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Abstract

We prove the following extension of an old result of Andrásfai, Erdős and Sós. For every fixed
graph H with chromatic number r + 1 ≥ 3, and for every fixed ε > 0, there are n0 = n0(H, ε) and
ρ = ρ(H) > 0, such that the following holds. Let G be an H-free graph on n > n0 vertices with
minimum degree at least

(
1− 1

r−1/3 + ε
)

n. Then one can delete at most n2−ρ edges to make G

r-colorable.

1 Introduction

Turán’s classical Theorem [11] determines the maximum number of edges in a Kr+1-free graph on n

vertices. It easily implies that for r ≥ 2, if a Kr+1-free graph on n vertices has minimum degree at
least (1− 1

r )n, then it is r-colorable (in fact, it is a complete r-partite graph with equal color classes).
The following stronger result has been proved by Andrásfai, Erdős and Sós [2].

Theorem 1.1 ([2]) If G is a Kr+1-free graph of order n with minimum degree δ(G) >
(
1− 1

r−1/3

)
n

then G is r-colorable.

The following construction shows that this result is tight. Let G be a graph whose vertex set is the
disjoint union of r + 3 sets U1, U2, . . . , U5 and V1, V2 . . . , Vr−2, in which |Ui| = 1

3r−1n for all i and
|Vj | = 3

3r−1n for all j. Each vertex of Vj is adjacent to all vertices but the other members of Vj and
each vertex of Ui is adjacent to all vertices of U(i+1) mod 5, U(i−1) mod 5 and ∪jVj . All vertices in this

graph have degree 3r−4
3r−1n =

(
1− 1

r−1/3

)
n and it is easy to see that G contains no Kr+1, and is not

r-colorable.
Turán’s result has been extended by Erdős-Stone [6] and by Erdős-Simonovits [4] showing that for

r ≥ 2, for any fixed graph H of chromatic number χ(H) = r + 1 and for any fixed ε > 0, any H-free
graph on n vertices cannot have more than (1 − 1

r + ε)
(
n
2

)
edges provided n is sufficiently large as a

function of H and ε. Moreover, it is known that if an H-free graph on a large number n of vertices
has at least (1− 1

r )
(
n
2

)
edges, then one can delete o(n2) of its edges to make it r-colorable.
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It therefore seems natural to try to extend Theorem 1.1 from complete graphs Kr+1 to general
graphs H. Such an extension for critical graphs, i.e., H which have an edge whose removal decreases
its chromatic number, has been proved in [5]. In the present short paper we handle the general case.
Our main results are the following. Let Kr+1(t) be the complete (r + 1)-partite graph with t vertices
in each vertex class.

Theorem 1.2 Let r ≥ 2, t ≥ 1 be integers and let ε > 0. Then there exist n0 = n0(r, t, ε) such that if
G is a Kr+1(t)-free graph of order n ≥ n0 with minimum degree δ(G) ≥

(
1− 1

r−1/3 + ε
)

n, then one

can delete at most O
(
n2−1/(4r2/3t)

)
edges to make G r-colorable.

Corollary 1.3 Let H be a fixed graph on h vertices with chromatic number r+1 ≥ 3 and let G be an
H-free graph of sufficiently large order n with minimum degree δ(G) ≥

(
1− 1

r−1/3 + o(1)
)

n. Then

one can delete at most O
(
n2−1/(4r2/3h)

)
edges to make G r-colorable.

As shown by the example above, the fraction 1 − 1
r−1/3 = 3r−4

3r−1 is tight in general. It is also not
difficult to see that indeed in general some O(n2−ρ) edges have to be deleted to make the graph G

r-colorable, though the best possible value of ρ = ρ(Kr+1(t)) may well be slightly better than the one
we obtain. The problem of determining the behavior of the best possible value of ρ, as well as that
of deciding if the o(1)n-term can be replaced by O(1), remain open.

A weaker version of Corollary 1.3 is proved in [1], where it is applied to prove the NP-hardness
of various edge-deletion problems. This version asserts that there are some γ = γ(H) > 0 and
µ = µ(H) > 0 so that the following holds. For any H-free graph G on n vertices with minimum
degree at least (1 − γ)n, one can delete O(n2−µ) edges from G to make it r-colorable. Theorem 1.2
supplies the asymptotically best possible value of γ(Kr+1(t)) for all admissible r and t.

2 Proofs

In this section we prove our main theorem. First we need the following weaker bound.

