H-free graphs of large minimum degree

Noga Alon * Benny Sudakov [†]

Abstract

We prove the following extension of an old result of Andrásfai, Erdős and Sós. For every fixed graph H with chromatic number $r + 1 \ge 3$, and for every fixed $\epsilon > 0$, there are $n_0 = n_0(H, \epsilon)$ and $\rho = \rho(H) > 0$, such that the following holds. Let G be an H-free graph on $n > n_0$ vertices with minimum degree at least $\left(1 - \frac{1}{r-1/3} + \epsilon\right)n$. Then one can delete at most $n^{2-\rho}$ edges to make G r-colorable.

1 Introduction

Turán's classical Theorem [11] determines the maximum number of edges in a K_{r+1} -free graph on n vertices. It easily implies that for $r \ge 2$, if a K_{r+1} -free graph on n vertices has minimum degree at least $(1 - \frac{1}{r})n$, then it is r-colorable (in fact, it is a complete r-partite graph with equal color classes). The following stronger result has been proved by Andrásfai, Erdős and Sós [2].

Theorem 1.1 ([2]) If G is a K_{r+1} -free graph of order n with minimum degree $\delta(G) > \left(1 - \frac{1}{r-1/3}\right)n$ then G is r-colorable.

The following construction shows that this result is tight. Let G be a graph whose vertex set is the disjoint union of r + 3 sets U_1, U_2, \ldots, U_5 and $V_1, V_2, \ldots, V_{r-2}$, in which $|U_i| = \frac{1}{3r-1}n$ for all i and $|V_j| = \frac{3}{3r-1}n$ for all j. Each vertex of V_j is adjacent to all vertices but the other members of V_j and each vertex of U_i is adjacent to all vertices of $U_{(i+1) \mod 5}$, $U_{(i-1) \mod 5}$ and $\cup_j V_j$. All vertices in this graph have degree $\frac{3r-4}{3r-1}n = \left(1 - \frac{1}{r-1/3}\right)n$ and it is easy to see that G contains no K_{r+1} , and is not r-colorable.

Turán's result has been extended by Erdős-Stone [6] and by Erdős-Simonovits [4] showing that for $r \ge 2$, for any fixed graph H of chromatic number $\chi(H) = r + 1$ and for any fixed $\epsilon > 0$, any H-free graph on n vertices cannot have more than $(1 - \frac{1}{r} + \epsilon)\binom{n}{2}$ edges provided n is sufficiently large as a function of H and ϵ . Moreover, it is known that if an H-free graph on a large number n of vertices has at least $(1 - \frac{1}{r})\binom{n}{2}$ edges, then one can delete $o(n^2)$ of its edges to make it r-colorable.

^{*}Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel and IAS, Princeton, NJ 08540, USA. Email: nogaa@tau.ac.il. Research supported in part by the Israel Science Foundation, by a USA-Israeli BSF grant, by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University and by the Von Neumann Fund.

[†]Department of Mathematics, Princeton University, Princeton, NJ 08544. E-mail: bsudakov@math.princeton.edu. Research supported in part by NSF grant DMS-0355497, USA-Israeli BSF grant, and by an Alfred P. Sloan fellowship.

It therefore seems natural to try to extend Theorem 1.1 from complete graphs K_{r+1} to general graphs H. Such an extension for critical graphs, i.e., H which have an edge whose removal decreases its chromatic number, has been proved in [5]. In the present short paper we handle the general case. Our main results are the following. Let $K_{r+1}(t)$ be the complete (r+1)-partite graph with t vertices in each vertex class.

Theorem 1.2 Let $r \ge 2, t \ge 1$ be integers and let $\epsilon > 0$. Then there exist $n_0 = n_0(r, t, \epsilon)$ such that if G is a $K_{r+1}(t)$ -free graph of order $n \ge n_0$ with minimum degree $\delta(G) \ge \left(1 - \frac{1}{r-1/3} + \epsilon\right)n$, then one can delete at most $O(n^{2-1/(4r^{2/3}t)})$ edges to make G r-colorable.

