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2

Abstract 3

We find the largest ε (approximately 1.71579) for which any simple closed path α in the universal cover R̃2 \ Z2 of R2
\ Z2, 4

equipped with the natural lifted metric from the Euclidean two-dimensional plane, satisfies L(α) ≥ ε A(α), where L(α) is the 5

length of α and A(α) is the area enclosed by α. This generalizes a result of Schnell and Segura Gomis, and provides an alternative 6

proof for the same isoperimetric inequality in R2
\ Z2. Q1 7

c© 2007 Published by Elsevier B.V. 8

9

1. Introduction 10

A classical theorem of Jarnik in number theory asserts that for every embedded closed curve α ⊂ R2
\ Z2, with 11

no integer lattice points inside the domain bounded by α, L(α) ≥ A(α), where L(α) is the length of α and A(α) is 12

the area enclosed by α, (see [4], p. 123). For a related work on convex simple curves in the plane see [1]. See also [8] 13

where the simple curves in the universal cover of a space are considered. 14

We first bring an elementary argument showing the existence of such a linear isoperimetric inequality in a more 15

general setting: 16

Theorem 1.1. Let Z be a closed set in R2. Assume that there exists a constant M such that for every x ∈ R2
\ Z, 17

d(x, Z) ≤ M, where d(x, Z) denotes the Euclidean distance from x to the set Z. Then there is a linear isoperimetric 18

inequality in R2
\ Z. That is, there is an absolute constant cZ > 0 such that for every simple contractible closed curve 19

α in R2
\ Z we have L(α) ≥ cZ A(α). 20

Proof. If α is contained in a disc of radius 1, then the theorem follows from the classic isoperimetric inequality 21

in the plane 4π A(α) ≤ L2(α). Indeed, if L(α) ≤ 1, then L(α) ≥ L2(α) ≥ 4π A(α). And if L(α) > 1, then 22

L(α) > 1 ≥
1
π

A(α). 23

Let x1, . . . , xn (n > 1) be a maximal set of points on α such that for every i 6= jd(xi , x j ) > 1. Then clearly 24

L(α) ≥ n. Observe that any point in α is at distance at most 1 from some xi because of the maximality of n. Let x be 25
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any point in the region bounded by α. Let z ∈ Z be a point such that d(z, x) ≤ M . The line segment between x and1

z must cross α, for x is in the region bounded by α and z is not. It follows that x is at distance at most M + 1 from2

some point xi . Therefore A(α) ≤ nπ(M + 1)2. We can now conclude that3

L(α) ≥ n = nπ(M + 1)2 1
π(M + 1)2 ≥

1
π(M + 1)2 A(α). �4

Taking Z = Z2 in Theorem 1.1 we deduce a linear isoperimetric inequality in R2
\ Z2.5

In [7] Schnell and Segura Gomis give a tight (best possible) linear isoperimetric inequality for the relation between6

the perimeter and the area of a simply connected region in R2
\ Z2. Their proof is very elegant and relies on Pick’s7

formula in the Euclidean plane.8

In this paper we generalize their result and show that the same (best possible) linear isoperimetric inequality holds9

in the more general space R̃2 \ Z2, the universal covering of R2
\ Z2 equipped with the natural lifted metric from10

the two-dimensional Euclidean plane. This is somewhat a surprising example for a tight isoperimetric inequality in a11

base space X that can be lifted to be the same tight isoperimetric inequality in X̃ , the universal covering space of X .12

This is not the case for many other spaces. Indeed, consider for instance the space C , the infinite cylinder of radius13

1. The universal covering space of C is R2. The area of a simple closed curve in R2 may depend quadratically on its14

perimeter. However, a simple contractible closed curve α on C of perimeter L may enclose an area of at most π L , as15

the difference between the heights of the highest and lowest points of α on C is at most L/2. Another such a natural16

example where the isoperimetric inequality in the base space is different in nature than the isoperimetric inequality in17

the universal covering space is the torus.18

It follows from a general theorem of Bonk and Eremenko [2], that contractible closed curves satisfy a linear19

isoperimetric inequality in R̃2 \ Z2. Polterovich and Sikorav [5] showed that for a generalized definition of the area of20

a closed contractible curve β ⊆ R2
\ Z2, (1 +

√
2)L(β) ≥ A(β). In fact, using methods in [5], one can show that for21

an embedded closed curve β ⊆ R̃2 \ Z2, (1+
√

2)L(β) ≥ A(β) [6]. In this paper we find the tight linear isoperimetric22

inequality in R̃2 \ Z2. More specifically, we define a constant that we denote by ε and prove, in Section 4, the following23

main result of this paper:24

Theorem 1.2. Let α : S1
→ R̃2 \ Z2 be a simple closed curve. Then L(α) ≥ ε A(α). The constant ε25

