Algorithmic Aspects of Acyclic Edge Colorings

Noga Alon * Ayal Zaks ${ }^{\dagger}$

Abstract

A proper coloring of the edges of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by $a^{\prime}(G)$, is the least number of colors in an acyclic edge coloring of G. For certain graphs $G, a^{\prime}(G) \geq \Delta(G)+2$ where $\Delta(G)$ is the maximum degree in G. It is known that $a^{\prime}(G) \leq \Delta+2$ for almost all Δ-regular graphs, including all Δ-regular graphs whose girth is at least $c \Delta \log \Delta$. We prove that determining the acyclic edge chromatic number of an arbitrary graph is an NP-complete problem. For graphs G with sufficiently large girth in terms of $\Delta(G)$, we present deterministic polynomial time algorithms that color the edges of G acyclically using at most $\Delta(G)+2$ colors.

1 Introduction

All graphs considered here are finite, undirected and simple. A coloring of the edges of a graph is proper if no pair of incident edges are colored with the same color. A proper coloring of the edges of a graph G is called acyclic if there is no 2 -colored cycle in G. The acyclic edge chromatic number of G, denoted by $a^{\prime}(G)$, is the least number of colors in an acyclic edge coloring of G. The maximum degree in G is denoted by $\Delta(G)$.

It is known that $a^{\prime}(G) \leq 16 \Delta(G)$ for any graph G, and that an acyclic edge coloring of G using at most $20 \Delta(G)$ can be found efficiently (see $[12],[3])$. For certain graphs $G, a^{\prime}(G) \geq \Delta(G)+2$. It is conjectured that $a^{\prime}(G) \leq \Delta(G)+2$ for all graphs [4]. This conjecture was proven true for almost all Δ-regular graphs, and all Δ-regular graphs G whose girth (length of shortest cycle) is at least $c \Delta(G) \log \Delta(G)$ for some constant c.

It is easy to see that $a^{\prime}(G) \leq 2$ iff G is a union of vertex disjoint paths. However,
Theorem 1 It is NP-complete to determine if $a^{\prime}(G) \leq 3$ for an arbitrary graph G.

[^0]Figure 1: Graph F with an acyclic 3 coloring f

For certain graphs G which are known to have a $\Delta(G)+2$ acyclic coloring, such a coloring can be constructed efficiently. Let $g(G)$ denote the girth of graph G.

Theorem 2 The edges of a graph G of maximum degree d can be colored acyclically in polynomial time using $d+2$ colors, provided that $g(G)>c d^{3}$ where c is an appropriate absolute constant.

In the next sections we prove theorem 1 and theorem 2.

2 Proof of Theorem 1

The following lemma states two useful properties of the graph F shown in figure 1.
Lemma 3 Let F be the graph presented in figure 1, then

1. The edges of F can be colored acyclically using 3 colors, with no bichromatic path connecting v_{1} and v_{14}.
2. Any acyclic coloring of the edges of F using 3 colors, colors e_{1} and e_{2} with the same color.

Proof of Lemma 3. A coloring f proving the first property appears in figure 1, where the 3 colors are represented by digits $0,1,2$ displayed on the edges. To prove the second property, suppose h : $E(F) \rightarrow\{0,1,2\}$ is an acyclic coloring, having w.l.o.g $h\left(v_{1}, v_{2}\right)=0, h\left(v_{2}, v_{3}\right)=1$, and $h\left(v_{2}, v_{4}\right)=2$ (similar to f in figure 1). Now we claim that $h\left(v_{3}, v_{5}\right)=0$. Indeed, if $h\left(v_{3}, v_{5}\right) \neq 0$, then $h\left(v_{3}, v_{5}\right)=2$, $h\left(v_{4}, v_{5}\right)=0$ (to avoid a bichromatic cycle on $\left.v_{2}, v_{3}, v_{4}, v_{5}\right), h\left(v_{5}, v_{7}\right)=1$ and $h\left(v_{4}, v_{6}\right)=1$, leaving no possible color for edge $\left(v_{6}, v_{7}\right)$ (see figure 2). Therefore, $h\left(v_{3}, v_{5}\right)=0$, which implies that $h=f$ for the following edges: $\left(v_{4}, v_{5}\right),\left(v_{4}, v_{6}\right),\left(v_{5}, v_{7}\right),\left(v_{6}, v_{7}\right)$, and in particular $h\left(v_{7}, v_{8}\right)=0=h\left(v_{1}, v_{2}\right)$. Using a similar argument we conclude that $h\left(v_{13}, v_{14}\right)=h\left(v_{7}, v_{8}\right)=h\left(v_{1}, v_{2}\right)$, as desired.