Corollary 1.3 Let H be a fixed graph on h vertices with chromatic number $r+1 \ge 3$ and let G be an H-free graph of sufficiently large order n with minimum degree $\delta(G) \ge \left(1 - \frac{1}{r-1/3} + o(1)\right)n$. Then one can delete at most $O(n^{2-1/(4r^{2/3}h)})$ edges to make G r-colorable.

As shown by the example above, the fraction $1 - \frac{1}{r-1/3} = \frac{3r-4}{3r-1}$ is tight in general. It is also not difficult to see that indeed in general some $O(n^{2-\rho})$ edges have to be deleted to make the graph G r-colorable, though the best possible value of $\rho = \rho(K_{r+1}(t))$ may well be slightly better than the one we obtain. The problem of determining the behavior of the best possible value of ρ , as well as that of deciding if the o(1)n-term can be replaced by O(1), remain open.

A weaker version of Corollary 1.3 is proved in [1], where it is applied to prove the NP-hardness of various edge-deletion problems. This version asserts that there are some $\gamma = \gamma(H) > 0$ and $\mu = \mu(H) > 0$ so that the following holds. For any *H*-free graph *G* on *n* vertices with minimum degree at least $(1 - \gamma)n$, one can delete $O(n^{2-\mu})$ edges from *G* to make it *r*-colorable. Theorem 1.2 supplies the asymptotically best possible value of $\gamma(K_{r+1}(t))$ for all admissible *r* and *t*.

2 Proofs

In this section we prove our main theorem. First we need the following weaker bound.

Lemma 2.1 G can be made r-partite by deleting $o(n^2)$ edges.

The proof of this statement is a standard application of Szemerédi's Regularity Lemma and we refer the interested reader to the comprehensive survey of Komlós and Simonovits [8], which discusses various results proved by this powerful tool.

We start with a few definitions, most of which follow [8]. Let G = (V, E) be a graph, and let A and B be two disjoint subsets of V(G). If A and B are non-empty, define the *density of edges* between A and B by $d(A, B) = \frac{e(A,B)}{|A||B|}$. For $\gamma > 0$ the pair (A, B) is called γ -regular if for every $X \subset A$ and $Y \subset B$ satisfying $|X| > \gamma |A|$ and $|Y| > \gamma |B|$ we have $|d(X,Y) - d(A,B)| < \gamma$. An equitable partition of a set V is a partition of V into pairwise disjoint classes V_1, \dots, V_k of almost equal size, i.e., $||V_i| - |V_j|| \leq 1$ for all i, j. An equitable partition of the set of vertices V of G into the classes V_1, \dots, V_k is called γ -regular if $|V_i| \leq \gamma |V|$ for every i and all but at most γk^2 of the pairs (V_i, V_j) are

 γ -regular. The above partition is called *totally* γ -regular if all the pairs (V_i, V_j) are γ -regular. The following celebrated lemma was proved by Szemerédi in [10].

Lemma 2.2 For every $\gamma > 0$ there is an integer $M(\gamma)$ such that every graph of order $n > M(\gamma)$ has a γ -regular partition into k classes, where $k \leq M(\gamma)$.

In order to apply the Regularity Lemma we need to show the existence of a complete multipartite subgraph in graphs with a totally γ -regular partition. This is established in the following well-known lemma, see, e.g., [8].

Lemma 2.3 For every $\eta > 0$ and integers r, t there exist $0 < \gamma = \gamma(\eta, r, t)$ and $n_0 = n_0(\eta, r, t)$ with the following property. If G is a graph of order $n > n_0$ and (V_1, \dots, V_{r+1}) is a totally γ -regular partition of vertices of G such that $d(V_i, V_j) \ge \eta$ for all i < j, then G contains a complete (r+1)-partite subgraph $K_{r+1}(t)$ with parts of size t.