Lemma 2.1 G can be made r-partite by deleting o(n2) edges.

The proof of this statement is a standard application of Szemerédi’s Regularity Lemma and we refer
the interested reader to the comprehensive survey of Komlós and Simonovits [8], which discusses
various results proved by this powerful tool.

We start with a few definitions, most of which follow [8]. Let G = (V,E) be a graph, and let
A and B be two disjoint subsets of V (G). If A and B are non-empty, define the density of edges
between A and B by d(A,B) = e(A,B)

|A||B| . For γ > 0 the pair (A,B) is called γ-regular if for every X ⊂ A

and Y ⊂ B satisfying |X| > γ|A| and |Y | > γ|B| we have |d(X, Y ) − d(A,B)| < γ. An equitable
partition of a set V is a partition of V into pairwise disjoint classes V1, · · · , Vk of almost equal size,
i.e.,

∣∣|Vi| − |Vj |
∣∣ ≤ 1 for all i, j. An equitable partition of the set of vertices V of G into the classes

V1, · · · , Vk is called γ-regular if |Vi| ≤ γ|V | for every i and all but at most γk2 of the pairs (Vi, Vj) are

2



γ-regular. The above partition is called totally γ-regular if all the pairs (Vi, Vj) are γ-regular. The
following celebrated lemma was proved by Szemerédi in [10].

Lemma 2.2 For every γ > 0 there is an integer M(γ) such that every graph of order n > M(γ) has
a γ-regular partition into k classes, where k ≤ M(γ).

In order to apply the Regularity Lemma we need to show the existence of a complete multipartite
subgraph in graphs with a totally γ-regular partition. This is established in the following well-known
lemma, see, e.g., [8].

Lemma 2.3 For every η > 0 and integers r, t there exist 0 < γ = γ(η, r, t) and n0 = n0(η, r, t)
with the following property. If G is a graph of order n > n0 and (V1, · · · , Vr+1) is a totally γ-regular
partition of vertices of G such that d(Vi, Vj) ≥ η for all i < j, then G contains a complete (r+1)-partite
subgraph Kr+1(t) with parts of size t.

Proof of Lemma 2.1. We use the Regularity Lemma given in Lemma 2.2. For every constant
0 < η < ε/4 let γ = γ(η, r, t) < η2 be sufficiently small to guarantee that the assertion of Lemma
2.3 holds. Consider a γ-regular partition (U1, U2, . . . Uk) of G. Let G′ be a new graph on the vertices
1 ≤ i ≤ k in which (i, j) is an edge iff (Ui, Uj) is a γ-regular pair with density at least η. Since G is a
Kr+1(t)-free graph, by Lemma 2.3, G′ contains no clique of size r+1. Call a vertex of G′ good if there
are at most ηk other vertices j such that the pair (Ui, Uj) is not γ-regular, otherwise call it bad. Since
the number of non-regular pairs is at most γ

(
k
2

)
≤ η2k2/2 we have that all but at most ηk vertices

are good. By definition, the degree of each good vertex in G′ is at least
(
1− 1

r−1/3 + ε
)

k − 2ηk − 1,
since deletion of the edges from non-regular pairs and sparse pairs can decrease the degree by at most
ηk each and the deletion of edges inside the sets Ui can decrease it by 1. By deleting all bad vertices
we obtain a Kr+1-free graph on at most k vertices with minimum degree at least(

1− 1
r − 1/3

+ ε

)
k − 3ηk − 1 ≥

(
1− 1

r − 1/3
+ ε

)
k − 4ηk >

(
1− 1

r − 1/3

)
k.

Therefore, by the result of Andrásfai, Erdős and Sós [2] mentioned as Theorem 1.1 in the introduction,
this graph is r-partite. This implies that to make G r-partite it suffices to delete at most γn2 +ηn2 +
(ηn) · n + k · (n/k)2 ≤ 3ηn2 + n2/k = o(n2) edges. 2

Consider a partition (V1, . . . , Vr) of the vertices of G into r parts which maximizes the number of
crossing edges between the parts. Then for every x ∈ Vi and j 6= i the number of neighbors of x in Vi

is at most the number of its neighbors in Vj , as otherwise by shifting x to Vj we increase the number
of crossing edges. By the above discussion, we have that this partition satisfies that

∑
i e(Vi) = o(n2).