(approximately 1.71579) is best possible.26

The constant ε is defined in Section 3. There it will also be shown that ε can be obtained implicitly by the equations:27

ε =

π−α
sin α

π−α

4 sin2 α
+

cos α
4 sin α

+
1
2

, sin α =
ε

2
,

π

2
≤ α ≤ π.28

An approximate solution to this system is ε ≈ 1.71579.29

We note that since the constant ε is the same constant found by Schnell and Segura Gomis, the fact that ε cannot30

be replaced by a larger constant in the statement of Theorem 1.2 follows from the tightness of the result in [7].31

2. A description of R̃2 \ Z232

Definition 2.1. A basic square S in R2
\ Z2 is a unit square in R2 that is closed, except for the four vertices, and is33

centered at a point (m +
1
2 , n +

1
2 ), where n, m ∈ Z.34

Consider the grid G ⊂ R2
\Z2 consisting of horizontal and vertical lines through the points (m +

1
2 , n +

1
2 ), where35

n, m ∈ Z. The universal cover G̃ of (G, Euclidean) is an infinite tree for which the degree of every vertex is four36

and the length of every edge is one. Let P : R̃2 \ Z2 → R2
\ Z2, be the covering map. G is a deformation retract of37

R2
\ Z2, hence P−1(G) is a deformation retract of R̃2 \ Z2. Therefore, π1(P−1(G)) = 1 which implies that P−1(G)38

can be identified with G̃. Let S be a basic square in R2
\ Z2. Then the contractibility of S implies that any connected39

component of P−1(S) can be identified with S. Hence, P−1(S), the lifting of every basic square S in R2
\Z2 centered40

at a fixed point (m0 +
1
2 , n0 +

1
2 ), is a set of infinitely many copies of S centered at the points of P−1(m0 +

1
2 , n0 +

1
2 ).41

Please cite this article in press as: N. Alon, et al., An isoperimetric inequality in the universal cover of the punctured plane, Discrete Mathematics
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One can think of the universal covering space R̃2 \ Z2 as a thick 4-regular tree of width one, that is, the tree G̃ with 1

infinitely many basic squares centered at its vertices. 2

Definition 2.2. A fundamental square in R̃2 \ Z2 is a connected component of P−1(S), where S is a basic square in 3

R2
\ Z2. 4

An edge in R̃2 \ Z2 is a boundary edge of a fundamental square in R̃2 \ Z2. 5

We now show a fundamental property of closed embedded curves in R̃2 \ Z2. 6

Lemma 2.3. Let β : [0, 1] → R̃2 \ Z2 be an oriented simple closed curve. Assume that the curve β leaves square S 7

by crossing e at β(t1), and does not cross e again until t2. Then there is no t1 < c < t2 such that β(c) intersects S. 8

In other words. If β leaves a fundamental square S through an edge e, the next time it intersects S is through the 9

same edge e. 10

Proof. Assume not. Then there is c (t1 < c < t2), such that β(c) ∈ S. We can assume that β(c) is an intersection point 11

with an edge e′
6= e, where e′ is an edge of S. Denote by M the union of the subarc of β, {β(t) : t1 ≤ t ≤ c} with the 12

straight line segment between β(t1) and β(c). Then M is an embedded closed curve. Looking at M and e as curves 13

in the completion of R̃2 \ Z2, we see that the intersection number M ◦ e, mod 2, equals one. This is a contradiction, 14

because M is contractible, hence M ◦ e = 0. � 15

3. Defining ε 16

We will now define a number that we denote by ε. This number satisfies a certain isoperimetric inequality and will 17

play a crucial role in the following. Let P0 = (0, 0) and Q0 = (1, 0). Consider the family H of all simple paths β 18

with P0 and Q0 as endpoints that lie in the planar region {(x, y)|0 ≤ x ≤ 1, y ≥ 0}. 19

