denotes the set of all permutations of the k + 1 symbols 0, . . . , k. It thus follows that the

required coefficient, which we denote by C, is given by

C =
∑

σ∈Sk+1

(−1)sign(σ) m!
(c0 − σ(0))!(c1 − σ(1))! . . . (ck − σ(k))!

.

Similarly, the product
∏
k≥i>j≥0(ci − cj) is the Vandermonde determinant det (cji )0≤i≤k,0≤j≤k. For two

integers r ≥ 1 and s let (s)r denote the product s(s − 1) · · · (s − r + 1) and define also (s)0 = 1 for

all s. Observe that the matrix ((ci)j)0≤i≤k,0≤j≤k can be obtained from the matrix (cji )0≤i≤k,0≤j≤k by

subtracting appropriate linear combinations of the columns with indices less than j from the column

indexed by j, for each j = k, k − 1, . . . , 1. Therefore, these two matrices have the same determinant. It

thus follows that

m!
c0!c1! . . . ck!

∏
k≥i>j≥0

(ci − cj) =
m!

c0!c1! . . . ck!
det ((ci)j)0≤i≤k,0≤j≤k

=
m!

c0!c1! . . . ck!

∑
σ∈Sk+1

(−1)sign(σ)(c0)σ(0)(c1)σ(1) · · · (ck)σ(k)

=
∑

σ∈Sk+1

(−1)sign(σ) m!
(c0 − σ(0))!(c1 − σ(1))! . . . (ck − σ(k))!

= C,

completing the proof. 2

Let p be a prime, and let A0, A1, . . . , Ak be nonempty subsets of the cyclic group Zp. Define

⊕ki=0Ai = {a0 + a1 + . . .+ ak : ai ∈ Ai, ai 6= aj for all i 6= j}.

In this notation, the assertion of Proposition 1.2 is that if |Ai| 6= |Aj | for all 0 ≤ i < j ≤ k and∑k
i=0 |Ai| ≤ p+

(k+2
2

)
− 1 then

| ⊕ki=0 Ai| ≥
k∑
i=0

|Ai| −
(
k + 2

2

)
+ 1.
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Proof of Proposition 1.2. Define

h(x0, . . . , xk) =
∏

k≥i>j≥0

(xi − xj),

and note that for this h, the sum ⊕ki=0Ai is precisely the sum ⊕h
∑k
i=0Ai. Suppose |Ai| = ci + 1 and put

m =
k∑
i=0

ci −
(
k + 1

2

)
(=

k∑
i=0

|Ai| −
(
k + 2

2

)
).

By assumption m < p and by Lemma 3.1 the coefficient of
∏k
i=0 x

ci
i in

h · (x0 + . . .+ xk)m

is
m!

c0!c1! . . . ck!

∏
k≥i>j≥0

(ci − cj),

which is nonzero modulo p, since m < p and the numbers ci are pairwise distinct. Since m =
∑k
i=0 ci +

deg(h), the desired result follows from Theorem 2.1. 2

Theorem 3.2 Let p be a prime, and let A0, . . . , Ak be nonempty subsets of Zp, where |Ai| = bi, and

suppose b0 ≥ b1 . . . ≥ bk. Define b′0, . . . , b
′
k by

b′0 = b0 and b′i = min{b′i−1 − 1, bi}, for 1 ≤ i ≤ k. (2)

If b′k > 0 then

| ⊕ki=0 Ai| ≥ min{p,
k∑
i=0

b′i −
(
k + 2

2

)
+ 1}.

Moreover, the above estimate is sharp for all possible values of p ≥ b0 ≥ . . . ≥ bk.

Proof. If b′i ≤ 0 for some i then b′k ≤ 0 and thus b′i > 0 for all i. For each i, 1 ≤ i ≤ k, let A′i be an

arbitrary subset of cardinality b′i of Ai. Note that the cardinalities of the sets A′i are pairwise distinct

and that ⊕ki=0A
′
i ⊂ ⊕ki=0Ai. If

∑k
i=0 b

′
i ≤ p+

(k+2
2

)
− 1 then

| ⊕ki=0 Ai| ≥ | ⊕ki=0 A
′
i| ≥

k∑
i=0

b′i −
(
k + 2

2

)
+ 1,

by Proposition 1.2, as needed. Otherwise, we claim that there are 1 ≤ b”k < b”k−1 < . . . < b”0, where

b”i ≤ b′i for all i and
∑k
i=0 b”i = p +

(k+2
2

)
− 1. To prove this claim, consider the operator T that maps

sequences of integers (d0, . . . , dk) with d0 > d1 . . . > dk ≥ 1 to sequences of the same kind defined as
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follows. The sequence (k + 1, . . . , 1) is mapped to itself. For any other sequence (d0, . . . , dk), let j be

the largest index for which dj > k + 1− j and define T (d0, . . . , dk) = (d0, . . . , dj−1, dj − 1, dj+1, . . . , dk).