Call a vertex x of G typical if x ∈ Vi has at most εn/2 neighbors in Vi. Note that there are at
most o(n) non-typical vertices in G and, in particular, every part Vi contains a typical vertex. By
definition, the degree of this vertex outside Vi is at least

(
3r−4
3r−1 + ε

)
n − εn/2 =

(
3r−4
3r−1 + ε/2

)
n and
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at most n− |Vi|. Therefore, for all 1 ≤ i ≤ r

|Vi| ≤ n−
(

3r − 4
3r − 1

+ ε/2
)

n =
(

3
3r − 1

− ε/2
)

n (1)

|Vi| ≥ n−
∑
j 6=i

|Vj | ≥ n− (r − 1)
(

3
3r − 1

− ε/2
)

n ≥
(

2
3r − 1

+ ε/2
)

n.

Our next lemma reduces further the possible number of non-typical vertices in G.

Lemma 2.4 Each Vi contains at most O(1) non-typical vertices.

To prove this statement we need the following two claims.

Claim 2.5 Let y1, . . . , yk be an arbitrary set of k ≤ r − 1 typical vertices outside Vj, such that each
yi belongs to a different part of the partition. Then Vj contains at least 2

3r−1n vertices adjacent to all
vertices yi.

Proof. It is enough to prove this statement for k = r − 1, since the addition of r − 1 − k typical
vertices yi from the remaining parts can only decrease the size of the common neighborhood. Thus,
without loss of generality, we assume that Vj = Vr and yi ∈ Vi, 1 ≤ i ≤ r − 1. Since every yi is a
typical vertex it has at most εn/2 neighbors in Vi and hence at most εn/2+(n−|Vi|− |Vr|) neighbors
outside Vr. This implies that the number of neighbors of yi in Vr is at least

dVr(yi) ≥ d(yi)−
(
(1 + ε/2)n− |Vi| − |Vr|

)
≥

(
3r − 4
3r − 1

+ ε

)
n−

(
(1 + ε/2)n− |Vi| − |Vr|

)
> |Vr|+ |Vi| −

3
3r − 1

n

By definition, there are at most |Vr| − dVr(yi) < 3
3r−1n − |Vi| non-neighbors of yi in Vr. Delete

from Vr any vertex, which is not a neighbor of either y1, y2, . . . , yr−1. The remaining set is adjacent
to every vertex yi and has size at least

|Vr| −
∑

i

(
|Vr| − dVr(yi)

)
> |Vr| −

∑
i≤r−1

(
3

3r − 1
n− |Vi|

)

=
r∑

i=1

|Vi| − (r − 1)
3

3r − 1
n

= n− 3r − 3
3r − 1

n =
2

3r − 1
n. 2

Claim 2.6 For every non-typical vertex x ∈ Vi there are at least
(
εn/3

)r
r-cliques y1, . . . , yr such

that yj ∈ Vj for all 1 ≤ j ≤ r and all vertices yj are adjacent to x.
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Proof. Without loss of generality let i = 1 and let x ∈ V1 be a non-typical vertex. Since for every
j 6= 1 the number of neighbors of x in Vj is at least as large as the number of its neighbors in V1 we
have that

dVj (x) ≥
dVj (x) + dV1(x)

2
≥ 1

2

((3r − 4
3r − 1

+ ε
)
n− (r − 2) max

i
|Vi|
)

>
1
2

((3r − 4
3r − 1

+ ε
)
n− (r − 2)

3
3r − 1

n

)
=

(
1

3r − 1
+ ε/2

)
n.

To construct the r-cliques satisfying the assertion of the claim, first observe, that since x is non-
typical it has at least εn/2 neighbors in V1 and at least εn/2 − o(n) > εn/3 of these neighbors are
typical. Choose y1 to be an arbitrary typical neighbor of x in V1 and continue. Suppose at step
1 ≤ k ≤ r − 1 we already have a k-clique y1, . . . , yk such that yi ∈ Vi for all i and all vertices yi are
adjacent to x. Let Uk+1 be the set of common neighbors of y1, . . . , yk in Vk+1. Then, by the previous
claim we have that |Uk+1| ≥ 2

3r−1n. Therefore, there are at least

dVk+1
(x) + |Uk+1| − |Vk+1| ≥

(
1

3r − 1
+ ε/2

)
n +

2
3r − 1

n− 3
3r − 1

n = εn/2

common neighbors of the vertices yi and x in Vk+1. Moreover, at least εn/2 − o(n) > εn/3 of them
are typical and we can choose yk+1 to be any of them. Therefore at the end of the process we indeed
obtained at least

(
εn/3

)r
r-cliques with the desired property. 2

Proof of Lemma 2.4. Suppose that the number of non-typical vertices in Vi is at least t
(
3/ε
)r.