Figure 2: Partial 3 acyclic coloring of graph F

Proof of Theorem 1. The proof is by transformation from the chromatic index problem [7]. The chromatic index χ^{\prime} of a graph G is the least number of colors in a proper edge coloring of G. Let H be a cubic (3-regular) graph. By Vizing [13], the chromatic index of H is either 3 or 4. Holyer [10] proved that it is NP-complete to determine if $\chi^{\prime}(H)=3$ or $\chi^{\prime}(H)=4$.

The transformation from edge coloring is as follows. Construct a graph G by replacing each edge $e_{H}=(u, w)$ of a cubic graph H with a copy of graph F, identifying u with v_{1} and w with v_{14}. The size of G is clearly polynomial in the size of H, and $\Delta(G)=3$. Therefore, $a^{\prime}(G) \geq 3$.

Now we claim that $a^{\prime}(G) \leq 3$ iff $\chi^{\prime}(H) \leq 3$. Suppose $a^{\prime}(G) \leq 3$, and let $c_{G}: E(G) \rightarrow\{1,2,3\}$ be an acyclic coloring of G. Then the edges of H can be colored properly using 3 colors, by collapsing each copy of F back to its original e_{H} edge, coloring it with $c_{G}\left(e_{1}\right)=c_{G}\left(e_{2}\right)$. Now suppose $\chi^{\prime}(H) \leq 3$, and let $c_{H}: E(H) \rightarrow\{1,2,3\}$ be a proper coloring of H. Then c_{H} can be extended to an acyclic 3 coloring of G by coloring each copy of F using f, such that e_{1} and e_{2} are colored with $c_{H}\left(e_{H}\right)$. This completes the proof.

Denote by \mathcal{G} the family of graphs that can be constructed from cubic graphs using the construction in the proof above. Since $\Delta(G)=3$ for $G \in \mathcal{G}$, it is easy to produce an acyclic coloring of any $G \in \mathcal{G}$ with 5 colors in polynomial time (see [4]). Moreover, it is easy to color any graph $G \in \mathcal{G}$ acyclically with 4 colors in polynomial time, by coloring the underlying cubic graph H with 4 colors (using Vizing, cf.[6],[11]) and coloring each copy of F using f. Therefore, the above proof shows that it is NP-complete to determine if $a^{\prime}(G)=3$ or $a^{\prime}(G)=4$ for $G \in \mathcal{G}$. Note also that any coloring of $G \in \mathcal{G}$ which colors each F using f, will not contain any bichromatic path of length 19.

It may be interesting to try and extend theorem 1 and prove (or disprove) that it is NP-complete to determine $a^{\prime}(G)$ for k-regular graphs where $k>3$, perhaps using the general hardness result concerning the chromatic index [8].

3 Proof of theorem 2

In this section we show how to color the edges of a graph G acyclically in polynomial time, provided the girth of G is large enough. Let g denote the girth of G (the length of a shortest cycle), and let d denote the maximum degree in G.