For every such β let L(β) denote the length of β and A(β) denote the area enclosed by β and the interval P0 Q0. 20

We define ε to be infβ∈H
L(β)

A(β)+1/2 . 21

Claim 3.1. ε is a minimum which is obtained for a curve in H. 22

Proof. First, observe that by considering β to be the half-circle {(x, y) | y =
√

1 − x2, 0 ≤ x ≤ 1} we conclude 23

that ε < 1.8. Moreover, it is enough to consider only the subfamily of H of all the curves β with the property that no 24

y-coordinate of a point of β exceeds 100. Indeed, if the largest y-coordinate of a point on β is k, then L(β) ≥ 2k and 25

A(β) ≤ k. Therefore, 26

L(β)

A(β) +
1
2

≥
2k

k +
1
2

> 2 −
1
k
. 27

If k > 100, then 2 −
1
k > 1.8. It now follows easily by the principles of compactness that there exists an optimal 28

curve in H. � 29

Claim 3.2. The value ε, defined before Claim 3.1, is obtained for a curve β which is a circular arc. 30

Claim 3.2 will be a consequence of the following theorem. 31

Theorem 3.3. Let P and Q be two points on the x-axis of R2. Denote by T be the family of all curves β ⊂ R2 with 32

the following two properties: 33

1. β is a simple curve with endpoints P and Q. 34

2. β lies above the segment P Q and in the region bounded by the lines through P and Q that are perpendicular to 35

P Q. 36

Let c > 0 be a positive constant such that c|P Q| < 2. Then the minimum over all β ∈ T of the expression 37

L(β) − cA(β), is obtained for β ∈ T which is a circular arc. 38

Please cite this article in press as: N. Alon, et al., An isoperimetric inequality in the universal cover of the punctured plane, Discrete Mathematics
(2007), doi:10.1016/j.disc.2007.10.033
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Fig. 1.

Proof. Without loss of generality we assume that P is to the left of Q. An optimal curve β must be a concave curve.1

We can also assume that the optimal curve β (that may not be unique) is symmetric with respect to the line which is2

the perpendicular bisector to the segment P Q. Here we exploit the well-known technique of Steiner-Symmetrization,3

due to J. Steiner (1838), applied in the classical isoperimetric inequality of balls in the Euclidean space (see [3] for a4

survey).5

We need the following claim.6

Claim 3.4. Let T be a line which passes through P such that β, is fully contained in a closed half-plane bounded by7

T . Assume further that T has the smallest positive slope among all such lines. Then the slope of T (with respect to8

the segment P Q) is strictly smaller than π/2.9

Proof. Assume on the contrary that T is vertical. Let T ′ be a line through P whose slope equals π/2 − ν, where ν is10

a small positive number to be determined later.11

Let Y1 be the point on β ∩ T ′ with the largest y coordinate. Denote the value of the y-coordinate of Y1 by t . Let Y212

be the symmetric point to Y1 with respect to the vertical line through the midpoint of P Q. See Fig. 1.Q213

Let β ′ be the subarc of β between Y1 and Y2. Now L(β ′) ≤ L(β) − 2t . A(β ′) ≥ A(β) − t |P Q|.14

Let s = |P Q|/|Y1Y2| and let β ′′ be the curve obtained from β ′ by applying a similarity transformation with ratio15

s. The endpoints of β ′′ are at distance |P Q| from each other, therefore, by identifying them with P and Q we may16

regard β ′′ as a curve in T . Moreover, L(β ′′) = sL(β ′) and A(β ′′) = s2 A(β ′). Denote x =
2t tan ν

|P Q|−2t tan ν
. Observe that17

s = 1 + x .18

Therefore,19

L(β ′′) − cA(β ′′) = sL(β ′) − cs2 A(β ′)20

≤ s(L(β) − 2t) − cs2(A(β) − t |P Q|)21

= (1 + x)(L(β) − 2t) − c(1 + x)2(A(β) − t |P Q|)22

= L(β) − cA(β) + (c|P Q|t − 2t + x(L(β) − 2t) − c(2x + x2)(A(β) − t |P Q|))23

Please cite this article in press as: N. Alon, et al., An isoperimetric inequality in the universal cover of the punctured plane, Discrete Mathematics
(2007), doi:10.1016/j.disc.2007.10.033
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For ν small enough x is much smaller than t as it is of the order of t tan ν. We thus obtain a contradiction to the 1