Proof of Lemma 2.1. We use the Regularity Lemma given in Lemma 2.2. For every constant $0 < \eta < \epsilon/4$ let $\gamma = \gamma(\eta, r, t) < \eta^2$ be sufficiently small to guarantee that the assertion of Lemma 2.3 holds. Consider a γ -regular partition (U_1, U_2, \ldots, U_k) of G. Let G' be a new graph on the vertices $1 \le i \le k$ in which (i, j) is an edge iff (U_i, U_j) is a γ -regular pair with density at least η . Since G is a $K_{r+1}(t)$ -free graph, by Lemma 2.3, G' contains no clique of size r+1. Call a vertex of G' good if there are at most ηk other vertices j such that the pair (U_i, U_j) is not γ -regular, otherwise call it bad. Since the number of non-regular pairs is at most $\gamma\binom{k}{2} \le \eta^2 k^2/2$ we have that all but at most ηk vertices are good. By definition, the degree of each good vertex in G' is at least $\left(1 - \frac{1}{r-1/3} + \epsilon\right)k - 2\eta k - 1$, since deletion of the edges from non-regular pairs and sparse pairs can decrease the degree by at most ηk each and the deletion of edges inside the sets U_i can decrease it by 1. By deleting all bad vertices we obtain a K_{r+1} -free graph on at most k vertices with minimum degree at least

$$\left(1 - \frac{1}{r - 1/3} + \epsilon\right)k - 3\eta k - 1 \ge \left(1 - \frac{1}{r - 1/3} + \epsilon\right)k - 4\eta k > \left(1 - \frac{1}{r - 1/3}\right)k.$$

Therefore, by the result of Andrásfai, Erdős and Sós [2] mentioned as Theorem 1.1 in the introduction, this graph is *r*-partite. This implies that to make *G r*-partite it suffices to delete at most $\gamma n^2 + \eta n^2 + (\eta n) \cdot n + k \cdot (n/k)^2 \leq 3\eta n^2 + n^2/k = o(n^2)$ edges.

Consider a partition (V_1, \ldots, V_r) of the vertices of G into r parts which maximizes the number of crossing edges between the parts. Then for every $x \in V_i$ and $j \neq i$ the number of neighbors of x in V_i is at most the number of its neighbors in V_j , as otherwise by shifting x to V_j we increase the number of crossing edges. By the above discussion, we have that this partition satisfies that $\sum_i e(V_i) = o(n^2)$. Call a vertex x of G typical if $x \in V_i$ has at most $\epsilon n/2$ neighbors in V_i . Note that there are at most o(n) non-typical vertices in G and, in particular, every part V_i contains a typical vertex. By definition, the degree of this vertex outside V_i is at least $\left(\frac{3r-4}{3r-1} + \epsilon\right)n - \epsilon n/2 = \left(\frac{3r-4}{3r-1} + \epsilon/2\right)n$ and

at most $n - |V_i|$. Therefore, for all $1 \le i \le r$

$$|V_{i}| \leq n - \left(\frac{3r - 4}{3r - 1} + \epsilon/2\right)n = \left(\frac{3}{3r - 1} - \epsilon/2\right)n$$

$$|V_{i}| \geq n - \sum_{j \neq i} |V_{j}| \geq n - (r - 1)\left(\frac{3}{3r - 1} - \epsilon/2\right)n \geq \left(\frac{2}{3r - 1} + \epsilon/2\right)n.$$
(1)

Our next lemma reduces further the possible number of non-typical vertices in G.

Lemma 2.4 Each V_i contains at most O(1) non-typical vertices.

To prove this statement we need the following two claims.

Claim 2.5 Let y_1, \ldots, y_k be an arbitrary set of $k \leq r-1$ typical vertices outside V_j , such that each y_i belongs to a different part of the partition. Then V_j contains at least $\frac{2}{3r-1}n$ vertices adjacent to all vertices y_i .

