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Abstract. We introduce and study a partial-information model of online learning, where a deci-
sion maker repeatedly chooses from a finite set of actions and observes some subset of the associated
losses. This setting naturally models several situations where knowing the loss of one action provides
information on the loss of other actions. Moreover, it generalizes and interpolates between the well-
studied full-information setting (where all losses are revealed) and the bandit setting (where only the
loss of the action chosen by the player is revealed). We provide several algorithms addressing different
variants of our setting and provide tight regret bounds depending on combinatorial properties of the
information feedback structure.
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1. Introduction. Prediction with expert advice—see, e.g., [15, 17, 24, 35, 45]—
is a general abstract framework for studying sequential decision problems. For ex-
ample, consider a weather forecasting problem where each day we receive predictions
from various experts and we need to devise our forecast. At the end of the day, we
observe how well each expert did, and we can use this information to improve our
forecasting in the future. Our goal is that over time, our performance converges to
that of the best expert in hindsight. More formally, such problems are often modeled
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as a repeated game between a player and an adversary, where in each round, the
adversary privately assigns a loss value to each action in a fixed set (in the example
above, the discrepancy in the forecast if we follow a given expert’s advice). Then the
player chooses an action (possibly using randomization) and incurs the corresponding
loss. The goal of the player is to control regret, which is defined as the cumulative
excess loss incurred by the player as compared to the best fixed action over a sequence
of rounds.

In some situations, however, the player only gets partial feedback on the loss
associated with each action. For example, consider a web advertising problem, where
every day one can choose one ad to display to a user out of a fixed set of ads. As in
the forecasting problem, we sequentially choose actions from a given set and may wish
to control our regret with respect to the best fixed ad in hindsight. However, while
we can observe whether a displayed ad was clicked on, we do not know what would
have happened had we chosen a different ad to display. In our abstract framework,
this corresponds to the player observing the loss of the action picked, but not the
losses of other actions. This well-known setting is referred to as the (nonstochastic)
multi-armed bandit problem, which in this paper we denote as the bandit setting. In
contrast, we refer to the previous setting, where the player observes the losses of all
actions, as the expert setting. In this work, our main goal is to bridge between these
two feedback settings and explore the spectrum of models in between.

We start by recalling the performance attainable in the expert and the bandit
settings, assuming bounded losses (for example, in the interval [0, 1]). Letting K be
the number of available actions and T be the number of played rounds, the best pos-
sible regret for the expert setting is of order

√
ln(K)T . This optimal rate is achieved

by the Hedge algorithm [24] or the Follow the Perturbed Leader algorithm [28]. In
the bandit setting, the optimal regret is of order

√
KT , achieved by the Implicitly

Normalized Forecaster [5]. A bandit variant of Hedge, called Exp3 [7], achieves a
regret with a slightly worse bound of order

√
K ln(K)T . Thus, switching from the

full-information expert setting to the partial-information bandit setting increases the
attainable regret by a multiplicative factor of

√
K, up to extra logarithmic factors.

This exponential difference in terms of the dependence on K can be crucial in prob-
lems with large action sets. The intuition for this difference in performance has long
been that in the bandit setting, we only get 1/K of the information obtained in the
expert setting (as we observe just a single loss, rather than all K losses at each round)
and hence the additional K factor under the square root in the bound.

While the bandit setting received much interest, it can be criticized for not cap-
turing additional side-information we often have on the losses of the different actions.
As a motivating example, consider the problem of web advertising mentioned earlier.
In the standard multi-armed bandit setting, we assume that we have no information
whatsoever on whether undisplayed ads would have been clicked on. However, in
many relevant cases, the semantic relationship among actions (ads) implies that we
do indeed have some side-information. For instance, the user’s reaction to a displayed
ad might allow us to infer what behavior other related ads would have elicited from
the same user. This sort of side-information is not captured by the standard bandit
setting. A similar type of side-information arises in product recommendation systems
hosted on online social networks, in which users can befriend each other. In this case,
it has been observed that social relationships reveal similarities in tastes and inter-
ests [41]. Hence, a product liked/disliked by some user may also be liked/disliked by
the user’s friends.

Online auctions provide another motivating scenario for side-information in ban-
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dits. In online advertisement, individual impressions are sold to advertisers through
programmatic instantaneous second-price auctions between a seller (the publisher)
and the buyers (the advertisers). Both parties face a bandit problem: in each auc-
tion, the seller needs to set the reserve price (i.e., the smallest price below which the
seller is not willing to sell) and the buyers need to determine their bids. The side-
information is provided in part by the ad exchange (which, for instance, discloses the
highest bid) and in part because buyer and seller profits are determined by known
functions of the reserve price and the two highest bids. Therefore, depending on
whether the impression was sold or not, buyers and seller may be able to compute
ex-post the profits of bids/reserves higher or lower than those actually used in the
auction—see, e.g., the regret analysis of Algorithm Exp3-RTB in [16], where the set
of available actions for the seller is (a suitable discretized version of) the set of all
possible reserve prices, and a natural graph-based feedback system can be defined
over this set, where the loss of the played reserve price i also reveals to the seller the
loss of all prices j such that j ≥ i.

A further example, not in the marketing domain, is route selection, where we
are given a graph of possible routes connecting cities. When we select a route con-
necting two cities, we observe the cost (say, driving time or fuel consumption) of the
“edges” along that route, and, in addition, we have complete information on subroutes
including any subset of the edges.1

Note that our framework also accommodates more general scenarios in which no
dependencies (like the semantic relationship in the ad example) among losses have to
be assumed. Namely, the adversary assigning losses to actions and the mechanism
governing the release of side-information can be fully oblivious to each other. The
study of settings in which the loss assignment and the feedback model are required
to depend on each other in a certain way (e.g., observability implies similarity, or
observability depends on the value of the player’s loss) are definitely worth studying
but transcend the scope of this paper—see also item 1 in the list of open problems of
section 5.

In this paper, we present and study a setting which captures this type of side-
information and in fact interpolates between the bandit setting and the expert setting.
This is done by defining a feedback system under which choosing a given action also
reveals the losses of some subset of the other actions. This feedback system can
be viewed as a directed and time-changing graph Gt over actions: an arc (directed
edge) from action i to action j implies that when playing action i at round t we get
information also about the loss of action j at round t. Thus, the expert setting is
obtained by choosing a complete graph over actions (playing any action reveals all
losses), and the bandit setting is obtained by choosing an empty edge set (playing an
action only reveals the loss of that action). The attainable regret turns out to depend
on nontrivial combinatorial properties of this graph. To describe our results, we need
to make some distinctions in the setting that we consider.

Directed versus symmetric setting. In some situations, the side-information be-
tween two actions is symmetric—for example, if we know that both actions will have
a similar loss. In that case, we can model our feedback system Gt as an undirected
graph. In contrast, there are situations where the side-information is not symmet-
ric. For example, consider the side-information gained from asymmetric social links,

1Though this example may also be viewed as an instance of combinatorial bandits [18], the model
we propose is more general. For example, it does not assume linear losses, which could arise in the
routing example from the partial ordering of subroutes.
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such as followers of celebrities. In such cases, it might be more likely that followers
will shape their preferences after the person they follow rather than the other way
around. Hence, a product liked by a celebrity is probably also liked by his/her fol-
lowers, whereas a preference expressed by a follower is more often specific to that
person. Another example in the context of ad placement is when a person buying
a video game console might also buy a high-def cable to connect it to the TV set.
On the other hand, interest in high-def cables need not indicate an interest in game
consoles. In such situations, modeling the feedback system via a directed graph Gt
is more suitable. Note that the symmetric setting is a special case of the directed
setting, and therefore handling the symmetric case is easier than the directed case.

Informed versus uninformed setting. In some cases, the feedback system is known
to the player before each round and can be utilized for choosing actions. For example,
we may know beforehand which pairs of ads are related, or we may know the users
who are friends of another user. We denote this setting as the informed setting. In
contrast, there might be cases where the player does not have full knowledge of the
feedback system before choosing an action, and we denote this harder setting as the
uninformed setting. For example, consider a firm recommending products to users of
an online social network. If the network is owned by a third party, and therefore not
fully visible, the system may still be able to run its recommendation policy by only
accessing small portions of the social graph around each chosen action (i.e., around
each user to whom a recommendation is sent).

Generally speaking, our contribution lies in both characterizing the regret bounds
that can be achieved in the above settings as a function of combinatorial properties
of the feedback systems, as well as providing efficient sequential decision algorithms
working in those settings. More specifically, our contributions can be summarized as
follows (see section 2 for a brief review of the relevant combinatorial properties of
graphs).

Uninformed setting. We present an algorithm (Exp3-SET) that achieves

Õ
(√

ln(K)
∑T
t=1 mas(Gt)

)
regret in expectation, where mas(Gt) is the size of the

maximal acyclic graph in Gt, and the Õ(·) notation hides constants and logarithmic
factors. In the symmetric setting, mas(Gt) = α(Gt) (the independence number of
Gt), and we prove that the resulting regret bound is optimal up to logarithmic fac-
tors, when Gt = G is fixed for all rounds. Moreover, we show that Exp3-SET attains
O
(√

ln(K)T
)

regret when the feedback graphs Gt are random graphs generated from
a standard Erdős–Renyi model.