minimality of β, assuming that c|P Q| − 2 < 0. � 2

Let X be any point on the curve β. We will show that the angle ]P X Q is independent of X . This will clearly show 3

that β is a circular arc. 4

Let α0 = ]P X Q. For every α in a small neighborhood of α0 we define a curve in T in the following way: 5

We think of βP X , the subarc of β between P and X , as solid and similarly of βX Q , the subarc of β between X and 6

Q. On the other hand, we think of the point X as an axis about which the solid parts βP X and βX Q can rotate. We 7

then rotate the parts βP X and βX Q in such a way that ]P X Q becomes equal to α. We thus obtain a curve the distance 8

between whose endpoints is rα =

√
|P X |2 + |X Q|2 − 2|P X ||X Q|cos(α). We then apply a similarity transformation 9

with ratio equal to |P Q|/rα to obtain a new curve βα whose endpoints (that are at distance |P Q| from each other) we 10

identify with P and Q. It follows from Claim 3.4 that if α is in a small enough neighborhood of α0, then βα belongs 11

to the class T — the crucial point is that if α is very close to α0, βα is still contained in the region bounded by the 12

vertical lines through P and Q. 13

Let g(α) = L(βα) − cA(βα). We know that g(α) is minimized for α = α0. 14

We will now obtain a more direct formula for g(α) and interpret the condition g′(α0) = 0. 15

We start with g(α) = L(βα) − cA(βα). Clearly, L(βα) =
|P Q|

rα
L(β). A(βα) is given by (

|P Q|

rα
)2(A(βP X ) + 16

A(βX Q) +
1
2 |P X ||X Q| sin α), where A(βP X ) is the area enclosed by βP X and the line segment P X , and A(βX Q) is 17

enclosed by βX Q and the line segment X Q. 18

We can now compute g′(α) and obtain 19

g′(α) = −L(β)
|P Q|

r3
α

|P X ||X Q| sin α 20

− c
|P Q|

2

r4
α

(2|P X ||X Q| sin α)

(
A(βP X ) + A(βX Q) +

1
2
|P X ||X Q| sin α

)
21

− c
|P Q|

2

r2
α

(
1
2
|P X ||X Q| cos α

)
. (1) 22

We know that g′(α0) = 0. Moreover, rα0 = |P Q| and A(βP X ) + A(βX Q) +
1
2 |P X ||X Q| sin α0 = A(β). 23

Therefore, by plugging α = α0 in (1), we obtain 24

0 = −L(β)
|P X ||X Q| sin α0

|P Q|2
−

c
|P Q|2

(2|P X ||X Q| sin α0 A(β)) − c
1
2
|P X ||X Q| cos α0. (2) 25

After dividing (2) by |P X ||X Q|, and some easy manipulations we obtain: 26

tan α0 =
sin α0

cos α0
=

−c|P Q|
2

2L(β) + 4cA(β)
. 27

It is evident that tan α0 does not depend on X which is what we wanted to prove. � 28

Proof of Claim 3.2. Let β0 be an optimal curve. We know that for every β ∈ H, L(β)

A(β)+ 1
2

≥ ε, or in other words 29

L(β) − ε A(β) ≥
ε
2 . Since we have equality for β0, it follows from Theorem 3.3 (with |P Q| = 1 and c = ε) that β0 30

is a circular arc. � 31

The following easy claim can be verified via direct calculations: 32

Claim 3.5. Let β be a subarc of a circle. Let P and Q denote the endpoints of β and assume that |P Q| = 1. Let α 33

denote the constant angle ]P X Q for any point X on β. Then L(β)

A(β)+ 1
2

is given by 34

F(α) =

π−α
sin α

π−α

4 sin2 α
+

cos α
4 sin α

+
1
2

. 35

Please cite this article in press as: N. Alon, et al., An isoperimetric inequality in the universal cover of the punctured plane, Discrete Mathematics
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By definition, F(α) ≥ ε, hence1

