Algorithmic Aspects of Acyclic Edge Colorings

Noga Alon * Ayal Zaks [†]

Abstract

A proper coloring of the edges of a graph G is called *acyclic* if there is no 2-colored cycle in G. The *acyclic edge chromatic number* of G, denoted by a'(G), is the least number of colors in an acyclic edge coloring of G. For certain graphs G, $a'(G) \ge \Delta(G) + 2$ where $\Delta(G)$ is the maximum degree in G. It is known that $a'(G) \le \Delta + 2$ for almost all Δ -regular graphs, including all Δ -regular graphs whose girth is at least $c\Delta \log \Delta$. We prove that determining the acyclic edge chromatic number of an arbitrary graph is an NP-complete problem. For graphs G with sufficiently large girth in terms of $\Delta(G)$, we present deterministic polynomial time algorithms that color the edges of G acyclically using at most $\Delta(G) + 2$ colors.

1 Introduction

All graphs considered here are finite, undirected and simple. A coloring of the edges of a graph is proper if no pair of incident edges are colored with the same color. A proper coloring of the edges of a graph G is called *acyclic* if there is no 2-colored cycle in G. The *acyclic edge chromatic number* of G, denoted by a'(G), is the least number of colors in an acyclic edge coloring of G. The maximum degree in G is denoted by $\Delta(G)$.

It is known that $a'(G) \leq 16\Delta(G)$ for any graph G, and that an acyclic edge coloring of G using at most $20\Delta(G)$ can be found efficiently (see [12],[3]). For certain graphs G, $a'(G) \geq \Delta(G) + 2$. It is conjectured that $a'(G) \leq \Delta(G) + 2$ for all graphs [4]. This conjecture was proven true for almost all Δ -regular graphs, and all Δ -regular graphs G whose girth (length of shortest cycle) is at least $c\Delta(G) \log \Delta(G)$ for some constant c.

It is easy to see that $a'(G) \leq 2$ iff G is a union of vertex disjoint paths. However,

Theorem 1 It is NP-complete to determine if $a'(G) \leq 3$ for an arbitrary graph G.

^{*}Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email address: noga@math.tau.ac.il. Research supported in part by a USA Israel BSF grant and by a grant from the Israel Science Foundation.

[†]Department of Statistics and Operations Research, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email address: ayalz@math.tau.ac.il.

Figure 1: Graph F with an acyclic 3 coloring f

For certain graphs G which are known to have a $\Delta(G) + 2$ acyclic coloring, such a coloring can be constructed efficiently. Let g(G) denote the girth of graph G.

Theorem 2 The edges of a graph G of maximum degree d can be colored acyclically in polynomial time using d + 2 colors, provided that $g(G) > cd^3$ where c is an appropriate absolute constant.

In the next sections we prove theorem 1 and theorem 2.

2 Proof of Theorem 1

The following lemma states two useful properties of the graph F shown in figure 1.

Lemma 3 Let F be the graph presented in figure 1, then

- 1. The edges of F can be colored acyclically using 3 colors, with no bichromatic path connecting v_1 and v_{14} .
- 2. Any acyclic coloring of the edges of F using 3 colors, colors e_1 and e_2 with the same color.

Proof of Lemma 3. A coloring f proving the first property appears in figure 1, where the 3 colors are represented by digits 0, 1, 2 displayed on the edges. To prove the second property, suppose h: $E(F) \rightarrow \{0, 1, 2\}$ is an acyclic coloring, having w.l.o.g $h(v_1, v_2) = 0, h(v_2, v_3) = 1$, and $h(v_2, v_4) = 2$ (similar to f in figure 1). Now we claim that $h(v_3, v_5) = 0$. Indeed, if $h(v_3, v_5) \neq 0$, then $h(v_3, v_5) = 2$, $h(v_4, v_5) = 0$ (to avoid a bichromatic cycle on v_2, v_3, v_4, v_5), $h(v_5, v_7) = 1$ and $h(v_4, v_6) = 1$, leaving no possible color for edge (v_6, v_7) (see figure 2). Therefore, $h(v_3, v_5) = 0$, which implies that h = ffor the following edges: $(v_4, v_5), (v_4, v_6), (v_5, v_7), (v_6, v_7)$, and in particular $h(v_7, v_8) = 0 = h(v_1, v_2)$. Using a similar argument we conclude that $h(v_{13}, v_{14}) = h(v_7, v_8) = h(v_1, v_2)$, as desired. \Box

Figure 2: Partial 3 acyclic coloring of graph F

Proof of Theorem 1. The proof is by transformation from the chromatic index problem [7]. The chromatic index χ' of a graph G is the least number of colors in a proper edge coloring of G. Let H be a cubic (3-regular) graph. By Vizing [13], the chromatic index of H is either 3 or 4. Holyer [10] proved that it is NP-complete to determine if $\chi'(H) = 3$ or $\chi'(H) = 4$.

The transformation from edge coloring is as follows. Construct a graph G by replacing each edge $e_H = (u, w)$ of a cubic graph H with a copy of graph F, identifying u with v_1 and w with v_{14} . The size of G is clearly polynomial in the size of H, and $\Delta(G) = 3$. Therefore, $a'(G) \ge 3$.