Informed setting. We present an algorithm (Exp3-DOM) that achieves

O
(

ln(K)
√

ln(KT )
∑T
t=1 α(Gt)

)
regret in expectation, for both the symmetric and di-

rected cases. Since our lower bound also applies to the informed setting, this character-
izes the attainable regret in the informed setting, up to logarithmic factors. Moreover,

we present another algorithm (ELP.P) that achieves O
(√

ln(K/δ)
∑T
t=1 mas(Gt)

)
re-

gret with probability at least 1− δ over the algorithm’s internal randomness. Such a
high-probability guarantee (which relies on the bounded loss assumption) is stronger
than the guarantee for Exp3-DOM, which holds just in expectation, and turns out
to be of the same order in the symmetric case. However, in the directed case, the
regret bound may be weaker since mas(Gt) may be larger than α(Gt). Moreover,
ELP.P requires us to solve a linear program at each round, whereas Exp3-DOM only
requires finding an approximately minimal dominating set, which can be done by a
standard greedy set cover algorithm.
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Our results interpolate between the bandit and expert settings; when Gt is a full
graph for all t (which means that the player always gets to see all losses, as in the
expert setting), then mas(Gt) = α(Gt) = 1, and we recover the standard guarantees
for the expert setting:

√
T up to logarithmic factors. In contrast, whenGt is the empty

graph for all t (which means that the player only observes the loss of the action played,
as in the bandit setting), then mas(Gt) = α(Gt) = K, and we recover the standard√
KT guarantees for the bandit setting, up to logarithmic factors. In between are

regret bounds scaling like
√
BT , where B lies between 1 and K, depending on the

graph structure (again, up to log-factors).
Our results are based on the algorithmic framework for the nonstochastic bandit

setting introduced in [7]. In this framework, the full-information Hedge algorithm
is combined with unbiased estimates of the full loss vectors in each round. The key
challenge is designing an appropriate randomized scheme for choosing actions, which
correctly balances exploration and exploitation or, more specifically, ensures small
regret while simultaneously controlling the variance of the loss estimates. In our
setting, this variance is subtly intertwined with the structure of the feedback system.
For example, a key quantity emerging in the analysis of Exp3-DOM can be upper
bounded in terms of the independence number of the graphs. This bound (Lemma 16
in Appendix B) is based on a combinatorial construction which may be of independent
interest.

Related work. The notion of side-information in bandits has been formalized
in different ways. Multivariate bandits, where the side-information takes the form
of an i.i.d. sequence of random variables (and rewards are smooth functions of these
variables), were initially studied in [46, 47] (in the univariate case) and further investi-
gated in [39, 40] (in the multivariate case). A similar setting is that of contextual ban-
dits [34], where regret is defined relative to the best policy (mapping side-information
to actions) in a given set of policies; see also algorithm Exp4 in [7] for a fully non-
stochastic formulation. In [42] the side-information takes the form of a sequence
of elements of an arbitrary metric space. Another model in which side-information
belongs to a finite, nonstructured set is investigated in [36].

Many follow-up papers have appeared since the notion of side-information used
here was initially published [3, 37]. In particular, our work was improved by [33],
where they introduced and analyzed Exp3-IX, a bandit algorithm using a novel “im-
plicit exploration” technique. The algorithm can be applied in our uninformed and
directed setting and can be shown to have a regret bound matching our minimax
lower bounds up to logarithmic factors. In [38] Exp3-IX is modified to obtain high-
probability (as opposed to expected) regret bounds which have a better dependence
on the graph parameters than the bounds we show here. Further improvements and
extensions were obtained in [1], where the authors strengthened and simplified the
techniques in our work obtaining optimal results (up to logarithmic factors) in the
uninformed directed/undirected setting. In the same paper, optimal bounds for the
case of feedback systems in which the loss of the played action is not necessarily
observed were also obtained. See also [21] for recent additional results. Further re-
cent work on bandits with side-information, in both the stochastic and nonstochastic
setting, include [10, 12, 31, 32, 49].

The related setting in which the loss assignment is a smooth function over the
graph (but no side-information is available; hence we know that losses of neighboring
actions are similar, but we do not observe them unless we play them) was studied
in [44]—see also [27]. A different notion of side-information was explored in [14], where
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each play of an action triggered a stochastic cascade according to the independent
cascading model of [29, 30]. Here the goal is to compete against the node triggering
the largest expected cascade. Our side-information setting was also used to derive
algorithms for related problems, such as the work [50] on online learning with costly
access to attributes.

The setting of online learning with feedback graphs is also closely related to
the more general setting of partial monitoring—see, e.g., [17, section 6.4], where the
player’s feedback is specified by a feedback matrix rather than a feedback graph.
Under mild conditions on the loss values, it can be shown that the problem of learn-
ing with graph-structured feedback can be reduced to the partial monitoring setting
(see [2] for a proof). Nevertheless, the analysis presented in this paper has several clear
advantages over the more general analysis [8] of partial monitoring games—see [1] for
a discussion.

Paper organization. In the next section, we formally define our learning pro-
tocols, introduce our main notation, and recall the combinatorial properties of graphs
that we require. In section 3, we tackle the uninformed setting by introducing Exp3-
SET, with upper and lower bounds on regret based on both the size of the maximal
acyclic subgraph (general directed case) and the independence number (symmetric
case). In section 4, we study the informed setting by analyzing two algorithms:
Exp3-DOM (section 4.1), for which we prove regret bounds in expectation, and ELP.P
(section 4.2), whose bounds are shown to hold not only in expectation but also with
high probability. We conclude the main text with section 5, where we discuss open
questions and possible directions for future research. All technical proofs are provided
in the appendices. We organized such proofs based on which section of the main text
the corresponding theoretical claims occur.

2. Learning protocol, notation, and preliminaries. As stated in the in-
troduction, we consider adversarial decision problems with a finite action set V =
{1, . . . ,K}. At each time t = 1, 2, . . . , a player (the learning algorithm) picks some
action It ∈ V and incurs a bounded loss `It,t ∈ [0, 1]. Unlike the adversarial bandit
problem [7, 17], where only the played action It reveals its loss `It,t, here we assume
all the losses in a subset SIt,t ⊆ V of actions are revealed after It is played. More for-
mally, the player observes the pairs (i, `i,t) for each i ∈ SIt,t. We also assume i ∈ Si,t
for any i and t; that is, any action reveals its own loss when played. Note that the
bandit setting (Si,t ≡ {i}) and the expert setting (Si,t ≡ V ) are both special cases of
this framework. We call Si,t the feedback set of action i at time t, and we write i t−→ j
when playing action i at time t reveals the loss of action j. (We sometimes write
i −→ j when time t plays no role in the surrounding context.) With this notation,
Si,t = {j ∈ V : i t−→ j}. The family of feedback sets {Si,t}i∈V we collectively call the
feedback system at time t.

The adversaries we consider are nonoblivious. Namely, each loss `i,t and feedback
set Si,t at time t can be both arbitrary functions of the past player’s actions I1, . . . , It−1
(note, though, that the regret is measured with respect to a fixed action assuming the
adversary would have chosen the same losses, so our results do not extend to truly
adaptive adversaries in the sense of [22]). The performance of a player A is measured
through the expected regret

max
k∈V

E
[
LA,T − Lk,T

]
,

where LA,T = `I1,1 + · · · + `IT ,T and Lk,T = `k,1 + · · · + `k,T are the cumulative
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losses of the player and of action k, respectively.2 The expectation is taken with
respect to the player’s internal randomization (since losses are allowed to depend on
the player’s past random actions, Lk,T may also be random). In section 3 we also
consider a variant in which the feedback system is randomly generated according to
a specific stochastic model. For simplicity, we focus on a finite horizon setting, where
the number of rounds T is known in advance. This can be easily relaxed using a
standard doubling trick.

We also consider the harder setting where the goal is to bound the actual regret

LA,T −max
k∈V

Lk,T

with probability at least 1−δ with respect to the player’s internal randomization, and
where the regret bound depends logarithmically on 1/δ. Clearly, a high-probability
bound on the actual regret implies a similar bound on the expected regret.

Whereas some of our algorithms need to know the feedback system at the begin-
ning of each step t, others need it only at the end of each step. We thus consider
two online learning settings: the informed setting, where the full feedback system
{Si,t}i∈V selected by the adversary is made available to the learner before making
the choice It; and the uninformed setting, where the information regarding the time-t
feedback system (with the associated information about the losses) is given to the
learner only after the prediction at time t.

We find it convenient at this point to adopt a graph-theoretic interpretation of
feedback systems. At each step t = 1, 2, . . . , T , the feedback system {Si,t}i∈V defines
a directed graph Gt = (V,Dt), the feedback graph, where V is the set of actions and
Dt is the set of arcs (i.e., ordered pairs of nodes). For j 6= i, arc (i, j) belongs to Dt

if and only if i t−→ j (the self-loops created by i t−→ i are intentionally ignored). Hence,
we can equivalently define {Si,t}i∈V in terms of Gt (plus all self-loops). Observe that
the outdegree d+

i,t of any i ∈ V equals |Si,t| − 1. Similarly, the indegree d−i,t of i is

the number of actions j 6= i such that i ∈ Sj,t (i.e., such that j t−→ i with j 6= i). A
notable special case of the above is when the feedback system is symmetric: j ∈ Si,t
if and only if i ∈ Sj,t for all i, j, and t. In words, playing i at time t reveals the loss of
j if and only if playing j at time t reveals the loss of i. A symmetric feedback system
for time t defines an undirected graph Gt or, more precisely, a directed graph having,
for every pair of nodes i, j ∈ V , either no arcs or length-two directed cycles. Thus,
from the point of view of the symmetry of the feedback system, we also distinguish
between the directed case (Gt is a general directed graph) and the symmetric case
(Gt is an undirected graph for all t).