π − α

sin α
− ε

(
π − α

4 sin2 α
+

cos α

4 sin α

)
≥

ε

2
. (3)2

We will need the following theorem regarding isoperimetric inequality.3

Theorem 3.6. Let 0 ≤ t ≤ 1 and let β be a simple curve whose endpoints are (0, 0) and (t, 0) and which is fully4

contained in the region {(x, y)|0 ≤ x ≤ t, y ≥ 0}. Then L(β) − ε A(β) ≥ t ε
2 .5

Remark. Observe that when t = 1 Theorem 3.6 follows immediately from the definition of ε.6

Proof. By Theorem 3.3, the curve β for which the expression L(β) − ε A(β) is minimum, is a subarc of a circle7

Let π
2 ≤ α ≤ π be the constant angle defined by the cord between (0, 0) and (t, 0). It can then be verified by direct8

calculations that the expression L(β) − ε A(β) is given by9

g(α) = t
π − α

sin α
− t2ε

(
π − α

4 sin2 α
+

cos α

4 sin α

)
.10

A direct calculation gives:11

g′(α) =
sin α + (π − α) cos α

sin2 α

(
t2ε

2 sin α
− t
)

.12

It is easy to see that sin α + (π − α) cos α > 0 for every π
2 < α < π and that t2ε

2 sin α
− t is an increasing function13

of α in the range π
2 < α < π . Therefore g(α) obtains a minimum when t2ε

2 sin α
− t = 0, that is, sin α =

tε
2 .14

It follows from (3) that for every π
2 ≤ α ≤ π .15

ε

(
π − α

4 sin2 α
+

cos α

4 sin α

)
≤

π − α

sin α
−

ε

2
.16

Therefore, for every π
2 ≤ α ≤ π ,17

g(α) ≥ (t − t2)
π − α

sin α
+ t2 ε

2
≥ t

ε

2
. �18

Remark. We can now obtain an implicit equation for ε. That is,19

ε =

π−α
sin α

π−α

4 sin2 α
+

cos α
4 sin α

+
1
2

,20

where sin α =
ε
2 and π

2 ≤ α ≤ π . An approximate solution to this equation is 1.71579 . . . . Nevertheless, we will not21

make use of this observation through the rest of the paper.22

4. Proof of the main theorem23

We will now prove Theorem 1.2. We need to show that for every simple closed curve α : S1
→ R̃2 \ Z2 we have24

L(α) ≥ ε A(α). We assume that the curves α in question are transverse to every edge. Indeed, this can be achieved by25

a small perturbation of the given curve α.26

The following claim shows that in order to prove Theorem 1.2 it is enough to consider the curves that intersect27

every edge in R̃2 \ Z2 at exactly two points or none.28

Claim 4.1. Let α : S1
→ R̃2 \ Z2 be a simple closed curve, then there exists a simple closed curve β : S1

→ R̃2 \ Z229

such that L(β) ≤ L(α) and A(β) ≥ A(α) and such that β intersects every edge at exactly two points or none.30

Please cite this article in press as: N. Alon, et al., An isoperimetric inequality in the universal cover of the punctured plane, Discrete Mathematics
(2007), doi:10.1016/j.disc.2007.10.033
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Fig. 2.

Proof. α is a compact boundaryless one-dimensional manifold, which is the boundary of the two-dimensional 1

Riemannian manifold. We denote by A the domain bounded by α. We orient α so as the domain A is to the right 2

of α. Let e be an edge in R̃2 \ Z2 which intersects α at l > 2 points. Assume that e is horizontal. Let X1, . . . , Xl be 3

the intersection points of α with e. We assume that the points are indexed consecutively from the left to the right. See 4

Fig. 2. 5

We orient e in such a way that it enters A at the point X1. α is contractible and hence, if we look at α and e as in 6

the completion of R̃2 \ Z2, we have e ◦ α = 0. Therefore, the number of points in the set α ∩ e is even. It is easy to 7

see that the line segments X2 j X2 j+1 for j = 1, . . . , l
2 − 1, do not intersect the interior of A. 8