Proof. It is enough to prove this statement for k = r - 1, since the addition of r - 1 - k typical vertices y_i from the remaining parts can only decrease the size of the common neighborhood. Thus, without loss of generality, we assume that $V_j = V_r$ and $y_i \in V_i$, $1 \le i \le r - 1$. Since every y_i is a typical vertex it has at most $\epsilon n/2$ neighbors in V_i and hence at most $\epsilon n/2 + (n - |V_i| - |V_r|)$ neighbors outside V_r . This implies that the number of neighbors of y_i in V_r is at least

$$d_{V_r}(y_i) \geq d(y_i) - \left((1 + \epsilon/2)n - |V_i| - |V_r|\right)$$

$$\geq \left(\frac{3r - 4}{3r - 1} + \epsilon\right)n - \left((1 + \epsilon/2)n - |V_i| - |V_r|\right)$$

$$\geq |V_r| + |V_i| - \frac{3}{3r - 1}n$$

By definition, there are at most $|V_r| - d_{V_r}(y_i) < \frac{3}{3r-1}n - |V_i|$ non-neighbors of y_i in V_r . Delete from V_r any vertex, which is not a neighbor of either $y_1, y_2, \ldots, y_{r-1}$. The remaining set is adjacent to every vertex y_i and has size at least

$$\begin{aligned} |V_r| - \sum_i \left(|V_r| - d_{V_r}(y_i) \right) &> |V_r| - \sum_{i \le r-1} \left(\frac{3}{3r-1} n - |V_i| \right) \\ &= \sum_{i=1}^r |V_i| - (r-1) \frac{3}{3r-1} n \\ &= n - \frac{3r-3}{3r-1} n = \frac{2}{3r-1} n. \end{aligned}$$

Claim 2.6 For every non-typical vertex $x \in V_i$ there are at least $(\epsilon n/3)^r$ r-cliques y_1, \ldots, y_r such that $y_j \in V_j$ for all $1 \le j \le r$ and all vertices y_j are adjacent to x.

Proof. Without loss of generality let i = 1 and let $x \in V_1$ be a non-typical vertex. Since for every $j \neq 1$ the number of neighbors of x in V_j is at least as large as the number of its neighbors in V_1 we have that

$$d_{V_j}(x) \geq \frac{d_{V_j}(x) + d_{V_1}(x)}{2} \geq \frac{1}{2} \left(\left(\frac{3r - 4}{3r - 1} + \epsilon \right) n - (r - 2) \max_i |V_i| \right) \\ > \frac{1}{2} \left(\left(\frac{3r - 4}{3r - 1} + \epsilon \right) n - (r - 2) \frac{3}{3r - 1} n \right) \\ = \left(\frac{1}{3r - 1} + \epsilon/2 \right) n.$$

To construct the r-cliques satisfying the assertion of the claim, first observe, that since x is nontypical it has at least $\epsilon n/2$ neighbors in V_1 and at least $\epsilon n/2 - o(n) > \epsilon n/3$ of these neighbors are typical. Choose y_1 to be an arbitrary typical neighbor of x in V_1 and continue. Suppose at step $1 \le k \le r - 1$ we already have a k-clique y_1, \ldots, y_k such that $y_i \in V_i$ for all i and all vertices y_i are adjacent to x. Let U_{k+1} be the set of common neighbors of y_1, \ldots, y_k in V_{k+1} . Then, by the previous claim we have that $|U_{k+1}| \ge \frac{2}{3r-1}n$. Therefore, there are at least

$$d_{V_{k+1}}(x) + |U_{k+1}| - |V_{k+1}| \ge \left(\frac{1}{3r-1} + \epsilon/2\right)n + \frac{2}{3r-1}n - \frac{3}{3r-1}n = \epsilon n/2$$

common neighbors of the vertices y_i and x in V_{k+1} . Moreover, at least $\epsilon n/2 - o(n) > \epsilon n/3$ of them are typical and we can choose y_{k+1} to be any of them. Therefore at the end of the process we indeed obtained at least $(\epsilon n/3)^r$ r-cliques with the desired property.