Clearly, the sum of the elements in T (D) is one less than the sum of the elements of D for every D that

differs than (k + 1, . . . , 1), and thus, by repeatedly applying T to our sequence (b′0, . . . , b
′
k) we get the

desired sequence (b”0, . . . , b”k), proving the claim.

Returning to the proof of the theorem in case
∑k
i=0 b

′
i > p+

(k+2
2

)
− 1, let b”i be as in the claim, and

apply Proposition 1.2 to arbitrary subsets A”i of cardinality b”i of A′i.

It remains to show that the estimate is best possible for all p ≥ b0 ≥ . . . , bk ≥ 1. This is shown by

defining Ai = {1, 2, 3, . . . , bi} for all i. It is easy to check that for these sets Ai, the set ⊕ki=0Ai is empty

if b′k ≤ 0 and in any case it is contained in the set of consecutive residues(
k + 2

2

)
,

(
k + 2

2

)
+ 1, . . . ,

k∑
i=0

b′i,

where the numbers b′i are defined by (2). This completes the proof. 2

The following result of Dias da Silva and Hamidoune [4] is a simple consequence of (a special case of)

the above theorem.

Theorem 3.3 ([4]) Let p be a prime and let A be a nonempty subset of Zp. Let s∧A denote the set of

all sums of s distinct elements of A. Then |s∧A| ≥ min{p, s|A| − s2 + 1}.

Proof. If |A| < s there is nothing to prove. Otherwise put s = k+1 and apply Theorem 3.2 with Ai = A

for all i. Here b′i = |A| − i for all 0 ≤ i ≤ k and hence

|(k + 1)∧A| = | ⊕ki=0 Ai| ≥ min{p,
k∑
i=0

(|A| − i)−
(
k + 2

2

)
+ 1}

= min{p, (k + 1)|A| −
(
k + 1

2

)
−
(
k + 2

2

)
+ 1} = min{p, (k + 1)|A| − (k + 1)2 + 1}.

2

The case s = 2 of the last theorem settles a problem of Erdős and Heilbronn. Partial results on this

conjecture (before its proof in [4]) had been obtained in [12], [9], [13], [11], and [6].

4 Further examples

An easy application of Theorem 2.1 is the following result, proved in [1].
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Proposition 4.1 If p is a prime and A,B are two nonempty subsets of Zp, then

|{a+ b : a ∈ A, b ∈ B, ab 6= 1}| ≥ min{p, |A|+ |B| − 3}.

The proof is by applying Theorem 2.1 with k = 1, h = x0x1− 1, A0 = A, A1 = B, and m = |A|+ |B|− 4.

It is also shown in [1] that the above estimate is tight in all nontrivial cases. Two easy extensions of the

above proposition are the following.

Proposition 4.2 If p is a prime and A0, A1, . . . , Ak are nonempty subsets of Zp, then for every g ∈ Zp,

|{a0 + . . .+ ak : ai ∈ Ai,
k∏
i=0

ai 6= g}| ≥ min{p,
k∑
i=0

|Ai| − 2k − 1}.

Proof. If g = 0 the result follows trivially from the Cauchy Davenport Theorem, and we thus assume

that g 6= 0. Suppose, first, that |Ai| > 1 for all i. If
∑k
i=0 |Ai| − 2k − 2 < p apply Theorem 2.1 with

h =
∏k
i=0 xi − g and m =

∑k
i=0 |Ai| − 2k − 2. Here ci = |Ai| − 1 and the coefficient of

∏k
i=0 x

ci
i in

h · (x0 + . . .+ xk)m is m!/
∏

(ci− 1)!, which is nonzero modulo p, implying the desired result. Otherwise,

replace some of the sets Ai by nonempty subsets A′i satisfying |A′i| > 1 and
∑k
i=0 |A′i| = p + 2k + 1 and

apply the result to the sets A′i.

When |Ai| = 1 for several sets Ai it is easy to deduce the result by applying the previous case to the

sets Aj of cardinality greater than 1 with an appropriately modified value of g. We omit the details. 2

Proposition 4.3 If p is a prime and A0, A1, . . . , Ak are subsets of Zp, where |Ai| ≥ k+ 1 for all i, then

|{a0 + . . .+ ak : ai ∈ Ai, ai · aj 6= 1 for all 0 ≤ i < j ≤ k}| ≥ min{p,
k∑
i=0

|Ai| − (k + 1)2 + 1}.