Denote by αX2, X3 the subarc of alpha that starts at X2 and ends at X3 (according to the orientation of α). We 9

replace αX2, X3 by the line segment X2 X3 to obtain another embedded curve that we denote by α1. Observe that 10

L(α) ≥ L(α1). Moreover, A(α) ≤ A(α1), because A lies inside the domain bounded by α1. 11

We now perform a small perturbation to α1 at a small neighborhood of e so that the following statements hold: 12

• α1 is transverse to e. 13

• There are no other intersection points of α1 ∩ e beside X1 and X4, . . . , Xn . 14

• L(α) ≥ L(α1) and A(α) ≤ A(α1). 15

We apply successively the above procedure for the pairs (X4, X5), . . . , (X2n−2, X2n−1). We obtain an embedded 16

curve α l
2

which satisfies: L(α l
2
) ≤ L(α), A(α l

2
) ≥ A(α), and α l

2
intersects e at exactly two points: X1 and Xn . 17

We apply the above procedure to every edge e′ which intersects α. We obtain an embedded curve β which satisfies: 18

L(β) ≤ L(α), A(β) ≥ A(α). Moreover, β intersects any edge e′ at exactly two points or none. This completes the 19

proof. � 20

From now on we consider only the curves that intersect any edge of R̃2 \ Z2 at exactly two points or none. 21

Definition 4.2. A θ -curve is a simple curve in R̃2 \ Z2 whose both endpoints lie on the same edge of a fundamental 22

square. For a θ -curve β, L(β) will denote its length, A(β) will denote the area enclosed by the closed curve obtained 23

Please cite this article in press as: N. Alon, et al., An isoperimetric inequality in the universal cover of the punctured plane, Discrete Mathematics
(2007), doi:10.1016/j.disc.2007.10.033
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Fig. 3. Case 2 with l = 3 and r = 2.

from β by joining its two endpoints by a straight line segment. d(β) will denote the distance between the two endpoints1

of β.2

Theorem 1.2 is an easy consequence of the following lemma:3

Lemma 4.3. Let β be a θ -curve , then4

L(β) ≥ ε A(β) +
ε

2
d(β). (4)5

We first show how Theorem 1.2 follows from Lemma 4.3. Without loss of generality α intersects (at exactly two6

points) an edge of a fundamental square. Let Q and P be these two intersection points. P and Q divide α into two7

curves each of which is a θ -curve . Let β1 and β2 be those two curves. By Lemma 4.3, L(βi ) ≥ ε A(βi ) +
ε
2 |P Q|, for8

i = 1, 2. Therefore,9

L(α) = L(β1) + L(β2) ≥ ε(A(β1) + A(β2)) + 2
ε

2
(|P Q|) ≥ ε A(α).10

Proof of Lemma 4.3. We prove the lemma by induction on the number n of fundamental squares that intersect the11

relative interior of β. The relative interior of β relates to the interior of the simple closed curve obtained from β and12

the straight line segment joining its two end points.13

The case n = 1 follows directly from Theorem 3.6, after some suitable reductions: Denote by S the single14

fundamental square which contains β. Let P and Q be the endpoints of β and assume without loss of generality15

that P is to the left of Q and that the interval P Q lies on the bottom edge of S (see Fig. 3). We may assume that βQ316

lies entirely to the right of the perpendicular line to the segment P Q which touches P . Indeed, otherwise consider the17

line y that is perpendicular to P Q and is the tangent to β so that β lies entirely to the right of y. Let T be a point at18

which y touches β. Let P ′ be the intersection point of y with the bottom edge of S. Now modify β by replacing the19

subarc of β between P and T by the straight line segment on y between P ′ and T . We thus obtain a new θ -curve β ′
20

such that L(β ′) ≤ L(β), A(β ′) ≥ A(β), and d(β ′) ≥ d(β) (and therefore ε
2 d(β ′) ≥

ε
2 d(β)). Observe that now β ′ lies21

entirely to the right of the perpendicular line through P ′.22

In a similar manner we can assume that β lies entirely to the left of the perpendicular line to the segment P Q23

which touches Q. We can now use Theorem 3.6 and conclude the case n = 1.24

In order to complete the proof of Lemma 4.3 we have to consider the case n > 1, and complete the induction25

step. To this end, we consider the square S which contains the endpoints P and Q of β. Without loss of generality we26
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assume that both P and Q lie on the bottom edge of S so that P is to the left of Q. Let us denote the four vertices of 1