Proof of Lemma 2.4. Suppose that the number of non-typical vertices in V_i is at least $t(3/\epsilon)^r$. Consider an auxiliary bipartite graph F with parts W_1, W_2 , where W_1 is the set of some $s = t(3/\epsilon)^r$ non-typical vertices in V_i, W_2 is the family of all n^r r-element subsets of V(G) such that $x \in W_1$ is adjacent to the subset Y from W_2 iff Y is an r-clique in G with exactly one vertex in every V_j and all vertices of Y are adjacent to x. By the previous claim, F has at least $e(F) \ge s(\epsilon n/3)^r = tn^r$ edges and therefore the average degree of a vertex in W_2 is at least $d_{av} = e(F)/|W_2| = e(F)/n^r \ge t$. By the convexity of the function $f(z) = {z \choose t}$, we can find t vertices x_1, \ldots, x_t in W_1 such that the number of their common neighbors in W_2 is at least

$$m \ge \frac{\sum_{Y \in W_2} \binom{d(Y)}{t}}{\binom{s}{t}} \ge n^r \frac{\binom{d_{av}}{t}}{s^t} = \Omega(n^r).$$

Thus we proved that G contains t vertices $X = \{x_1, \ldots, x_t\}$ and a family of r-cliques C of size $m = \Omega(n^r)$ such that every clique in C is adjacent to all vertices in X. Next we need the following well-known lemma which appears first implicitly in Erdős [3] (see also, e.g., [7]). It states that if an r-uniform hypergraph on n vertices has $m = \Omega(n^r)$ edges, then it contains a complete r-partite r-uniform hypergraph with parts of size t. By applying this statement to C, we conclude that there are r disjoint set of vertices A_1, \ldots, A_r each of size t such that every r-tuple a_1, \ldots, a_r with $a_i \in A_i$ forms a clique which is adjacent to all vertices in X. The restriction of G to X, A_1, \ldots, A_r forms a complete (r + 1)-partite graph with parts of size t each. This contradiction shows that there are less than $t(3/\epsilon)^r = O(1)$ non-typical vertices in V_i and completes the proof of the lemma.

Lemma 2.7 Let s be a fixed integer and let U_1, \ldots, U_k be subsets of typical vertices of sizes $|U_1| = 2s$ and $|U_2| = \ldots = |U_k| = s$, which belong to k different parts of the partition of G. Without loss of generality, suppose that $U_i \subset V_i$ and let $U = \bigcup_{i=1}^k U_i$ and $W = \bigcup_{j>k} V_j$. Then G contains a complete bipartite graph with parts $U' \subset U$ and $W' \subset W$ such that $|U'| \ge \left(k + \frac{3(r-k)-2}{3(r-k)}\right)s$ and $|W'| = \Omega(n)$.

Proof. Since every typical vertex $x \in V_i$ has $d_{V_i}(x) \leq \epsilon n/2$, we obtain that the number of its neighbors in W is at least

$$\begin{aligned} d_W(x) &\geq d(v) - d_{V_i}(x) - \sum_{j \leq k, j \neq i} |V_j| \geq d(v) - \epsilon n/2 + |V_i| - \sum_{j \leq k} |V_j| \\ &\geq \left(\frac{3r - 4}{3r - 1} + \epsilon\right) n - \epsilon n/2 + |V_i| - \left(n - |W|\right) \\ &\geq |W| + |V_i| - \frac{3}{3r - 1}n. \end{aligned}$$