The analysis of our algorithms depends on certain properties of the sequence of
graphs Gt. Two graph-theoretic notions playing an important role here are those
of independent sets and dominating sets. Given an undirected graph G = (V,E), an
independent set ofG is any subset T ⊆ V such that no two i, j ∈ T are connected by an
edge in E, i.e., (i, j) 6∈ E. An independent set is maximal if no proper superset thereof
is itself an independent set. The size of any largest (and thus maximal) independent
set is the independence number of G, denoted by α(G). If G is directed, we can still
associate with it an independence number: we simply viewG as undirected by ignoring
arc orientation. If G = (V,D) is a directed graph, a subset R ⊆ V is a dominating
set for G if for all j 6∈ R there exists some i ∈ R such that (i, j) ∈ D. In our bandit

2Although we defined the problem in terms of losses, our analysis can be applied to the case
when actions return rewards gi,t ∈ [0, 1] via the transformation `i,t = 1− gi,t.
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Fig. 1. An example for some graph-theoretic concepts. Top left: A feedback graph with K = 8
actions (recall that self-loops are implicit in this representation). The light blue (shaded) action
reveals its loss 0.4, as well as the losses of the other four actions it points to. Top right: The
same graph as before, where the light blue nodes are a minimal dominating set. Recall that each
action “dominates itself” through the self-loops. In this example, the rightmost action is included
in any dominating set, since no other action is dominating it. Bottom left: The same graph as
before where edge orientation has been removed. This gives rise to a symmetric feedback system in
which the light blue nodes are a maximal independent set. Bottom right: The light blue nodes are a
maximum acyclic subgraph of the depicted 5-action graph.

setting, a time-t dominating set Rt is a subset of actions with the property that the
loss of any remaining action in round t can be observed by playing some action in Rt.
A dominating set is minimal if no proper subset thereof is itself a dominating set.
The domination number of a directed graph G, denoted by γ(G), is the size of any
smallest (and therefore minimal) dominating set for G; see Figure 1 for examples.

Computing a minimum dominating set for an arbitrary directed graph Gt is
equivalent to solving a minimum set cover problem on the associated feedback sys-
tem {Si,t}i∈V . Although minimum set cover is NP-hard, the well-known Greedy Set
Cover algorithm [20], which repeatedly selects from {Si,t}i∈V the set containing the
largest number of uncovered elements so far, computes a dominating set Rt such that
|Rt| ≤ γ(Gt) (1 + lnK).

We can also lift the notion of independence number of an undirected graph to
directed graphs through the notion of maximum acyclic subgraphs. Given a directed
graph G = (V,D), an acyclic subgraph of G is any graph G′ = (V ′, D′) such that
V ′ ⊆ V , and D′ ≡ D ∩

(
V ′ × V ′

)
, with no (directed) cycles. We denote by mas(G) =

|V ′| the maximum size of such V ′. Note that when G is undirected (more precisely, as
above, when G is a directed graph having for every pair of nodes i, j ∈ V either no arcs
or length-two cycles), then mas(G) = α(G); otherwise mas(G) ≥ α(G). In particular,
when G is itself a directed acyclic graph, then mas(G) = |V |. See Figure 1 (bottom
right) for a simple example. Finally, we let I{A} denote the indicator function of
event A.
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Algorithm 1. The Exp3-SET algorithm (for the uninformed setting).
Input: η ∈ [0, 1].
Initialization wi,1 = 1 for all i ∈ V ≡ {1, . . . ,K}.
For t = 1, 2, . . . :

1. Feedback system {Si,t}i∈V and losses {`i,t}i∈V are generated but not dis-
closed;

2. Set pi,t = wi,t

Wt
for each i ∈ V , where Wt =

∑
j∈V wj,t;

3. Play action It drawn according to distribution pt = (p1,t, . . . , pK,t);
4. Observe:

(a) pairs (i, `i,t) for all i ∈ SIt,t;
(b) Feedback system {Si,t}i∈V is disclosed;

5. For any i ∈ V set wi,t+1 = wi,t exp
(
−η ̂̀i,t), where

̂̀
i,t =

`i,t
qi,t

I{i ∈ SIt,t} and qi,t =
∑

j : j
t−→i

pj,t .

3. The uninformed setting. In this section we investigate the setting in which
the learner must select an action without any knowledge of the current feedback
system. We introduce a simple general algorithm, Exp3-SET (Algorithm 1), that
works in both the directed and symmetric cases. In the symmetric case, we show that
the regret bound achieved by the algorithm is optimal to within logarithmic factors.

When the feedback graph Gt is a fixed clique or a fixed edgeless graph, Exp3-SET
reduces to the Hedge algorithm or, respectively, to the Exp3 algorithm. Correspond-
ingly, the regret bound for Exp3-SET yields the regret bound of Hedge and that of
Exp3 as special cases.

Similar to Exp3, Exp3-SET uses importance sampling loss estimates ̂̀i,t that
divide each observed loss `i,t by the probability qi,t of observing it. This probability
qi,t is the probability of observing the loss of action i at time t; i.e., it is simply the
sum of all pj,t (the probability of selecting action j at time t) such that j t−→ i (recall
that this sum always includes pi,t).

In the expert setting, we have qi,t = 1 for all i and t, and we recover the Hedge
algorithm. In the bandit setting, qi,t = pi,t for all i and t, and we recover the Exp3
algorithm (more precisely, we recover the variant Exp3Light of Exp3 that does not
have an explicit exploration term; see [19] and also [43, Theorem 2.7]).

In what follows, we show that the regret of Exp3-SET can be bounded in terms
of the key quantity

(1) Qt =
∑
i∈V

pi,t
qi,t

=
∑
i∈V

pi,t∑
j : j

t−→i
pj,t

.

Each term pi,t/qi,t can be viewed as the probability of drawing i from pt conditioned
on the event that `i,t was observed. A key aspect of our analysis is the ability to
deterministically and nonvacuously3 upper bound Qt in terms of certain quantities
defined on {Si,t}i∈V . We do so in two ways: either irrespective of how small each
pi,t may be (this section), or depending on suitable lower bounds on the probabilities

3An obvious upper bound on Qt is K, since pi,t/qi,t ≤ 1.



1794 ALON ET AL.

pi,t (section 4). In fact, forcing lower bounds on pi,t can be viewed as inducing the
algorithm to perform exploration, and performing it in the best way (according to
the analysis) requires knowing {Si,t}i∈V before each prediction (hence the informed
setting). The following result, whose proof is in Appendix A.2, is the building block
for all subsequent results in the uninformed setting.

Lemma 1. The regret of Exp3-SET satisfies

(2) max
k∈V

E
[
LA,T − Lk,T

]
≤ lnK

η
+
η

2

T∑
t=1

E[Qt] .

In the expert setting, qi,t = 1 for all i and t implies Qt = 1 deterministically for all
t. Hence, the right-hand side of (2) becomes (lnK)/η+ (η/2)T , corresponding to the
Hedge bound with a slightly larger constant in the second term; see, e.g., [17, page 72].
In the bandit setting, qi,t = pi,t for all i and t implies Qt = K deterministically for all
t. Hence, the right-hand side of (2) takes the form (lnK)/η + (η/2)KT , equivalent
to the Exp3 bound; see, e.g., [9, equation 3.4].

We now move on to the case of general feedback systems, for which we can prove
the following result (proof is in Appendix A.3).

Theorem 2. The regret of Exp3-SET satisfies

max
k∈V

E
[
LA,T − Lk,T

]
≤ lnK

η
+
η

2

T∑
t=1

E[mas(Gt)] .

If mas(Gt) ≤ mt for t = 1, . . . , T , then setting η =
√

(2 lnK)
/∑T

t=1mt gives

max
k∈V

E
[
LA,T − Lk,T

]
≤

√√√√2(lnK)
T∑
t=1

mt .

As we pointed out in section 2, mas(Gt) ≥ α(Gt), with equality holding when Gt
is an undirected graph. Hence, in the special case when Gt is undirected (i.e., in the
symmetric setting), we obtain the following result.

Corollary 3. In the symmetric setting, the regret of Exp3-SET satisfies

max
k∈V

E
[
LA,T − Lk,T

]
≤ lnK

η
+
η

2

T∑
t=1

E[α(Gt)] .

If α(Gt) ≤ αt for t = 1, . . . , T , then setting η =
√

(2 lnK)
/∑T

t=1 αt gives

max
k∈V

E
[
LA,T − Lk,T

]
≤

√√√√2(lnK)
T∑
t=1

αt .

Note that both Theorem 2 and Corollary 3 require the algorithm to know upper
bounds on mas(Gt) and α(Gt), which may be computationally nontrivial—we return
to and expand on this issue in section 4.2.

In light of Corollary 3, one may wonder whether Lemma 1 is powerful enough to
allow a control of regret in terms of the independence number even in the directed
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case. Unfortunately, the next result shows that, in the directed case, Qt cannot be
controlled unless specific properties of pt are assumed. More precisely, we show that
even for simple directed graphs, there exist distributions pt on the vertices such that
Qt is linear in the number of nodes while the independence number4 is 1.

Fact 4. Let G = (V,D) be a total order on V = {1, . . . ,K}, i.e., such that for
all i ∈ V , arc (j, i) ∈ D for all j = i+1, . . . ,K. Let p = (p1, . . . , pK) be a distribution
on V such that pi = 2−i for i < K and pk = 2−K+1. Then

Q =
K∑
i=1

pi∑
j : j−→i pj

=
K∑
i=1

pi∑K
j=i pj

=
K + 1

2
.

The simple proof can be found at the beginning of Appendix A. Next, we discuss
lower bounds on the achievable regret for arbitrary algorithms. The following theorem
provides a lower bound on the regret in terms of the independence number α(G) for
a constant graph Gt = G (which may be directed or undirected).

Theorem 5. Suppose Gt = G for all t with α(G) > 1. There exist two constants
C1, C2 > 0 such that whenever T ≥ C1 (α(G))3, for any algorithm there exists an ad-
versarial strategy for which the expected regret of the algorithm is at least C2

√
α(G)T .

The intuition of the proof (provided in Appendix A.4) is the following: if the
graph G has α(G) nonadjacent vertices, then an adversary can make this problem
as hard as a standard bandit problem, played on α(G) actions. Since for bandits on
K actions there is an Ω(

√
KT ) lower bound on the expected regret, a variant of the

proof technique leads to an Ω(
√
α(G)T ) lower bound in our case.

One may wonder whether a sharper lower bound exists which applies to the
general directed adversarial setting and involves the larger quantity mas(G). Unfor-
tunately, the above measure does not seem to be related to the optimal regret: using
Lemma 11 in Appendix A.5 (see proof of Theorem 6 below) one can exhibit a sequence
of graphs, each having a large acyclic subgraph, on which the regret of Exp3-SET is
still small.