Proof. If
∑k
i=0 |Ai|−(k+1)2 < p apply Theorem 2.1 with h =

∏
0≤i<j≤k(xi ·xj−1) and m =

∑k
i=0 |Ai|−

(k+1)2. Otherwise, replace some of the sets Ai by nonempty subsets A′i satisfying
∑k
i=0 |A′i| = p+(k+1)2

and apply the result to the sets A′i. 2

Remark. The estimate in the last proposition is not sharp. In particular, it is not too difficult to show

that if every Ai is of cardinality greater than 2 + log2(k + 1) then the set

S = {a0 + . . .+ ak : ai ∈ Ai, ai · aj 6= 1 for all 0 ≤ i < j ≤ k} (3)

is nonempty. In fact, the following slightly stronger result is valid.

Proposition 4.4 If p is a prime and A0, . . . , Ak are subsets of Zp − {1,−1}, each of cardinality s >

log2(k+ 1) then the set S defined in (3) is nonempty. This is tight for all s ≤ (p− 3)/2, as for each such

s there is a collection of 2s sets Ai ⊂ Zp − {1,−1} of cardinality s each for which the set S from (3) is

empty.
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Proof. If s > log2(k+ 1), let H be a random subset of (p−1)/2 of the elements of Zp−{1,−1} obtained

by choosing, for each pair x, 1/x ∈ Zp − {1,−1, 0}, randomly and independently, exactly one of them

to be a member of H. In addition, add 0 to H. If Ai ∩ H 6= ∅ for every i, the desired result follows

by choosing ai ∈ Ai ∩H and by observing that g · g′ 6= 1 for every (not necessarily distinct) g, g′ ∈ H.

However, for every fixed i, if Ai contains 0 or contains both x and 1/x for some x ∈ Zp − {1,−1, 0} then

certainly Ai ∩H 6= ∅. Otherwise, the probability that Ai ∩H = ∅ is precisely 2−s < 1/(k + 1) showing

that with positive probability Ai ∩H 6= ∅ for all i, as needed.

If s ≤ (p− 3)/2 let x1, . . . , xs be s elements in Zp − {1,−1, 0} so that the product of no two is 1. For

each of the 2s vectors δ = (δ1, . . . , δs) ∈ {−1, 1}s define a subset Aδ by Aδ = {xδ11 , . . . , x
δs
s }. It is easy

to see that every choice of a member from each Aδ must contain some element xi and its inverse. This

completes the proof. 2

We conclude the section with the following.

Proposition 4.5 If p is a prime and A,B are two nonempty subsets of Zp, with |A| > |B| then for any

e ∈ Zp
|{a+ b : a ∈ A, b ∈ B, ab 6= e and a 6= b}| ≥ min{p, |A|+ |B| − 4}. (4)

Proof. If |B| ≤ 2 and b′ ∈ B, then A contains a subset A′ of |A| − 2 elements which are neither b′ nor

eb′−1 and hence in this case

|{a+ b : a ∈ A, b ∈ B, ab 6= e and a 6= b}| ≥ |b′ +A′| = |A| − 2 ≥ |A|+ |B| − 4,

as needed. We thus assume that |A| > |B| ≥ 3. If |A| + |B| − 5 < p, apply Theorem 2.1 with k = 1,

h = (x0 − x1)(x0 · x1 − e), A0 = A, A1 = B and m = |A|+ |B| − 5. Here c0 = |A| − 1, c1 = |B| − 1, and

the coefficient of xc00 · x
c1
1 in h · (x0 + x1)m is(

m

c0 − 2

)
−
(

m

c0 − 1

)
=

m!
(c0 − 1)! (c1 − 1)!

(c0 − c1),

which is nonzero modulo p. If |A|+ |B|−5 ≥ p replace B by a subset B′ of cardinality p+ 4−|A| (< |A|)

and apply the result to A and B′ to conclude that in this case |A+B| ≥ |A+B′| = p. 2

Remark. The last estimate is tight for all possible cardinalities |A| > |B| > 1 as shown by the following

example.

A = {a, a+ d, a+ 2d, . . . , a+ c0d}, B = {a, a+ d, a+ 2d, . . . , a+ c1d},

where a, d are chosen so that a(a+ d) = (a+ c0d)(a+ c1d) = e. The only solution of these equations in

case c1 = 1 (i.e., |B| = 2), is e = 0 and d = −a supplying the two sets

A = {a, 0, . . . ,−(c0 − 1)a} B = {a, 0}.

9



If c1 ≥ 2 the possible solutions are given by

a =
√

c0c1e

(c0 − 1)(c1 − 1)
, d = −(c0 + c1 − 1)a

c0c1
.

Such a solution exists for every e for which the quantity (c0c1e)(c0 − 1)(c1 − 1) is a quadratic residue.