Note that $|W| + \sum_{i=1}^{k} |V_i| = n$ and also by (1) we have $|W| = \sum_{j>k} |V_j| \leq (r-k) \frac{3}{3r-1}n$ and $|V_1| \geq \left(\frac{2}{3r-1} + \epsilon/2\right)n$. All these facts together give the following estimate on the number of edges between U and W

$$\begin{split} e(U,W) &= \sum_{x \in U} d_W(x) = \sum_{i=1}^k \sum_{x \in U_i} d_W(x) \ge \sum_{i=1}^k \left(|W| + |V_i| - \frac{3}{3r - 1}n \right) |U_i| \\ &= \left((k+1)|W| + |V_1| + \sum_{i=1}^k |V_i| - (k+1)\frac{3}{3r - 1}n \right) s \\ &\ge \left(k|W| + \left(\frac{2}{3r - 1} + \epsilon/2\right)n + \left(|W| + \sum_{i=1}^k |V_i|\right) - \frac{3k + 3}{3r - 1}n \right) s \\ &= \left(k|W| + \epsilon n/2 + \frac{3(r - k) - 2}{3r - 1}n \right) s \\ &\ge \left(k + \frac{3(r - k) - 2}{3(r - k)} \right) |W|s + \Omega(n). \end{split}$$

Since U has constant size and $d_U(y) \leq |U|$ for all $y \in W$, we conclude that there are at least

$$\frac{e(U,W) - \left(k + \frac{3(r-k)-2}{3(r-k)}\right)s \cdot |W|}{|U|} = \Omega(n)$$

vertices in W whose degree in U is larger than $\left(k + \frac{3(r-k)-2}{3(r-k)}\right)s$. To complete the proof, note that the number of subsets of U is also bounded by a constant and therefore at least $\Omega(n)$ such vertices will have the same set of neighbors U' in U.

Finally we need the following simple estimate.

Lemma 2.8 For all integers $r \ge 2$ we have the following inequality

$$\frac{1}{3} \cdot \frac{4}{6} \cdots \frac{3r-5}{3r-3} > \frac{1}{4r^{2/3}}$$

Proof. Let $x = \prod_{j=2}^{r-1} \frac{3j-2}{3j}$, $y = \prod_{j=2}^{r-1} \frac{3j-3}{3j-1}$ and let $z = \prod_{j=2}^{r-1} \frac{3j-4}{3j-2}$. Since $\frac{3j-2}{3j} > \frac{3j-3}{3j-1} > \frac{3j-4}{3j-2}$ and all three products have the same number of terms we have that x > y > z. Therefore

$$x^{3} > zyx = \frac{2}{4} \cdot \frac{3}{5} \cdot \frac{4}{6} \cdots \frac{3r-7}{3r-5} \cdot \frac{3r-6}{3r-4} \cdot \frac{3r-5}{3r-3} = \frac{2 \cdot 3}{(3r-4)(3r-3)} > \frac{2}{3r^{2}}.$$

This implies the assertion of the lemma, since $\frac{1}{3} \cdot \frac{4}{6} \cdots \frac{3r-5}{3r-3} = x/3 > \frac{1}{3} \left(\frac{2}{3r^2}\right)^{1/3} > \frac{1}{4r^{2/3}}$.

Having finished all the necessary preparations, we are now ready to complete the proof of Theorem 1.2. Without loss of generality, suppose that V_1 spans at least $2n^{2-1/(4r^{2/3}t)}$ edges. By Lemma 2.4, only at most O(n) of these edges are incident to non-typical vertices. Therefore the set of typical vertices in V_1 spans at least $n^{2-1/(4r^{2/3}t)}$ edges. By the well known result of Kövari, Sós and Turán [9] about the Turán numbers of bipartite graphs, V_1 contains a complete bipartite graph H_1 with parts (A, B) of size $|A| = |B| = s_1 = 4r^{2/3}t$ all of whose vertices are typical. If there are at least $s_2 = \frac{3r-5}{3r-3}s_1$ typical vertices in one of the remaining parts V_2, \ldots, V_r which are adjacent to two subsets $A' \subset A, B' \subset B$ of size s_2 then we add them to (A', B') to form a complete 3-partite graph H_2 with parts of sizes s_2 and continue.

