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Abstract

A proper coloring of the edges of a graph G is called acyclic if there is no 2-colored cycle
in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors
in an acyclic edge coloring of G. For certain graphs G, a′(G) ≥ ∆(G) + 2 where ∆(G) is the
maximum degree in G. It is known that a′(G) ≤ ∆ + 2 for almost all ∆-regular graphs, including
all ∆-regular graphs whose girth is at least c∆ log ∆. We prove that determining the acyclic
edge chromatic number of an arbitrary graph is an NP-complete problem. For graphs G with
sufficiently large girth in terms of ∆(G), we present deterministic polynomial time algorithms
that color the edges of G acyclically using at most ∆(G) + 2 colors.

1 Introduction

All graphs considered here are finite, undirected and simple. A coloring of the edges of a graph is
proper if no pair of incident edges are colored with the same color. A proper coloring of the edges of
a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of
G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. The maximum
degree in G is denoted by ∆(G).

It is known that a′(G) ≤ 16∆(G) for any graph G, and that an acyclic edge coloring of G using
at most 20∆(G) can be found efficiently (see [12],[3]). For certain graphs G, a′(G) ≥ ∆(G) + 2. It
is conjectured that a′(G) ≤ ∆(G) + 2 for all graphs [4]. This conjecture was proven true for almost
all ∆-regular graphs, and all ∆-regular graphs G whose girth (length of shortest cycle) is at least
c∆(G) log ∆(G) for some constant c.

It is easy to see that a′(G) ≤ 2 iff G is a union of vertex disjoint paths. However,

Theorem 1 It is NP-complete to determine if a′(G) ≤ 3 for an arbitrary graph G.
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Figure 1: Graph F with an acyclic 3 coloring f
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For certain graphs G which are known to have a ∆(G) + 2 acyclic coloring, such a coloring can
be constructed efficiently. Let g(G) denote the girth of graph G.

Theorem 2 The edges of a graph G of maximum degree d can be colored acyclically in polynomial
time using d+ 2 colors, provided that g(G) > cd3 where c is an appropriate absolute constant.

In the next sections we prove theorem 1 and theorem 2.

2 Proof of Theorem 1

The following lemma states two useful properties of the graph F shown in figure 1.

Lemma 3 Let F be the graph presented in figure 1, then

1. The edges of F can be colored acyclically using 3 colors, with no bichromatic path connecting
v1 and v14.

2. Any acyclic coloring of the edges of F using 3 colors, colors e1 and e2 with the same color.

Proof of Lemma 3. A coloring f proving the first property appears in figure 1, where the 3 colors
are represented by digits 0, 1, 2 displayed on the edges. To prove the second property, suppose h :
E(F ) → {0, 1, 2} is an acyclic coloring, having w.l.o.g h(v1, v2) = 0, h(v2, v3) = 1, and h(v2, v4) = 2
(similar to f in figure 1). Now we claim that h(v3, v5) = 0. Indeed, if h(v3, v5) 6= 0, then h(v3, v5) = 2,
h(v4, v5) = 0 (to avoid a bichromatic cycle on v2, v3, v4, v5), h(v5, v7) = 1 and h(v4, v6) = 1, leaving
no possible color for edge (v6, v7) (see figure 2). Therefore, h(v3, v5) = 0, which implies that h = f

for the following edges: (v4, v5), (v4, v6), (v5, v7), (v6, v7), and in particular h(v7, v8) = 0 = h(v1, v2).
Using a similar argument we conclude that h(v13, v14) = h(v7, v8) = h(v1, v2), as desired. 2
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Figure 2: Partial 3 acyclic coloring of graph F
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Proof of Theorem 1. The proof is by transformation from the chromatic index problem [7]. The
chromatic index χ′ of a graph G is the least number of colors in a proper edge coloring of G. Let H
be a cubic (3-regular) graph. By Vizing [13], the chromatic index of H is either 3 or 4. Holyer [10]
proved that it is NP-complete to determine if χ′(H) = 3 or χ′(H) = 4.