Now we claim that $a'(G) \leq 3$ iff $\chi'(H) \leq 3$. Suppose $a'(G) \leq 3$, and let $c_G : E(G) \to \{1, 2, 3\}$ be an acyclic coloring of G. Then the edges of H can be colored properly using 3 colors, by collapsing each copy of F back to its original e_H edge, coloring it with $c_G(e_1) = c_G(e_2)$. Now suppose $\chi'(H) \leq 3$, and let $c_H : E(H) \to \{1, 2, 3\}$ be a proper coloring of H. Then c_H can be extended to an acyclic 3 coloring of G by coloring each copy of F using f, such that e_1 and e_2 are colored with $c_H(e_H)$. This completes the proof.

Denote by \mathcal{G} the family of graphs that can be constructed from cubic graphs using the construction in the proof above. Since $\Delta(G) = 3$ for $G \in \mathcal{G}$, it is easy to produce an acyclic coloring of any $G \in \mathcal{G}$ with 5 colors in polynomial time (see [4]). Moreover, it is easy to color any graph $G \in \mathcal{G}$ acyclically with 4 colors in polynomial time, by coloring the underlying cubic graph H with 4 colors (using Vizing, cf.[6],[11]) and coloring each copy of F using f. Therefore, the above proof shows that it is NP-complete to determine if a'(G) = 3 or a'(G) = 4 for $G \in \mathcal{G}$. Note also that any coloring of $G \in \mathcal{G}$ which colors each F using f, will not contain any bichromatic path of length 19.

It may be interesting to try and extend theorem 1 and prove (or disprove) that it is NP-complete to determine a'(G) for k-regular graphs where k > 3, perhaps using the general hardness result concerning the chromatic index [8].

3 Proof of theorem 2

In this section we show how to color the edges of a graph G acyclically in polynomial time, provided the girth of G is large enough. Let g denote the girth of G (the length of a shortest cycle), and let d denote the maximum degree in G.

Proof of Theorem 2. First, color the edges of G properly using d + 1 colors. The proof of Vizing's theorem supplies a polynomial-time algorithm for constructing such a coloring (see for example [6],[11]). If every cycle is colored with at least 3 colors we are done, so assume from now that there exist b > 0 bichromatic cycles C_1, \ldots, C_b . Each cycle contains at least g edges, and each edge belongs to at most d bichromatic cycles. Therefore by Hall's theorem there exist b disjoint sets E_1, \ldots, E_b of g/d edges each, such that $E_i \subset C_i$ for every $1 \le i \le b$. It is possible to construct sets E_1, \ldots, E_b in polynomial time using a max flow algorithm.

We now restrict our attention to the subgraph H of G containing the bg/d chosen edges $E(H) = \bigcup_{i=1}^{b} E_i$, and construct a graph \overline{H} whose vertices correspond to the edges of H, where two vertices are connected if the corresponding edges of H are incident or at distance 1 from each other. Clearly, the maximum degree in \overline{H} is less than $2d^2$.

Applying the Lovaśz local lemma [2, Proposition 5.3], we know that there exists an independent set $S \subseteq V(\bar{H})$ of graph \bar{H} that contains one vertex from each E_i ($0 \leq i \leq b$), provided that¹ $g > 2de(2d^2)$. Such a set S contains one edge from every bichromatic cycle, and no pair of edges in S are incident or at distance 1 in G. This will enable us to produce an acyclic coloring of G using d+2 colors, as desired, by recoloring all the edges in S using a new color. What remains to show is how to construct S efficiently.

The independent set S can be constructed in polynomial time using a coloring algorithm presented by Beck [5], provided that $g \ge cd^3$ for some fixed constant c ($c \approx 10^8$ suffices). If $g \ge d2^{2d^2}$, a simpler coloring algorithm presented by Alon [1, Proposition 2.2] can be used to produce the set S. \Box

References

- N. Alon, The Strong Chromatic Number of a Graph, Random Structures and Algorithms, Vol. 3, No. 1 (1992), 1–7.
- [2] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, 1992.
- [3] N. Alon, C.J.H. McDiarmid and B.A. Reed, Acyclic coloring of graphs, Random Structures and Algorithms 2 (1991), 277–288.

¹The factor of e can be omitted by a new result of Haxell [9].

- [4] N. Alon, B. Sudakov and A. Zaks, Acyclic Edge Colorings of Graphs, to appear in Journal of Graph Theory.
- [5] J. Beck, An Algorithmic Approach to the Lovász Local Lemma I, Random Structures and Algorithms, Vol. 2, No. 4 (1991), 343–365.
- [6] B. Bollobás, Graph Theory, Springer Verlag, New York, 1979.
- [7] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, Freeman, 1979.
- [8] Z. Galil and D. Leven, NP-completeness of finding the chromatic index of regular graphs, Journal of Algorithms 4, 35–44 (1983)
- [9] P. E. Haxell, A Note on Vertex List Colouring, to appear.
- [10] I. Holyer, The NP-Completeness of Edge-Coloring, SIAM Journal on Computing, Vol. 10, No. 4, 718–720 (1981)
- [11] J. Misra and D. Gries, A constructive proof of Vizing's Theorem, Information Processing Letters, 41(3), 131–133, 6, March 1992.
- [12] M. Molloy and B. Reed, Further Algorithmic Aspects of the Local Lemma, Proceedings of the 30th Annual ACM Symposium on Theory of Computing, May 1998, 524–529.
- [13] V. G. Vizing, On an estimate of the chromatic class of a p-graph (in Russian), Metody Diskret. Analiz. 3, 25–30, 1964.