For |B| = 1 the right hand side of (4) can be improved to |A| − 2 = |A| + |B| − 3, as explained above,

and this is trivially tight.

If |A| = |B| = s > 2 then, by applying Proposition 4.5 to A and a subset of cardinality s − 1 of B we

conclude that in this case for every e ∈ Zp

|{a+ b : a ∈ A, b ∈ B, ab 6= e and a 6= b}| ≥ min{p, |A|+ |B| − 5}.

It is not difficult to check that if s ≤ 2 then the set in the left hand side of the last inequality may

be empty. For all s ≥ 3 the above estimate is tight, as shown by an easy modification of the example

described above.

5 Concluding remarks and open problems

1. All the results proved above hold for subsets of an arbitrary field of characteristic p instead of Zp,

with the same proof.

2. Theorem 3.3 implies that if A is a subset of Zp and |A| ≥ (p+ s2 − 1)/s, then s∧A = Zp. This can

be used to construct certain explicit codes for write once memories, a notion introduced by Rivest

and Shamir in [14]. Here is a brief description of this application. Motivated by the existence of

memory devices as optical disks or paper tapes that have a number of ”write once” bits (called

wits), each of which contains initially a 0 that can be irreversibly changed to a 1, the authors of [14]

considered the problem of finding efficient encoding schemes that enable one to use a small number

of wits to represent and update one of v possible values t times. Following [14] let us denote by

w(< v >t) the minimum possible number of wits needed for this task. It is shown in [14] that

w(< v >t) = Θ(max{t, t log v
log t }) and it is conjectured that in fact as t and v tend to infinity

w(< v >t) = (1 + o(1))max{t, t log v
log t

}.

This conjecture is false, since it is not difficult to show that, e.g., for every fixed positive ε < 0.5,

w(< v >εv) ≥ 2εv.
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To see this, notice that since there are at most w ways to update a written w-wit value by changing

a single 0 to a 1, there is a choice of updating the required values that will force any scheme using

less than v−1 wits to change at least 2 wits from 0 to 1 in every update, implying the last inequality.

Theorem 3.3 can be used to supply an explicit scheme that resembles and improves one of the

schemes of [14] and shows that for every prime p

w(< p >0.35p) ≤ p− 1.

Although one can obtain somewhat better schemes this one has the advantage that it may be useful

for ”dirty” memories, that is, memories in which some (small) number of arbitrarily chosen wits

have been set to a 1- see [14] for more details on this issue. The scheme works as follows. Let the

wits be w1, . . . , wp−1. A given configuration always reperesents the value (
∑
i: wi=1 i) (mod p). By

Theorem 3.3, as long as there are at least (p + s2 − 1)/s wits with a 0, it is possible to make any

required update by changing at most s wits to a 1. Therefore, one can use this scheme for at least

t updates, where for large p, t satisfies

t ≥ (1 + o(1))p[(1− 1/2)1/2 + (1/2− 1/3)1/3 + (1/3− 1/4)1/4 + . . .] = (1 + o(1))p[2− π
2

6
] > 0.35p.

We omit the details.

3. It should be clear from the results in the previous two sections that there are numerous additional

possible applications of Theorem 2.1, although many of them would not be very natural. As shown

in Section 3, the main problem in applying the theorem in various cases is the computation of the

required coefficient modulo p. In some cases this can lead to interesting combinatorial questions.

Thus, for example, suppose we wish to apply the theorem to bound the minimum possible cardinality

of the set

{a0 + . . .+ ak : ai ∈ Ai, ai − aj 6∈ E},

where here Ai and E = −E are subsets of Zp. (The case E = {0} is the one considered in Section

3). Here one should consider the polynomial

h =
∏
e∈E

∏
0≤i<j≤k

(xi − xj − e)

and compute the appropriate coefficient in h·(x0+. . .+xk)m. This task seems complicated, although

there is a considerable amount of known information on some of the coefficients of monomials of

degree deg(h) of h. Note that the coefficients of such monomials are independent of E and depend
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only on its cardinality |E|. In particular, Dyson’s conjecture (first proved by Gunson [7] and Wilson

[18]) determines the coefficient of
∏k
i=0 x

k|E|/2
i for even values of |E|. See also [15], [19] for some

related results.

4. Vosper [16], [17] determined all cases of equality in the Cauchy Davenport Theorem. It would be

interesting to prove an anlogous result for Proposition 1.2, Theorem 1.3 or the results in Section 4.

5. There are numerous variants of the Cauchy Davenport Theorem for the non-prime case, including

results by Chowla, Scherk, Sheperdson, Kneser and others. See [10] for many of these results. It

would be interesting to obtain non-prime analogs for the results obtained here.

Acknowledgment The first author would like to thank Doron Zeilberger for helpful discussions.
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