S in the clockwise order starting from the lower left vertex, by A, B, C , and D. 2

Denote S1 = S and for each integer m > 1 let Sm be the fundamental square adjacent to Sm−1 in its top edge. 3

Let i1 < i2 < · · · < il be all the indices such that β intersects the left edge of Sik (at exactly two points). For every 4

0 ≤ k ≤ l, let us denote the two points of intersection of β and the left edge of Sik by Uik and Vik so that Vik is above 5

the Uik . 6

Similarly, let j1 < j2 < · · · < jr be all the indices such that β intersects the right edge of S jk (at exactly two 7

points). For every 0 ≤ k ≤ r , let us denote the two points of intersection of β and the right edge of S jk by X jk and 8

Y jk , so that Y jk is above X jk . See Fig. 3. 9

We distinguish among three cases: 10

Case 1. r = l = 0. This case follows directly from Theorem 3.6 after similar adjustments to those made in the case 11

n = 1. 12

Case 2. r > 0 and l > 0. In this case for every 1 ≤ k ≤ l − 1 we may replace the subarc of β between Vik and Uik+1 13

by a straight line segment (with a small perturbation in order that β ⊂ R̃2 \ Z2) since this will decrease L(β) and will 14

increase A(β). We may also replace the subarc of β between P and Ui1 by a straight line segment and thus assume 15

that P almost coincides with A. Indeed, this will result in decreasing L(β), increasing A(β) and increasing d(β), and 16

it will be enough to prove that even after this adjustment L(β) − ε A(β) ≥
ε
2 d(β) still holds. 17

Similarly, for every 1 ≤ k ≤ r −1 we may replace the subarc of β between Y jk and X jk+1 by a straight line segment 18

(with a small perturbation in order that β ⊂ R̃2 \ Z2) since this will decrease L(β) and will increase A(β). We may 19

also replace the subarc of β between Q and X j1 by a straight line segment and thus assume that Q almost coincides 20

with D. 21

Note that we may assume that the subarc of β between Vil and Y jr is concave. Consider the line m in R̃2 \ Z2 that 22

is the perpendicular bisector of AD, and denote its (unique) intersection point with β by M . We now reflect the subarc 23

of β between P and M with respect to the reflection line m. We thus obtain a θ -curve that we denote by βl . For every 24

1 ≤ k ≤ l, denote by βik the θ -curve which is the subarc of β between Uik and Vik . Denote by V ′

il the reflection of Vil 25

with respect to m. Let βM denote the subarc of βl between Vil and V ′

il (see Fig. 3). We have, 26

L(βl) = 2
l∑

k=1

L(βik ) + L(βM ) + 2|PUi1 | + 2
l−1∑
k=1

|Vik Uik+1 | (5) 27

A(βl) = 2
l∑

k=1

A(βik ) + A(βM ) + |PUi1 | +

l−1∑
k=1

|Vik Uik+1 | +

l∑
k=1

|Uik Vik |. (6) 28

By the induction hypothesis, for every 1 ≤ k ≤ l, L(βik ) − ε A(βik ) ≥
ε
2 |Uik Vik |. By Theorem 3.6, 29

L(βM ) − ε A(βM ) ≥
ε
2 . 30

Therefore, Q4 31

L(βl) − ε A(βl) ≥
ε

2
+ 2

l∑
k=1

ε

2
|Uik Vik | 32

+ 2|PUi1 | + 2
l−1∑
k=1

|Vik Uik+1 | − ε

(
|PUi1 | +

l−1∑
k=1

|Vik Uik+1 | +

l∑
k=1

|Uik Vik |

)
33

=
ε

2
+ (2 − ε)

(
|PUi1 | +

l−1∑
k=1

|Vik Uik+1 |

)
+

l∑
k=1

(ε|Uik Vik |) − ε|Uik Vik |) 34

=
ε

2
+ (2 − ε)

(
|PUi1 | +

l−1∑
k=1

|Vik Uik+1 |

)
35

≥
ε

2
. 36
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In a similar manner we reflect the subarc of β between Q and M with respect to the reflection line m and obtain a1