3.1. Random feedback systems. We conclude this section with a study of
Lemma 1 in a setting where the feedback system is stochastically generated via the
Erdős–Renyi model. This is a standard model for random directed graphs G = (V,D),
where we are given a density parameter r ∈ [0, 1] and, for any pair i, j ∈ V , arc
(i, j) ∈ D with independent probability r (self-loops, i.e., arcs (i, i), are included by
default here). We have the following result.

Theorem 6. For t = 1, 2, . . . , let Gt be an independent draw from the Erdős–
Renyi model with fixed parameter r ∈ [0, 1]. Then the regret of Exp3-SET satisfies

max
k∈V

E
[
LA,T − Lk,T

]
≤ lnK

η
+
η T

2r

(
1− (1− r)K

)
.

In the above, expectations are computed with respect to both the algorithm’s randomiza-
tion and the random generation of Gt occurring at each round. In particular, setting
η =

√
2r lnK

T (1−(1−r)K) gives

(3) max
k∈V

E
[
LA,T − Lk,T

]
≤

√
2(lnK)T

(
1− (1− r)K

)
r

.

4In this specific example, the maximum acyclic subgraph has size K, which confirms the looseness
of Theorem 2.
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Note that as r ranges in [0, 1] we interpolate between the multi-armed bandit5

(r = 0) and the expert (r = 1) regret bounds.
Finally, it is worth noticing that standard results from the theory of Erdős–Renyi

graphs—at least in the symmetric case (see, e.g., [26, 25])—show that when Kr →∞
as K →∞, the independence number α of the resulting graph satisfies

α ∼ 2 log(Kr)
log( 1

1−r )

with high probability, as K → ∞. In particular, when r is such that 0 < c ≤ Kr =
o(K) as K →∞, for some constant c, then α = Ω( 1

r ) with high probability as K →∞.
This fact, combined with the lower bound in Theorem 5, gives a lower bound on the
regret of the order

√
T/r. It is then easy to see that this lower bound matches (up to

logarithmic factors) the upper bound of Theorem 6, since the right-hand side of (3)

is upper bounded anyway by
√

2(lnK)T
r .

4. The informed setting. The lack of a lower bound matching the upper bound
provided by Theorem 2 is a good indication that something more sophisticated has
to be done in order to upper bound the key quantity Qt defined in (1). This leads us
to consider more refined ways of allocating probabilities pi,t to nodes. We do so by
taking advantage of the informed setting, in which the learner can access Gt before
selecting the action It. The algorithm Exp3-DOM, introduced in this section, exploits
the knowledge of Gt in order to achieve an optimal (up to logarithmic factors) regret
bound.

Recall the problem uncovered by Fact 4: when the graph induced by the feedback
system is directed, Qt cannot be upper bounded, in a nonvacuous way, independent
of the choice of probabilities pi,t. The new algorithm Exp3-DOM controls these prob-
abilities by adding an exploration term to the distribution pt. This exploration term
is supported on a dominating set of the current graph Gt, and computing such a
dominating set before selection of the action at time t can only be done in the in-
formed setting. Intuitively, exploration on a dominating set allows us to control Qt
by increasing the probability qi,t that each action i is observed. If the dominating
set is also minimal, then the variance caused by exploration can be bounded in terms
of the independence number (and additional logarithmic factors) just like the undi-
rected case. In order to optimize the regret bound, the exploration rate must be
tuned according to the size of the dominating set in Gt, which is possibly changing
at every round. We take this into account by having Exp3-DOM run a logarithmic
(in K) number of instances of Exp3, each tuned to a geometrically increasing value
of the dominating set size. Each instance is also internally running a doubling trick
in order to further tune its local exploration rate to the specific set of rounds t which
are managed by that instance (based on the size of the dominating set in Gt).

Finally, when proving high-probability results on the regret in the informed set-
ting (algorithm ELP.P in section 4.2), we also assume the feedback system is known
beforehand.

4.1. Bounds in expectation: The Exp3-DOM algorithm. The Exp3-DOM
algorithm (Algorithm 2) for the informed setting runs O(logK) variants of Exp3 (with
explicit exploration) indexed by b = 0, 1, . . . , blog2Kc. At time t the algorithm is
given the current feedback system {Si,t}i∈V and computes a dominating set Rt of the

5Observe that limr→0+
1−(1−r)K

r
= K.
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Algorithm 2. The Exp3-DOM algorithm (for the informed setting).

Input: Exploration parameters ν(b) ∈ (0, 1] for b ∈
{

0, 1, . . . , blog2Kc
}

Initialization: w(b)
i,1 = 1 for all i ∈ V ≡ {1, . . . ,K} and b ∈

{
0, 1, . . . , blog2Kc

}
For t = 1, 2, . . . :

1. Feedback system {Si,t}i∈V is generated and disclosed (losses {`i,t}i∈V are
generated and not disclosed);

2. Compute a dominating set Rt for Gt associated with {Si,t}i∈V ;
3. Let bt be such that |Rt| ∈

[
2bt , 2bt+1 − 1

]
;

4. Set W (bt)
t =

∑
i∈V w

(bt)
i,t ;

5. Set p(bt)
i,t =

(
1− ν(bt)

) w(bt)
i,t

W
(bt)
t

+ ν(bt)

|Rt| I{i ∈ Rt};

6. Play action It drawn from distribution p
(bt)
t =

(
p

(bt)
1,t , . . . , p

(bt)
K,t

)
;

7. Observe pairs (i, `i,t) for all i ∈ SIt,t;
8. For any i ∈ V set w(bt)

i,t+1 = w
(bt)
i,t exp

(
−ν(bt) ̂̀(bt)

i,t /2
bt
)
, where

̂̀(bt)
i,t =

`i,t

q
(bt)
i,t

I{i ∈ SIt,t} and q
(bt)
i,t =

∑
j : j

t−→i

p
(bt)
j,t .

directed graph Gt induced by {Si,t}i∈V . Based on the size |Rt| of Rt, the algorithm
uses instance bt = blog2 |Rt|c to draw action It. We use a superscript b to denote the
quantities relevant to the variant of Exp3 indexed by b. Similarly to the analysis of
Exp3-SET, the key quantities are

q
(b)
i,t =

∑
j : i∈Sj,t

p
(b)
j,t =

∑
j : j

t−→i

p
(b)
j,t and Q

(b)
t =

∑
i∈V

p
(b)
i,t

q
(b)
i,t

, b = 0, 1, . . . , blog2Kc.

Let T (b) ≡
{
t = 1, . . . , T : |Rt| ∈ [2b, 2b+1− 1]

}
. Clearly, the sets T (b) are a partition

of the time steps {1, . . . , T}, so that
∑
b |T (b)| = T . Since the adversary adaptively

chooses the dominating sets Rt (through the adaptive choice of the feedback system
at time t), the sets T (b) are random variables. This causes a problem in tuning the
parameters ν(b), the exploration parameters of Exp3-DOM. For this reason, we do
not prove a regret bound directly for Exp3-DOM, where each instance uses a fixed
ν(b), but for a slight variant of it, where each ν(b) is separately set through a doubling
trick. In fact, a good choice of ν(b) depends on the unknown random quantity

Q
(b)

=
∑
t∈T (b)

Q
(b)
t ,

where Q
(b)
t = 1 + Q

(b)
t

2b+1 . To overcome this problem, we slightly modify Exp3-DOM

by applying a doubling trick to guess Q
(b)

for each b. Specifically, for each b =
0, 1, . . . , blog2Kc, we use a sequence ν

(b)
r =

√
(2b lnK)/2r for r = 0, 1, . . . . We

initially run the algorithm with ν
(b)
0 . Whenever the algorithm is running with ν

(b)
r

and observes that
∑
sQ

(b)
s > 2r, where6 the sum is over all s so far in T (b), then we

6Notice that
∑

s Q
(b)
s is an observable quantity.
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restart the algorithm with ν
(b)
r+1.

Lemma 7. In the directed case, the regret of Exp3-DOM satisfies

(4) max
k∈V

E
[
LA,T − Lk,T

]
≤
blog2Kc∑
b=0

2b lnK
ν(b) + ν(b)E

 ∑
t∈T (b)

(
1 +

Q
(b)
t

2b+1

) .

Moreover, if we use the above doubling trick to choose ν(b) for each b = 0, . . . , blog2Kc,
then

(5) max
k∈V

E
[
LA,T −Lk,T

]
= O

(lnK) E


√√√√ T∑

t=1

(
|Rt|+Q

(bt)
t

)+ (lnK) ln(KT )

 .

Importantly, the next result (proof in Appendix B.2) shows how bound (5) of
Lemma 7 can be expressed in terms of the sequence α(Gt) of independence numbers
of graphs Gt whenever the Greedy Set Cover algorithm [20] (see section 2) is used to
compute the dominating set Rt of the feedback system at time t.

Theorem 8. If Step 2 of Exp3-DOM uses the Greedy Set Cover algorithm to
compute the dominating sets Rt, then the regret of Exp-DOM using the doubling trick
satisfies

max
k∈V

E
[
LA,T − Lk,T

]
= O

ln(K)

√√√√ln(KT )
T∑
t=1

E[α(Gt)] + ln(K) ln(KT )

 .

Combining the upper bound of Theorem 8 with the lower bound of Theorem 5, we
see that the attainable expected regret in the informed setting is characterized by the
independence numbers of the graphs. Moreover, a quick comparison of Corollary 3
and Theorem 8 reveals that a symmetric feedback system overcomes the advantage of
working in an informed setting: The bound we obtained for the uninformed symmetric
setting (Corollary 3) is sharper by logarithmic factors than the one we derived for the
informed—but more general, i.e., directed—setting (Theorem 8).