The transformation from edge coloring is as follows. Construct a graph G by replacing each edge
eH = (u,w) of a cubic graph H with a copy of graph F , identifying u with v1 and w with v14. The
size of G is clearly polynomial in the size of H, and ∆(G) = 3. Therefore, a′(G) ≥ 3.

Now we claim that a′(G) ≤ 3 iff χ′(H) ≤ 3. Suppose a′(G) ≤ 3, and let cG : E(G)→ {1, 2, 3} be
an acyclic coloring of G. Then the edges of H can be colored properly using 3 colors, by collapsing
each copy of F back to its original eH edge, coloring it with cG(e1) = cG(e2). Now suppose χ′(H) ≤ 3,
and let cH : E(H) → {1, 2, 3} be a proper coloring of H. Then cH can be extended to an acyclic 3
coloring of G by coloring each copy of F using f , such that e1 and e2 are colored with cH(eH) . This
completes the proof. 2

Denote by G the family of graphs that can be constructed from cubic graphs using the construction
in the proof above. Since ∆(G) = 3 for G ∈ G, it is easy to produce an acyclic coloring of any G ∈ G
with 5 colors in polynomial time (see [4]). Moreover, it is easy to color any graph G ∈ G acyclically
with 4 colors in polynomial time, by coloring the underlying cubic graph H with 4 colors (using
Vizing, cf.[6],[11]) and coloring each copy of F using f . Therefore, the above proof shows that it is
NP-complete to determine if a′(G) = 3 or a′(G) = 4 for G ∈ G. Note also that any coloring of G ∈ G
which colors each F using f , will not contain any bichromatic path of length 19.

It may be interesting to try and extend theorem 1 and prove (or disprove) that it is NP-complete
to determine a′(G) for k-regular graphs where k > 3, perhaps using the general hardness result
concerning the chromatic index [8].
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3 Proof of theorem 2

In this section we show how to color the edges of a graph G acyclically in polynomial time, provided
the girth of G is large enough. Let g denote the girth of G (the length of a shortest cycle), and let
d denote the maximum degree in G.

Proof of Theorem 2. First, color the edges of G properly using d + 1 colors. The proof of Vizing’s
theorem supplies a polynomial-time algorithm for constructing such a coloring (see for example
[6],[11]). If every cycle is colored with at least 3 colors we are done, so assume from now that there
exist b > 0 bichromatic cycles C1, . . . , Cb. Each cycle contains at least g edges, and each edge belongs
to at most d bichromatic cycles. Therefore by Hall’s theorem there exist b disjoint sets E1, . . . , Eb of
g/d edges each, such that Ei ⊂ Ci for every 1 ≤ i ≤ b. It is possible to construct sets E1, . . . , Eb in
polynomial time using a max flow algorithm.

We now restrict our attention to the subgraph H of G containing the bg/d chosen edges E(H) =
∪bi=1Ei, and construct a graph H̄ whose vertices correspond to the edges of H, where two vertices
are connected if the corresponding edges of H are incident or at distance 1 from each other. Clearly,
the maximum degree in H̄ is less than 2d2.

Applying the Lovaśz local lemma [2, Proposition 5.3], we know that there exists an independent
set S ⊆ V (H̄) of graph H̄ that contains one vertex from each Ei (0 ≤ i ≤ b), provided that1

g > 2de(2d2). Such a set S contains one edge from every bichromatic cycle, and no pair of edges in
S are incident or at distance 1 in G. This will enable us to produce an acyclic coloring of G using
d+ 2 colors, as desired, by recoloring all the edges in S using a new color. What remains to show is
how to construct S efficiently.

The independent set S can be constructed in polynomial time using a coloring algorithm presented
by Beck [5], provided that g ≥ cd3 for some fixed constant c (c ≈ 108 suffices). If g ≥ d22d2

, a simpler
coloring algorithm presented by Alon [1, Proposition 2.2] can be used to produce the set S. 2
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