Suppose that at step $1 \leq k \leq r-1$ we have a complete k + 1-partite graph H_k with parts (A, B, U_2, \ldots, U_k) of size s_k each, all of whose vertices are typical and $A, B \subset V_1$. Without loss of generality we can assume that $U_i \subset V_i$ for all $2 \leq i \leq k$. Put $U_1 = A \cup B$ and let $U = \bigcup_{i=1}^k U_k$ and $W = \bigcup_{j>k} V_j$. Then, by Lemma 2.7, G contains a complete bipartite subgraph with parts (U', W') such that $U' \subset U, |U| \geq \left(k + \frac{3(r-k)-2}{3(r-k)}\right) s_k$ and $W' \subset W, |W| \geq \Omega(n)$. Note that, since all parts of H_k have size s_k , we have that all intersections $U' \cap A, U' \cap B$ or $U' \cap U_i, 2 \leq i \leq k$ have size at least $|U'| - ks_k \geq \frac{3(r-k)-2}{3(r-k)}s_k = s_{k+1}$. Also, since $|W'| \geq \Omega(n)$ and there are at most O(1) non-typical vertices, there exists an index j > k such that $W' \cap V_j$ contains at least s_{k+1} typical vertices. Let U'_{k+1} be some set of s_{k+1} typical vertices from $W' \cap V_j$. Choose subsets $A' \subset U' \cap A, B' \subset U' \cap B$ and $U'_i \subset U' \cap U_i, i \leq k$ all of size s_{k+1} . Then $(A, B, U_2, \ldots, U_{k+1})$ form a complete k + 1-partite graph H_{k+1} with parts of size s_{k+1} all of whose vertices are typical.

Continuing the above process r - 1 steps we obtain a complete (r + 1)-partite graph with parts of sizes

$$s_r = \frac{1}{3}s_{r-1} = \frac{1}{3} \cdot \frac{4}{6}s_{r-2} = \dots = \frac{1}{3} \cdot \frac{4}{6} \cdots \frac{3r-5}{3r-3}s_1 > \frac{s_1}{4r^{2/3}} = t.$$

This contradicts our assumption that G is $K_{r+1}(t)$ -free and shows that every V_i spans at most $O(n^{2-1/(4r^{2/3}t)})$ edges. Therefore the number of edges we need to delete to make G r-partite is bounded by $\sum_i e(V_i) \leq O(n^{2-1/(4r^{2/3}t)})$. This completes the proof of Theorem 1.2.

Acknowledgment We would like to thank Asaf Shapira for helpful discussions.

References

 N. Alon, A. Shapira and B. Sudakov, Additive approximation for Edge-deletion problems, Proc. 46th IEEE FOCS, IEEE (2005), to appear.

- [2] B. Andrásfai, P. Erdős and V. Sós, On the connection between chromatic number, maximal clique and minimal degree of a graph, *Discrete Math.* 8 (1974), 205–218.
- [3] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183–190.
- [4] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar 1 (1966), 51–57.
- [5] P. Erdős and M. Simonovits, On a valence problem in extremal graph theory, *Discrete Math.* 5 (1973), 323–334.
- [6] P. Erdős and A. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.
- [7] Z. Füredi, Turán type problems, in: Surveys in combinatorics, London Math. Soc. Lecture Note Ser. 166, Cambridge Univ. Press, Cambridge, 1991, 253–300
- [8] J. Komlós and M. Simonovits, Szemerédi's Regularity Lemma and its applications in graph theory, in: *Combinatorics, Paul Erdős is eighty*, Vol. 2, János Bolyai Math. Soc., Budapest, 1996, 295–352.
- [9] T. Kövari, V.T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloquium Math. 3 (1954), 50–57.
- [10] E. Szemerédi, Regular partitions of graphs, in: Proc. Colloque Inter. CNRS 260, CNRS, Paris, 1978, 399–401.
- [11] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz Lapok 48 (1941), 436–452.