4.2. High-probability bounds: The ELP.P algorithm. We now turn to
present an algorithm working in the informed setting for which we can also prove high-
probability regret bounds.7 We call this algorithm ELP.P (Exponentially weighted
algorithm with Linear Programming, with high Probability). Like Exp3-DOM, the
exploration component is not uniform over the actions, but is chosen carefully to reflect
the graph structure at each round. In fact, the optimal choice of the exploration for
ELP.P requires us to solve a simple linear program—hence the name of the algorithm.8

The pseudocode appears as Algorithm 3. Note that unlike the previous algorithms,
this algorithm utilizes the “rewards” formulation of the problem; i.e., instead of using
the losses `i,t directly, it uses the rewards gi,t = 1−`i,t and boosts the weight of actions
for which gi,t is estimated to be large, as opposed to decreasing the weight of actions for
which `i,t is estimated to be large. This is done merely for technical convenience and
does not affect the complexity of the algorithm or the regret guarantee. The form of

7We have been unable to prove high-probability bounds for Exp3-DOM or variants of it.
8We note that this algorithm improves over the basic ELP algorithm initially presented in [37],

in that its regret is bounded with high probability and not just in expectation, and applies in the
directed case as well as the symmetric case.
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Algorithm 3. The ELP.P algorithm (for the informed setting).
Input: Confidence parameter δ ∈ (0, 1), learning rate η > 0;
Initialization: wi,1 = 1 for all i ∈ V = {1, . . . ,K};
For t = 1, 2, . . . :

1. Feedback system {Si,t}i∈V is generated and disclosed (losses {`i,t}i∈V are
generated and not disclosed);

2. Let ∆K be the K-dimensional probability simplex and st = (s1,t, . . . , sK,t)
be a solution to the linear program

max
(s1,...,sK)∈∆K

min
i∈V

∑
j : j

t−→i

sj ;

3. Set pi,t := (1− νt)wi,t

Wt
+ νtsi,t where Wt =

∑
i∈V wi,t,

νt =
(1 + β) η

mini∈V
∑
j : j

t−→i
sj,t

, and β = 2η

√
ln(5K/δ)

lnK
;

4. Play action It drawn according to distribution pt =
(
p1,t, . . . , pK,t

)
;

5. Observe pairs (i, `i,t) for all i ∈ SIt,t;
6. For any i ∈ V set gi,t = 1− `i,t and wi,t+1 = wi,t exp

(
η ĝi,t

)
, where

ĝi,t =
gi,tI{i ∈ SIt,t}+ β

qi,t
and qi,t =

∑
j : j

t−→i

pj,t.

the reward estimator is similar to the one used in Exp3.P [7] (see also [17, section 6.8]).
Different estimators can also be used; see, for example, [6] and the recent work [38],
where an improved high-probability regret bound depending on α(Gt) rather than
on mas(Gt) has been shown. This recent improvement also brings the computational
advantage of avoiding solving linear programs when performing exploration.

Theorem 9. Let algorithm ELP.P be run with learning rate η ≤ 1/(3K) suffi-
ciently small such that β ≤ 1/4. Then, with probability at least 1− δ we have

LA,T −max
k∈V

Lk,T ≤

√√√√5 ln
(

5
δ

) T∑
t=1

mas(Gt) +
2 ln(5K/δ)

η

+ 12η

√
ln(5K/δ)

lnK

T∑
t=1

mas(Gt)

+ Õ
(

1 +
√
Tη + Tη2

)(
max
t=1...T

mas2(Gt)
)
,

where the Õ notation hides only numerical constants and factors logarithmic in K and
1/δ. In particular, if for constants m1, . . . ,mT we have mas(Gt) ≤ mt, t = 1, . . . , T ,
and we pick η ≤ 1/(3K) such that

η2 =
1
6

√
ln(5K/δ) (lnK)∑T

t=1mt

,
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then we get with probability at least 1− δ that

LA,T −max
k∈V

Lk,T ≤ 10
ln1/4(5K/δ)

ln1/4K

√√√√ln
(

5K
δ

) T∑
t=1

mt+Õ(T 1/4)
(

max
t=1...T

mas2(Gt)
)
.

This theorem essentially tells us that the regret of the ELP.P algorithm, up to

second-order factors, is quantified by
√∑T

t=1 mas(Gt). Recall that, in the special case
when Gt is symmetric, we have mas(Gt) = α(Gt).

One computational issue to bear in mind is that this theorem (as well as The-
orem 2 and Corollary 3) holds under an optimal choice of η. In turn, this value
depends on upper bounds on

∑T
t=1 mas(Gt) (or on

∑T
t=1 α(Gt) in the symmetric

case). Unfortunately, in the worst case, computing the maximal acyclic subgraph
or the independence number of a given graph is NP-hard, so implementing such al-
gorithms is not always computationally tractable.9 However, it is easy to see that
the algorithm is robust to approximate computation of this value; misspecifying the
average independence number 1

T

∑T
t=1 α(Gt) by a factor of v entails an additional

√
v

factor in the bound. Thus, one might use standard heuristics resulting in a reasonable
approximation of the independence number. Although computing the independence
number is also NP-hard to approximate, it is unlikely for intricate graphs with hard-
to-approximate independence numbers to appear in relevant applications. Moreover,
by setting the approximation to be either K or 1, we trivially obtain an approxima-
tion factor of at most either K or 1

T

∑T
t=1 α(Gt). The former leads to an Õ(

√
KT )

regret bound similar to the standard bandits setting, while the latter leads to an
Õ( 1

T

∑T
t=1 α(GT )

√
T ) regret bound, which is better than the regret for the bandits

setting if the average independence number is less than
√
K. In contrast, this compu-

tational issue does not show up in Exp3-DOM, whose tuning relies only on efficiently
computable quantities.

5. Conclusions and open questions. In this paper we investigated online
prediction problems in partial-information regimes that interpolate between the clas-
sical bandit and expert settings. We provided algorithms, as well as upper and lower
bounds on the attainable regret, with a nontrivial dependence on the information
feedback structure. In particular, we have shown a number of results characterizing
prediction performance in terms of the structure of the feedback system, the amount of
information available before prediction, and the nature (adversarial or fully random)
of the process generating the feedback system.

There are many open questions that warrant further study, some of which are
briefly mentioned below:

1. It would be interesting to study adaptations of our results to the case when the
feedback system {Si,t}i∈V may depend on the loss `It,t of player’s action It.
Note that this would prevent a direct construction of an unbiased estimator
for unobserved losses, which many worst-case bandit algorithms (including
ours—see the appendix) hinge upon.

2. Even in the uninformed setting, our algorithms need to observe the feedback
system at the end of each round (more precisely, Exp3-SET needs to know the
feedback graph up to and including the second neighborhood of the chosen
action). An interesting question would be to investigate the best possible

9[37] proposed a generic mechanism to circumvent this, but the justification has a flaw which is
not clear how to fix.
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regret rates when only the neighborhood of the chosen action is revealed after
each round. An answer to this question was recently given in [21], where they
showed that no improvements over the standard bandit bound are possible
in this case.

3. The upper bound contained in Theorem 2, expressed in terms of mas(·), is
almost certainly suboptimal, even in the uninformed setting, and it would be
nice to see if more adequate graph complexity measures can be used instead.

4. Our lower bound in Theorem 5 refers to a constant graph sequence. We would
like to provide a more complete characterization applying to sequences of ad-
versarially generated graphs G1, G2, . . . , GT in terms of sequences of their
corresponding independence numbers α(G1), α(G2), . . . , α(GT ) (or variants
thereof) in both the uninformed and the informed settings. Moreover, the
adversary strategy achieving our lower bound is computationally hard to im-
plement in the worst case (the adversary needs to identify the largest inde-
pendent set in a given graph). What is the achievable regret if the adversary
is assumed to be computationally bounded?

5. The information feedback models we used are natural and simple. They
assume that the action at a given time period only affects rewards and ob-
servations for that period. In some settings, the reward observation may be
delayed. In such settings, the action taken at a given stage may affect what is
observed in subsequent stages. We leave the issue of modeling and analyzing
such settings to future work.

6. Finally, we would like to see what the achievable performance is in the special
case of stochastic rewards, which are assumed to be drawn i.i.d. from some
unknown distributions. This was recently considered in [13], with results
depending on the graph clique structure. However, the tightness of these
results remains to be ascertained.

Appendix A. Technical lemmas and proofs from section 3. This appendix
contains the proofs of all technical results occurring in section 3, along with ancillary
graph-theoretic lemmas. Throughout this appendix, Et[·] is a shorthand for E

[
· |

{`i,r}i∈V , {Si,r}i∈V , r = 1, . . . , t, I1, . . . , It−1
]
. Also, for ease of exposition, we implic-

itly first condition on the history, i.e., {`i,r}i∈V , {Si,r}i∈V , r = 1, . . . , t, I1, . . . , It−1,
and later take an expectation with respect to that history. This implies that, given
that conditioning, we can treat random variables such as pi,t, `i,t, and Si,t as constants,
and we can later take an expectation over history so as to remove the conditioning.

A.1. Proof of Fact 4. Using standard properties of geometric sums, one can
immediately see that

K∑
i=1

pi∑K
j=i pj

=
K−1∑
i=1

2−i

2−i+1 +
2−K+1

2−K+1 =
K − 1

2
+ 1 =

K + 1
2

;

hence the claimed result.
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A.2. Proof of Lemma 1. Following the proof of Exp3 [7], we have

Wt+1

Wt
=
∑
i∈V

wi,t+1

Wt

=
∑
i∈V

wi,t exp(−η ̂̀i,t)
Wt

=
∑
i∈V

pi,t exp(−η ̂̀i,t)
≤
∑
i∈V

pi,t

(
1− η̂̀i,t +

1
2
η2(̂̀i,t)2

)
using e−x ≤ 1− x+ x2/2 for all x ≥ 0

= 1− η
∑
i∈V

pi,t ̂̀i,t +
η2

2

∑
i∈V

pi,t(̂̀i,t)2.