θ -curve that we denote by βr . The same arguments yield that2

L(βr ) − ε A(βr ) ≥
ε

2
.3

Observe that 2L(β) = L(βl) + L(βr ) and that 2A(β) = A(βl) + A(βr ). Combining this with the isoperimetric4

inequalities for βl and βr we obtain the desired result, namely,5

L(β) − ε A(β) ≥
ε

2
.6

Case 3. l > 0 and r = 0. As in case 2, for every 1 ≤ k ≤ l − 1 we may replace the subarc of β between Vik and7

Uik+1 by a straight line segment (with a small perturbation in order that β ⊂ R̃2 \ Z2) since this will decrease L(β)8

and will increase A(β). We may also replace the subarc of β between P and Ui1 by a straight line segment and thus9

assume that P almost coincides with A. Indeed, this will result in decreasing L(β), increasing A(β) and increasing10

d(β), and it will be enough to prove that even after this adjustment L(β) − ε A(β) ≥
ε
2 d(β) still holds (observe that11

ε
2 t is monotone increasing in t). Moreover, we may assume that the subarc of β between Vil and Q is concave, and12

that Q is the rightmost point of β in S1 ∪ . . .∪ Sl . Indeed, otherwise we consider the line y perpendicular to AD that is13

a tangent of β and touches β at a point T . Then replace the subarc of β between Q and T by the straight line segment14

on y between T and Q′, where Q′ is the intersection point of y with AD. in this way we increase A(β), decrease15

L(β) and, increase ε
2 d(β).16

We consider the line m in R̃2 \ Z2 that is the perpendicular bisector of AD. We distinguish between two cases.17

Case 3(a): m intersects β.18

In this case, as in Case 2, we denote the (unique) intersection point of m with β by M . We reflect the subarc of19

β between P and M with respect to the reflection line m. We thus obtain a θ -curve that we denote by βl . The same20

arguments as in Case 2 yield the following isoperimetric inequality:21

L(βl) − ε A(βl) ≥
ε

2
.22

In a similar manner we reflect the subarc of β between Q and M with respect to the reflection line m and obtain a23

θ -curve that we denote by βr . βr satisfies the conditions in Theorem 3.6. Hence,24

L(βr ) − ε A(βr ) ≥ 2
(

|P Q| −
1
2

)
ε

2
= (2|P Q| − 1)

ε

2
.25

Observe that 2L(β) = L(βl) + L(βr ) and that 2A(β) = A(βl) + A(βr ). Combining this with the isoperimetric26

inequalities for βl and βr we obtain the desired result, namely,27

L(β) − ε A(β) ≥ |P Q|
ε

2
.28

Case 3(b): m does not intersect β.29

In this case we consider the line lS that is perpendicular to AD at A. We think of the subarc of β between Vil and30

Q as a curve in R2 and reflect it with respect to the line lS . We thus obtain a curve that we denote by βr . Observe31

that βr satisfies the conditions of Theorem 3.6. For every 1 ≤ k ≤ l denote by βik the θ -curve that is the subarc of β32

between Uik and Vik .33

We have:34

L(β) ≥

l∑
k=1

L(βik ) +
1
2

L(βr ) (7)35

A(β) ≥

l∑
k=1

A(βik ) +
1
2

A(βr ). (8)36

By the induction hypothesis, for every 1 ≤ k ≤ l we have37

L(βik ) ≥ ε A(βik ) +
ε

2
d(βik ) ≥ ε A(βik ).38
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By Theorem 3.6, 1

L(βr ) ≥ ε A(βr ) +
ε

2
d(βr ) = ε A(βr ) +

ε

2
2d(β). 2

Therefore, 3

L(β) ≥

l∑
k=1

L(βik ) +
1
2

L(βr ) 4

≥

l∑
k=1

ε A(βik ) +
1
2
ε A(βr ) +

1
2

ε

2
2d(β) 5

= ε

(
l∑

k=1

A(βik ) +
1
2

A(βr )

)
+

ε

2
d(β) 6

= ε A(β) +
ε

2
d(β). 7

This completes the proof of Lemma 4.3. � 8
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