Proof of Theorem 2. First, color the edges of G properly using $d+1$ colors. The proof of Vizing's theorem supplies a polynomial-time algorithm for constructing such a coloring (see for example [6],[11]). If every cycle is colored with at least 3 colors we are done, so assume from now that there exist $b>0$ bichromatic cycles C_{1}, \ldots, C_{b}. Each cycle contains at least g edges, and each edge belongs to at most d bichromatic cycles. Therefore by Hall's theorem there exist b disjoint sets E_{1}, \ldots, E_{b} of g / d edges each, such that $E_{i} \subset C_{i}$ for every $1 \leq i \leq b$. It is possible to construct sets E_{1}, \ldots, E_{b} in polynomial time using a max flow algorithm.

We now restrict our attention to the subgraph H of G containing the $b g / d$ chosen edges $E(H)=$ $\cup_{i=1}^{b} E_{i}$, and construct a graph \bar{H} whose vertices correspond to the edges of H, where two vertices are connected if the corresponding edges of H are incident or at distance 1 from each other. Clearly, the maximum degree in \bar{H} is less than $2 d^{2}$.

Applying the Lovaśz local lemma [2, Proposition 5.3], we know that there exists an independent set $S \subseteq V(\bar{H})$ of graph \bar{H} that contains one vertex from each $E_{i}(0 \leq i \leq b)$, provided that ${ }^{1}$ $g>2 d e\left(2 d^{2}\right)$. Such a set S contains one edge from every bichromatic cycle, and no pair of edges in S are incident or at distance $1 \mathrm{in} G$. This will enable us to produce an acyclic coloring of G using $d+2$ colors, as desired, by recoloring all the edges in S using a new color. What remains to show is how to construct S efficiently.

The independent set S can be constructed in polynomial time using a coloring algorithm presented by Beck [5], provided that $g \geq c d^{3}$ for some fixed constant $c\left(c \approx 10^{8}\right.$ suffices). If $g \geq d 2^{2 d^{2}}$, a simpler coloring algorithm presented by Alon [1, Proposition 2.2] can be used to produce the set S.

References

[1] N. Alon, The Strong Chromatic Number of a Graph, Random Structures and Algorithms, Vol. 3, No. 1 (1992), 1-7.
[2] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, 1992.
[3] N. Alon, C.J.H. McDiarmid and B.A. Reed, Acyclic coloring of graphs, Random Structures and Algorithms 2 (1991), 277-288.

[^1][4] N. Alon, B. Sudakov and A. Zaks, Acyclic Edge Colorings of Graphs, to appear in Journal of Graph Theory.
[5] J. Beck, An Algorithmic Approach to the Lovász Local Lemma I, Random Structures and Algorithms, Vol. 2, No. 4 (1991), 343-365.
[6] B. Bollobás, Graph Theory, Springer Verlag, New York, 1979.
[7] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NPCompleteness, Freeman, 1979.
[8] Z. Galil and D. Leven, NP-completeness of finding the chromatic index of regular graphs, Journal of Algorithms 4, 35-44 (1983)
[9] P. E. Haxell, A Note on Vertex List Colouring, to appear.
[10] I. Holyer, The NP-Completeness of Edge-Coloring, SIAM Journal on Computing, Vol. 10, No. 4, 718-720 (1981)
[11] J. Misra and D. Gries, A constructive proof of Vizing's Theorem, Information Processing Letters, 41(3), 131-133, 6, March 1992.
[12] M. Molloy and B. Reed, Further Algorithmic Aspects of the Local Lemma, Proceedings of the 30th Annual ACM Symposium on Theory of Computing, May 1998, 524-529.
[13] V. G. Vizing, On an estimate of the chromatic class of a p-graph (in Russian), Metody Diskret. Analiz. 3, 25-30, 1964.

[^0]: ${ }^{*}$ Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email address: noga@math.tau.ac.il. Research supported in part by a USA Israel BSF grant and by a grant from the Israel Science Foundation.
 ${ }^{\dagger}$ Department of Statistics and Operations Research, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email address: ayalz@math.tau.ac.il.

[^1]: ${ }^{1}$ The factor of e can be omitted by a new result of Haxell [9].