Taking logs, using ln(1 +x) ≤ x for all x > −1, and summing over t = 1, . . . , T yields

ln
WT+1

W1
≤ −η

T∑
t=1

∑
i∈V

pi,t ̂̀i,t +
η2

2

T∑
t=1

∑
i∈V

pi,t(̂̀i,t)2.

Moreover, for any fixed comparison action k, we also have

ln
WT+1

W1
≥ ln

wk,T+1

W1
= −η

T∑
t=1

̂̀
k,t − lnK.

Putting this together and rearranging gives

(6)
T∑
t=1

∑
i∈V

pi,t ̂̀i,t ≤ T∑
t=1

̂̀
k,t +

lnK
η

+
η

2

T∑
t=1

∑
i∈V

pi,t(̂̀i,t)2.

Note that, for all i ∈ V ,

Et[̂̀i,t] =
∑

j : i∈Sj,t

pj,t
`i,t
qi,t

=
∑

j : j
t−→i

pj,t
`i,t
qi,t

=
`i,t
qi,t

∑
j : j

t−→i

pj,t = `i,t.

Moreover,

Et
[
(̂̀i,t)2] =

∑
j : i∈Sj,t

pj,t
`2i,t
q2
i,t

=
`2i,t
q2
i,t

∑
j : j

t−→i

pj,t ≤
1
q2
i,t

∑
j : j

t−→i

pj,t =
1
qi,t

.

Hence, taking expectations on both sides of (6), and recalling the definition of Qt, we
get

(7) E
[
LA,T − Lk,T

]
≤ lnK

η
+
η

2

T∑
t=1

E[Qt]

as claimed.
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A.3. Proof of Theorem 2. We first need the following lemma.

Lemma 10. Let G = (V,D) be a directed graph with vertex set V = {1, . . . ,K}
and arc set D. Then, for any distribution p over V we have

K∑
i=1

pi∑
j : j−→i pj

≤ mas(G).

Proof. Let N−i,0 be the in-neighbors of node i in the initial graph G, i.e., the set
of nodes j such that (j, i) ∈ D. We show that there is a subset of vertices V ′ such
that the induced graph is acyclic and |V ′| ≥

∑K
i=1

pi

pi+
∑

j∈N
−
i,0

pj
. This is proven by

adding elements to an initially empty set V ′. Let

Φ0 =
K∑
i=1

pi
pi +

∑
j∈N−i,0

pj
,

and let i1 be the vertex which minimizes the denominator pi+
∑
j∈N−i,0

pj over i ∈ V .

We now delete i1 from the graph, along with all its incoming neighbors (set N−i1,0)
and all edges which are incident (both departing and incoming) to these nodes, and
then iterate on the remaining graph. The contribution of all the deleted vertices to
Φ0 is ∑

r∈N−i1,0∪{i1}

pr
pr +

∑
j∈N−r,0

pj
≤

∑
r∈N−i1,0∪{i1}

pr
pi1 +

∑
j∈N−i1,0

pj
= 1,

where the inequality follows from the minimality of i1.
Let V ′ ← V ′ ∪ {i1}, V1 = V \ (N−i1,0 ∪ {i1}), and let N−i,1 be the in-neighbors of

node i in the graph after the first step. Then, defining

Φ1 =
∑
i∈V1

pi
pi +

∑
j∈N−i,1

pj
,

we can write
Φ1 ≥

∑
i∈V1

pi
pi +

∑
j∈N−i,0

pj
≥ Φ0 − 1.

We apply the very same argument to Φ1 with node i2 (minimizing pi +
∑
j∈N−i,1

pj

over i ∈ V1), to Φ2 with node i3,. . . , to Φs−1 with node is, up until Φs = 0, i.e.,
until no nodes are left in the reduced graph. This gives Φ0 ≤ s = |V ′|, where
V ′ = {i1, i2, . . . , is}. Moreover, since in each step r = 1, . . . , s we remove all remaining
arcs incoming to ir, the graph induced by set V ′ cannot contain cycles.

The claim of Theorem 2 follows from a direct combination of Lemma 1 with
Lemma 10.

A.4. Proof of Theorem 5. The proof uses a variant of the standard multi-
armed bandit lower bound [17]. The intuition is that when we have α(G) nonadjacent
nodes, the problem reduces to an instance of the standard multi-armed bandit (where
information beyond the loss of the action chosen is observed) on α(G) actions.

By Yao’s minimax principle, in order to establish the lower bound, it is enough
to demonstrate some probabilistic adversary strategy, on which the expected regret
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of any deterministic algorithm A is bounded from below by C
√
α(G)T for some

constant C.
Specifically, suppose without loss of generality that we number the nodes in some

largest independent set of G by 1, 2, . . . , α(G), and all the other nodes in the graph
by α(G) + 1, . . . , |V |. Let ε be a parameter to be determined later, and consider the
following joint distribution over stochastic loss sequences:

• Let Z be uniformly distributed on 1, 2, . . . , α(G).
• Conditioned on Z = i, each loss `j,t is independent Bernoulli with parameter

1/2 if j 6= i and j < α(G), is independent Bernoulli with parameter 1/2 − ε
if j = i, and is 1 with probability 1 otherwise.

For each i = 1, . . . , α(G), let Ti be the number of times the node i was chosen by the
algorithm after T rounds. Also, let T∆ denote the number of times some node whose
index is larger than α(G) is chosen after T rounds. Finally, let Ei denote expectation
conditioned on Z = i, and let Pi denote the probability over loss sequences conditioned
on Z = i. We have

max
k∈V

E[LA,T − Lk,T ]

=
1

α(G)

α(G)∑
i=1

Ei
[
LA,T −

(
1
2
− ε
)
T

]

=
1

α(G)

α(G)∑
i=1

Ei

 ∑
j∈{1...α(G)}\i

1
2
Tj +

(
1
2
− ε
)
Ti + T∆ −

(
1
2
− ε
)
T


=

1
α(G)

α(G)∑
i=1

Ei

1
2

α(G)∑
j=1

Tj +
1
2
T∆ +

1
2
T∆ − εTi −

(
1
2
− ε
)
T

 .

Since
∑α(G)
j=1 Tj + T∆ = T , this expression equals

(8)
1

α(G)

α(G)∑
i=1

Ei
[

1
2
T∆ + ε(T − Ti)

]
≥ ε

T − 1
α(G)

α(G)∑
i=1

Ei[Ti]

 .

Now, consider another distribution P0 over the loss sequence, which corresponds to
the distribution above but with ε = 0 (namely, all nodes 1, . . . , α(G) have losses which
are ±1 independently and with equal probability, and all nodes whose index is larger
than α(G) have losses of 1), and denote by E0 the corresponding expectation. We
upper bound the difference between Ei[Ti] and E0[Ti], using information-theoretic
arguments. Let λt be the collection of loss values observed at round t, and λt =
(λ1, . . . , λt). Note that since the algorithm is deterministic, λt−1 determines the
algorithm’s choice of action It at each round t, and hence Ti is determined by λT , and
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thus E0[Ti | λT ] = Ei[Ti | λT ]. We have

Ei[Ti]− E0[Ti] =
∑
λT

Pi(λT )Ei[Ti | λT ]−
∑
λT

P0(λT )E0[Ti | λT ]

=
∑
λT

Pi(λT )Ei[Ti | λT ]−
∑
λT

P0(λT )Ei[Ti|λT ]

≤
∑

λT : Pi(λT )>P0(λT )

(
Pi(λT )− P0(λT )

)
Ei[Ti | λT ]

≤ T
∑

λT : Pi(λT )>P0(λT )

(
Pi(λT )− P0(λT )

)
.

Using Pinsker’s inequality, this is at most

T

√
1
2
Dkl(P0(λT ) ‖Pi(λT )),

where Dkl is the Kullback–Leibler divergence (or relative entropy) between the dis-
tributions Pi and P0. Using the chain rule for relative entropy, this equals

T

√√√√1
2

T∑
t=1

∑
λt−1

P0(λt−1)Dkl
(
P0(λt|λt−1) ‖Pi(λt|λt−1)

)
.

Let us consider any single relative entropy term above. Recall that λt−1 determines
the node It picked at round t. If this node is not i or adjacent to i, then λt is
going to have the same distribution under both Pi and P0, and the relative entropy
is zero. Otherwise, the coordinate of λt corresponding to node i (and that coordinate
only) will have a different distribution: Bernoulli with parameter 1

2 − ε under Pi, and
Bernoulli with parameter 1

2 under P0. The relative entropy term in this case is easily
shown to be − 1

2 log(1−4ε2) ≤ 8 log(4/3) ε2. Therefore, letting SIt
denote the feedback

set at time t, we can upper bound the above by

T

√√√√1
2

T∑
t=1

P0(i ∈ SIt)(8 log(4/3)ε2) = 2Tε

√
log
(

4
3

)
E0
[
|{t : i ∈ SIt}|

]
≤ 2Tε

√
log
(

4
3

)
E0 [Ti + T∆].(9)

We now claim that we can assume E0[T∆] ≤ 0.08
√
α(G)T . To see why, note that if
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E0[T∆] > 0.08
√
α(G)T , then the expected regret under E0 would have been at least

max
k∈V

E0[LA,T − Lk,T ] = E0

T∆ +
1
2

α(G)∑
j=1

Tj

− 1
2
T

= E0

1
2
T∆ +

1
2

T∆ +
α(G)∑
j=1

Tj

− 1
2
T

= E0

[
1
2
T∆ +

1
2
T

]
− 1

2
T

=
1
2

E0[T∆]

> 0.04
√
α(G)T .

So for the adversary strategy defined by the distribution P0, we would get an expected
regret lower bound as required. Thus, it only remains to treat the case where E0[T∆] ≤
0.08

√
α(G)T . Plugging this upper bound into (9), we get overall that

Ei[Ti]− E0[Ti] ≤ 2Tε

√
log
(

4
3

)
E0

[
Ti + 0.08

√
α(G)T

]
.