Consider an auxiliary bipartite graph F with parts W1,W2, where W1 is the set of some s = t
(
3/ε
)r

non-typical vertices in Vi, W2 is the family of all nr r-element subsets of V (G) such that x ∈ W1 is
adjacent to the subset Y from W2 iff Y is an r-clique in G with exactly one vertex in every Vj and all
vertices of Y are adjacent to x. By the previous claim, F has at least e(F ) ≥ s

(
εn/3

)r = tnr edges
and therefore the average degree of a vertex in W2 is at least dav = e(F )/|W2| = e(F )/nr ≥ t. By the
convexity of the function f(z) =

(
z
t

)
, we can find t vertices x1, . . . , xt in W1 such that the number of

their common neighbors in W2 is at least

m ≥
∑

Y ∈W2

(
d(Y )

t

)(
s
t

) ≥ nr

(
dav

t

)
st

= Ω
(
nr
)
.

Thus we proved that G contains t vertices X = {x1, . . . , xt} and a family of r-cliques C of size
m = Ω

(
nr
)

such that every clique in C is adjacent to all vertices in X. Next we need the following
well-known lemma which appears first implicitly in Erdős [3] (see also, e.g., [7]). It states that if
an r-uniform hypergraph on n vertices has m = Ω

(
nr
)

edges, then it contains a complete r-partite
r-uniform hypergraph with parts of size t. By applying this statement to C, we conclude that there
are r disjoint set of vertices A1, . . . , Ar each of size t such that every r-tuple a1, . . . , ar with ai ∈ Ai

forms a clique which is adjacent to all vertices in X. The restriction of G to X, A1, . . . , Ar forms a
complete (r + 1)-partite graph with parts of size t each. This contradiction shows that there are less
than t

(
3/ε
)r = O(1) non-typical vertices in Vi and completes the proof of the lemma. 2
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Lemma 2.7 Let s be a fixed integer and let U1, . . . , Uk be subsets of typical vertices of sizes |U1| = 2s

and |U2| = . . . = |Uk| = s, which belong to k different parts of the partition of G. Without loss of
generality, suppose that Ui ⊂ Vi and let U = ∪k

i=1Ui and W = ∪j>kVj. Then G contains a complete

bipartite graph with parts U ′ ⊂ U and W ′ ⊂ W such that |U ′| ≥
(
k + 3(r−k)−2

3(r−k)

)
s and |W ′| = Ω(n).

Proof. Since every typical vertex x ∈ Vi has dVi(x) ≤ εn/2, we obtain that the number of its
neighbors in W is at least

dW (x) ≥ d(v)− dVi(x)−
∑

j≤k,j 6=i

|Vj | ≥ d(v)− εn/2 + |Vi| −
∑
j≤k

|Vj |

≥
(

3r − 4
3r − 1

+ ε

)
n− εn/2 + |Vi| −

(
n− |W |

)
≥ |W |+ |Vi| −

3
3r − 1

n.

Note that |W | +
∑k

i=1 |Vi| = n and also by (1) we have |W | =
∑

j>k |Vj | ≤ (r − k) 3
3r−1n and

|V1| ≥
(

2
3r−1 + ε/2

)
n. All these facts together give the following estimate on the number of edges

between U and W

e(U,W ) =
∑
x∈U

dW (x) =
k∑

i=1

∑
x∈Ui

dW (x) ≥
k∑

i=1

(
|W |+ |Vi| −

3
3r − 1

n

)
|Ui|

=

(
(k + 1)|W |+ |V1|+

k∑
i=1

|Vi| − (k + 1)
3

3r − 1
n

)
s

≥

(
k|W |+

( 2
3r − 1

+ ε/2
)
n +

(
|W |+

k∑
i=1

|Vi|
)
− 3k + 3

3r − 1
n

)
s

=
(

k|W |+ εn/2 +
3(r − k)− 2

3r − 1
n

)
s

≥
(

k +
3(r − k)− 2

3(r − k)

)
|W |s + Ω(n).

Since U has constant size and dU (y) ≤ |U | for all y ∈ W , we conclude that there are at least

e(U,W )−
(
k + 3(r−k)−2

3(r−k)

)
s · |W |

|U |
= Ω(n)

vertices in W whose degree in U is larger than
(
k + 3(r−k)−2

3(r−k)

)
s. To complete the proof, note that

the number of subsets of U is also bounded by a constant and therefore at least Ω(n) such vertices
will have the same set of neighbors U ′ in U . 2

Finally we need the following simple estimate.