Therefore, the expected regret lower bound in (8) is at least

ε

T − 1
α(G)

α(G)∑
i=1

E0[Ti]−
1

α(G)

α(G)∑
i=1

2Tε

√
log
(

4
3

)
E0

[
Ti + 0.08

√
α(G)T

]
≥ ε

T − T

α(G)
− 2Tε

√√√√log
(

4
3

)
1

α(G)

α(G)∑
i=1

E0

[
Ti + 0.08

√
α(G)T

]
≥ εT

(
1− 1

α(G)
− 2ε

√
log
(

4
3

)(
T

α(G)
+ 0.08

√
α(G)T

))
.

Since α(G) > 1, we have 1 − 1
α(G) ≥

1
2 , and since T ≥ 0.0064α3(G), we have

0.08
√
α(G)T ≤ T

α(G) . Overall, we can lower bound the expression above by

εT

(
1
2
− 2ε

√
2 log

(
4
3

)
T

α(G)

)
.

Picking ε = 1
8
√

2 log(4/3)T/α(G)
, the expression above is

T

8
√

2 log
( 4

3

)
T

α(G)

1
4
≥ 0.04

√
α(G)T .

This constitutes a lower bound on the expected regret, from which the result follows.
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A.5. Proof of Theorem 6. Fix round t, and let G = (V,D) be the Erdős–
Renyi random graph generated at time t, let N−i be the in-neighborhood of node i,
i.e., the set of nodes j such that (j, i) ∈ D, and denote by d−i the indegree of i. We
need the following lemmas.

Lemma 11. Fix a directed graph G = (V,D). Let p1, . . . , pK be an arbitrary
probability distribution defined over V , f : V → V be an arbitrary permutation of V ,
and Ef denote the expectation w.r.t. a random permutation f . Then, for any i ∈ V ,
we have

Ef

[
pf(i)∑

j : j−→i pf(j)

]
=

1
1 + d−i

.

Proof. Consider selecting an ordered sequence S made up of 1 + d−i nodes of V ,
where S = {f(i)} ∪ {f(j) : j ∈ N−i }. The expectation Ef [ pf(i)∑

j : j−→i
pf(j)

] is an average

over the K(K−1) · · · (K−d−i + 1) terms corresponding to selecting such S uniformly
at random. We can write

Ef

[
pf(i)∑

j : j−→i pf(j)

]

= Ef

[
pf(i)

pf(i) +
∑
j∈N−i

pf(j)

]

=
1

K(K − 1) . . . (K − d−i + 1)

∑
S⊂V,|S|=1+d−i

1
1 + d−i

∑
i∈S

pi
pi +

∑
j∈S,j 6=i pj

=
1

K(K − 1) . . . (K − d−i + 1)

∑
S⊂V,|S|=1+d−i

1
1 + d−i

∑
i∈S

pi∑
j∈S pj

=
1

K(K − 1) . . . (K − d−i + 1)

∑
S⊂V,|S|=1+d−i

1
1 + d−i

=
1

1 + d−i
.

Lemma 12. Let p1, . . . , pK be an arbitrary probability distribution defined over V ,
and let E denote the expectation w.r.t. the Erdős-Renyi random draw of arcs at time
t. Then, for any fixed i ∈ V , we have

E

[
pi∑

j : j−→i pj

]
=

1
rK

(
1− (1− r)K

)
.

Proof. For the given i ∈ V and time t, consider the Bernoulli random variables
Xj , j ∈ V \ {i}, where Xj = 1 if arc (j, i) is generated, and Xj = 0 otherwise, and
denote by Ej : j 6=i the expectation w.r.t. all of them. We symmetrize E[ pi∑

j : j−→i
pj

] by
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means of a random permutation f , as in Lemma 11. We can write

E

[
pi∑

j : j−→i pj

]
= Ej : j 6=i

[
pi

pi +
∑
j : j 6=iXjpj

]

= Ej : j 6=iEf

[
pf(i)

pf(i) +
∑
j : j 6=iXf(j)pf(j)

]
(by symmetry)

= Ej : j 6=i

[
1

1 +
∑
j : j 6=iXj

]
(from Lemma 11)

=
K−1∑
i=0

(
K − 1
i

)
ri(1− r)K−1−i 1

i+ 1

=
1
rK

K−1∑
i=0

(
K

i+ 1

)
ri+1(1− r)K−1−i

=
1
rK

(
1− (1− r)K

)
.

At this point, we follow the proof of Lemma 1 up until (7). We take an expectation
EG1,...,GT

w.r.t. the randomness in generating the sequence of graphsG1, . . . , GT . This
yields

T∑
t=1

EG1,...,GT

[∑
i∈V

pi,t `i,t

]
≤

T∑
t=1

`k,t +
lnK
η

+
η

2

T∑
t=1

EG1,...,GT
[Qt] .

We use Lemma 12 to upper bound EG1,...,GT
[Qt] by 1

r

(
1− (1− r)K

)
, and we take the

outer expectation to remove conditioning, as in the proof of Lemma 1. This concludes
the proof.

Appendix B. Technical lemmas and proofs from section 4.1. Again,
throughout this appendix, Et[ · ] is a shorthand for the conditional expectation E

[
· |

{`i,r}i∈V , {Si,r}i∈V , r = 1, . . . , t, I1, . . . , It−1
]
. Moreover, as we did in Appendix A, in

round t we first condition on the history {`i,r}i∈V , {Si,r}i∈V , r = 1, . . . , t, I1, . . . , It−1,
and then we take an outer expectation with respect to that history.

B.1. Proof of Lemma 7. We start to bound the contribution to the overall
regret of an instance indexed by b. When clear from the context, we remove the
superscript b from ν(b), w(b)

i,t , p(b)
i,t , and other related quantities. For any t ∈ T (b) we
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have
Wt+1

Wt
=
∑
i∈V

wi,t+1

Wt

=
∑
i∈V

wi,t
Wt

exp
(
−(ν/2b) ̂̀i,t)

=
∑
i∈Rt

pi,t − ν/|Rt|
1− ν

exp
(
−(ν/2b) ̂̀i,t)+

∑
i 6∈Rt

pi,t
1− ν

exp
(
−(ν/2b) ̂̀i,t)

≤
∑
i∈Rt

pi,t − ν/|Rt|
1− ν

(
1− ν

2b
̂̀
i,t +

1
2

( ν
2b
̂̀
i,t

)2
)

+
∑
i6∈Rt

pi,t
1− ν

(
1− ν

2b
̂̀
i,t +

1
2

( ν
2b
̂̀
i,t

)2
)

(using e−x ≤ 1− x+ x2/2 for all x ≥ 0)

≤ 1− ν/2b

1− ν
∑
i∈V

pi,t ̂̀i,t +
ν2/2b

1− ν
∑
i∈Rt

̂̀
i,t

|Rt|
+

1
2

(ν/2b)2

1− ν
∑
i∈V

pi,t
(̂̀
i,t

)2
.

Taking logs, upper bounding, and summing over t ∈ T (b) yields

ln
W|T (b)|+1

W1
≤ − ν/2

b

1− ν
∑
t∈T (b)

∑
i∈V

pi,t ̂̀i,t +
ν2/2b

1− ν
∑
t∈T (b)

∑
i∈Rt

̂̀
i,t

|Rt|

+
1
2

(ν/2b)2

1− ν
∑
t∈T (b)

∑
i∈V

pi,t
(̂̀
i,t

)2
.

Moreover, we also have

ln
W|T (b)|+1

W1
≥ ln

wk,|T (b)|+1

W1
= − ν

2b
∑
t∈T (b)

̂̀
k,t − lnK.

Putting this together, rearranging, and using 1− ν ≤ 1 gives∑
t∈T (b)

∑
i∈V

pi,t ̂̀i,t ≤ ∑
t∈T (b)

̂̀
k,t +

2b lnK
ν

+ ν
∑
t∈T (b)

∑
i∈Rt

̂̀
i,t

|Rt|
+

ν

2b+1

∑
t∈T (b)

∑
i∈V

pi,t
(̂̀
i,t

)2
.

Reintroducing the notation ν(b) and summing over b = 0, 1, . . . , blog2Kc gives

T∑
t=1

(∑
i∈V

p
(bt)
i,t
̂̀(bt)
i,t − ̂̀k,t

)

≤
blog2Kc∑
b=0

2b lnK
ν(b) +

T∑
t=1

∑
i∈Rt

ν(bt) ̂̀(bt)
i,t

|Rt|
+

T∑
t=1

ν(bt)

2bt+1

∑
i∈V

p
(bt)
i,t

(̂̀(bt)
i,t

)2
.(10)

Now, similarly to the proof of Lemma 1, we have that Et
[̂̀(bt)
i,t

]
= `i,t and Et

[
(̂̀(bt)
i,t )2

]
≤

1
q
(bt)
i,t

for any i and t. Moreover,

T∑
t=1

∑
i∈Rt

ν(bt)`i,t
|Rt|

≤
T∑
t=1

∑
i∈Rt

ν(bt)

|Rt|
=

T∑
t=1

ν(bt) =
blog2Kc∑
b=0

ν(b)|T (b)|
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and
T∑
t=1

ν(bt)

2bt+1Q
(bt)
t =

blog2Kc∑
b=0

ν(b)

2b+1

∑
t∈T (b)

Q
(b)
t .

Therefore, by taking expectations on both sides of (10), and recalling that T (b) is a
random variable (since the adversary adaptively decides which steps t fall into T (b)),
we get

E
[
LA,T − Lk,T

]
≤
blog2Kc∑
b=0

E

2b lnK
ν(b) + ν(b)|T (b)|+ ν(b)

2b+1

∑
t∈T (b)

Q
(b)
t


=
blog2Kc∑
b=0

2b lnK
ν(b) + ν(b)E

 ∑
t∈T (b)

(
1 +

Q
(b)
t

2b+1

) .(11)

This establishes (4).
In order to prove inequality (5), we tune each ν(b) separately through a doubling

trick. More specifically, for each b = 0, 1, . . . , blog2Kc, we use a sequence ν
(b)
r =√

(2b lnK)/2r for r = 0, 1, . . . . We initially run the algorithm with ν
(b)
0 . Whenever

the algorithm is running with ν
(b)
r and detects that the condition

∑
sQ

(b)
s > 2r is

satisfied, the sum being over all s so far in T (b), then we restart the algorithm with
ν

(b)
r+1.