Lemma 2.8 For all integers r ≥ 2 we have the following inequality

1
3
· 4
6
· · · 3r − 5

3r − 3
>

1
4r2/3

.
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Proof. Let x =
∏r−1

j=2
3j−2
3j , y =

∏r−1
j=2

3j−3
3j−1 and let z =

∏r−1
j=2

3j−4
3j−2 . Since 3j−2

3j > 3j−3
3j−1 > 3j−4

3j−2 and all
three products have the same number of terms we have that x > y > z. Therefore

x3 > zyx =
2
4
· 3
5
· 4
6
· · · 3r − 7

3r − 5
· 3r − 6
3r − 4

· 3r − 5
3r − 3

=
2 · 3

(3r − 4)(3r − 3)
>

2
3r2

.

This implies the assertion of the lemma, since 1
3 ·

4
6 · · ·

3r−5
3r−3 = x/3 > 1

3

(
2

3r2

)1/3
> 1

4r2/3 . 2

Having finished all the necessary preparations, we are now ready to complete the proof of Theorem
1.2. Without loss of generality, suppose that V1 spans at least 2n2−1/(4r2/3t) edges. By Lemma 2.4,
only at most O(n) of these edges are incident to non-typical vertices. Therefore the set of typical
vertices in V1 spans at least n2−1/(4r2/3t) edges. By the well known result of Kövari, Sós and Turán
[9] about the Turán numbers of bipartite graphs, V1 contains a complete bipartite graph H1 with
parts (A,B) of size |A| = |B| = s1 = 4r2/3t all of whose vertices are typical. If there are at least
s2 = 3r−5

3r−3s1 typical vertices in one of the remaining parts V2, . . . , Vr which are adjacent to two subsets
A′ ⊂ A,B′ ⊂ B of size s2 then we add them to (A′, B′) to form a complete 3-partite graph H2 with
parts of sizes s2 and continue.

Suppose that at step 1 ≤ k ≤ r − 1 we have a complete k + 1-partite graph Hk with parts
(A,B, U2, . . . , Uk) of size sk each, all of whose vertices are typical and A,B ⊂ V1. Without loss of
generality we can assume that Ui ⊂ Vi for all 2 ≤ i ≤ k. Put U1 = A ∪ B and let U = ∪k

i=1Uk and
W = ∪j>kVj . Then, by Lemma 2.7, G contains a complete bipartite subgraph with parts (U ′,W ′)

such that U ′ ⊂ U, |U | ≥
(
k + 3(r−k)−2

3(r−k)

)
sk and W ′ ⊂ W, |W | ≥ Ω(n). Note that, since all parts of

Hk have size sk, we have that all intersections U ′ ∩A,U ′ ∩B or U ′ ∩ Ui, 2 ≤ i ≤ k have size at least
|U ′| − ksk ≥ 3(r−k)−2

3(r−k) sk = sk+1. Also, since |W ′| ≥ Ω(n) and there are at most O(1) non-typical
vertices, there exists an index j > k such that W ′ ∩ Vj contains at least sk+1 typical vertices. Let
U ′

k+1 be some set of sk+1 typical vertices from W ′ ∩Vj . Choose subsets A′ ⊂ U ′ ∩A,B′ ⊂ U ′ ∩B and
U ′

i ⊂ U ′ ∩ Ui, i ≤ k all of size sk+1. Then (A,B, U2, . . . , Uk+1) form a complete k + 1-partite graph
Hk+1 with parts of size sk+1 all of whose vertices are typical.

Continuing the above process r − 1 steps we obtain a complete (r + 1)-partite graph with parts
of sizes

sr =
1
3
sr−1 =

1
3
· 4
6
sr−2 = . . . =

1
3
· 4
6
· · · 3r − 5

3r − 3
s1 >

s1

4r2/3
= t.

This contradicts our assumption that G is Kr+1(t)-free and shows that every Vi spans at most
O
(
n2−1/(4r2/3t)

)
edges. Therefore the number of edges we need to delete to make G r-partite is

bounded by
∑

i e(Vi) ≤ O
(
n2−1/(4r2/3t)

)
. This completes the proof of Theorem 1.2. 2
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[8] J. Komlós and M. Simonovits, Szemerédi’s Regularity Lemma and its applications in graph
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