Now, because the contribution of instance b to (11) is

2b lnK
ν(b) + ν(b)

∑
t∈T (b)

Q
(b)
t ,

the regret we pay when using any ν
(b)
r is at most 2

√
(2b lnK)2r. The largest r we

need is
⌈
log2Q

(b)⌉
and

dlog2Q
(b)e∑

r=0

2r/2 < 5
√
Q

(b)
.

Since we pay regret at most 1 for each restart (more precisely, during the last round
before each restart takes place), we get

E
[
LA,T − Lk,T

]
≤ c

blog2Kc∑
b=0

E


√√√√√(lnK)

2b|T (b)|+ 1
2

∑
t∈T (b)

Q
(b)
t

+
⌈
log2Q

(b)⌉
for some positive constant c. Taking into account that

blog2Kc∑
b=0

2b|T (b)| ≤ 2
T∑
t=1

|Rt|

blog2Kc∑
b=0

∑
t∈T (b)

Q
(b)
t =

T∑
t=1

Q
(bt)
t

blog2Kc∑
b=0

⌈
log2Q

(b)⌉
= O

(
(lnK) ln(KT )

)
,
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we obtain

E
[
LA,T − Lk,T

]
≤ c

blog2Kc∑
b=0

E


√√√√√(lnK)

2b|T (b)|+ 1
2

∑
t∈T (b)

Q
(b)
t


+O

(
(lnK) ln(KT )

)

≤ c blog2KcE


√√√√ lnK
blog2Kc

T∑
t=1

(
2|Rt|+

1
2
Q

(bt)
t

)+O
(
(lnK) ln(KT )

)

= O

(lnK) E


√√√√ T∑

t=1

(
4|Rt|+Q

(bt)
t

)+ (lnK) ln(KT )

 ,

as desired.

B.2. Proof of Theorem 8. The following graph-theoretic lemma turns out to
be fairly useful for analyzing directed settings. It is a directed-graph counterpart to
a well-known result [11, 48] holding for undirected graphs.

Lemma 13. Let G = (V,D) be a directed graph, with V = {1, . . . ,K}. Let d−i be
the indegree of node i, and let α = α(G) be the independence number of G. Then

K∑
i=1

1
1 + d−i

≤ 2α ln
(

1 +
K

α

)
.

Proof. We proceed by induction, starting from the originalK-node graphG = GK
with indegrees {d−i }Ki=1 = {d−i,K}Ki=1 and independence number α = αK , and then pro-
gressively reduce G by eliminating nodes and incident (both departing and incoming)
arcs, thereby obtaining a sequence of smaller and smaller graphsGK , GK−1, GK−2, . . . ,
associated indegrees {d−i,K}Ki=1, {d−i,K−1}

K−1
i=1 , {d−i,K−2}

K−2
i=1 , . . . , and independence

numbers αK , αK−1, αK−2, . . . . Specifically, in step s we sort nodes i = 1, . . . , s of
Gs in nonincreasing value of d−i,s, and we obtain Gs−1 from Gs by eliminating node
1 (i.e., the one having the largest indegree among the nodes of Gs), along with its
incident arcs. On all such graphs, we use the classical Turan theorem (e.g., [4]) stating
that any undirected graph with ns nodes and ms edges has an independent set of size
at least ns

2ms
ns

+1
. This implies that if Gs = (Vs, Ds), then αs satisfies10

(12)
|Ds|
|Vs|

≥ |Vs|
2αs
− 1

2
.

We then start from GK . We can write

d−1,K = max
i=1...K

d−i,K ≥
1
K

K∑
i=1

d−i,K =
|DK |
|VK |

≥ |VK |
2αK

− 1
2
.

10Note that |Ds| is at least as large as the number of edges of the undirected version of Gs which
the independence number αs actually refers to.
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Hence,

K∑
i=1

1
1 + d−i,K

=
1

1 + d−1,K
+

K∑
i=2

1
1 + d−i,K

≤ 2αK
αK +K

+
K∑
i=2

1
1 + d−i,K

≤ 2αK
αK +K

+
K−1∑
i=1

1
1 + d−i,K−1

,

where the last inequality follows from d−i+1,K ≥ d−i,K−1, i = 1, . . . ,K − 1, due to the
arc elimination trasforming GK into GK−1. Recursively applying the same argument
to GK−1 (i.e., to the sum

∑K−1
i=1

1
1+d−i,K−1

) and then iterating all the way to G1 yields

the upper bound
K∑
i=1

1
1 + d−i,K

≤
K∑
i=1

2αi
αi + i

.

Combining with αi ≤ αK = α and the fact that α
α+i increases in α, this is at most

2α
∑K
i=1

1
α+i ≤ 2α ln

(
1 + K

α

)
, concluding the proof.

The next lemma relates the size |Rt| of the dominating set Rt computed by the
Greedy Set Cover algorithm of [20], operating on the time-t feedback system {Si,t}i∈V ,
to the independence number α(Gt) and the domination number γ(Gt) of Gt.

Lemma 14. Let {Si}i∈V be a feedback system, and let G = (V,D) be the induced
directed graph, with vertex set V = {1, . . . ,K}, independence number α = α(G), and
domination number γ = γ(G). Then the dominating set R constructed by the Greedy
Set Cover algorithm (see section 2) satisfies

|R| ≤ min
{
γ(1 + lnK), d2α lnKe+ 1

}
.

Proof. As recalled in section 2, the Greedy Set Cover algorithm of [20] achieves
|R| ≤ γ(1 + lnK). In order to prove the other bound, consider the sequence of graphs
G = G1, G2, . . . , where each Gs+1 = (Vs+1, Ds+1) is obtained by removing from Gs
the vertex is selected by the Greedy Set Cover algorithm, together with all the vertices
in Gs that are dominated by is, and all arcs incident to these vertices. By definition
of the algorithm, the outdegree d+

s of is in Gs is largest in Gs. Hence,

d+
s ≥

|Ds|
|Vs|

≥ |Vs|
2αs
− 1

2
≥ |Vs|

2α
− 1

2

by Turan’s theorem (e.g., [4]), where αs is the independence number of Gs and α ≥ αs.
This shows that

|Vs+1| = |Vs| − d+
s − 1 ≤ |Vs|

(
1− 1

2α

)
≤ |Vs|e−1/(2α).

Iterating, we obtain |Vs| ≤ K e−(s−1)/(2α). Choosing s = d2α lnKe+ 1 gives |Vs| < 1,
thereby covering all nodes. Hence the dominating set R = {i1, . . . , is} so constructed
satisfies |R| ≤ d2α lnKe+ 1.



NONSTOCHASTIC MAB WITH GRAPH-STRUCTURED FEEDBACK 1813

Lemma 15. If a, b ≥ 0 and a+ b ≥ B > A > 0, then

a

a+ b−A
≤ a

a+ b
+

A

B −A
.

Proof.

a

a+ b−A
− a

a+ b
=

aA

(a+ b)(a+ b−A)
≤ A

a+ b−A
≤ A

B −A
.

We now lift Lemma 13 to a more general statement.

Lemma 16. Let G = (V,D) be a directed graph, with vertex set V = {1, . . . ,K},
and arc set D. Let α be the independence number of G, R ⊆ V be a dominating set
for G of size r = |R|, and p1, . . . , pK be a probability distribution defined over V , such
that pi ≥ β > 0, for i ∈ R. Then

K∑
i=1

pi∑
j : j−→i pj

≤ 2α ln

(
1 +
dK

2

rβ e+K

α

)
+ 2r.

Proof. The idea is to appropriately discretize the probability values pi, and then
upper bound the discretized counterpart of

∑K
i=1

pi∑
j : j−→i

pj
by reducing to an ex-

pression that can be handled by Lemma 13. In order to make this discretization
effective, we need to single out the terms pi∑

j : j−→i
pj

corresponding to nodes i ∈ R.

We first write

K∑
i=1

pi∑
j : j−→i pj

=
∑
i∈R

pi∑
j : j−→i pj

+
∑
i/∈R

pi∑
j : j−→i pj

≤ r +
∑
i/∈R

pi∑
j : j−→i pj

(13)

and then focus on (13).
Let us discretize the unit interval11 (0, 1] into subintervals

(
j−1
M , jM

]
, j = 1, . . . ,M ,

where M = dK
2

rβ e. Let p̂i = j/M be the discretized version of pi, where j is the
unique integer such that p̂i − 1/M < pi ≤ p̂i. We focus on a single node i /∈ R with
in-neighborhood N−i and indegree d−i = |N−i |. Introduce the shorthand notation
Pi =

∑
j : j−→i,j 6=i pj and P̂i =

∑
j : j−→i,j 6=i p̂j . We have that P̂i ≥ Pi ≥ β, since i is

dominated by some node j ∈ R ∩ N−i such that pj ≥ β. Moreover, Pi > P̂i −
d−i
M ≥

11The zero value is not of concern here, because if pi = 0, then the corresponding term in (13)
can be disregarded.
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β − d−i
M > 0, and p̂i + P̂i ≥ β. Hence, for any fixed node i /∈ R, we can write

pi
pi + Pi

≤ p̂i
p̂i + Pi

<
p̂i

p̂i + P̂i −
d−i
M

≤ p̂i

p̂i + P̂i
+

d−i /M

β − d−i /M

=
p̂i

p̂i + P̂i
+

d−i
βM − d−i

<
p̂i

p̂i + P̂i
+

r

K − r
,

where in the second-to-last inequality we used Lemma 15 with a = p̂i, b = P̂i, A =
d−i /M , and B = β > d−i /M . Recalling (13) and summing over i then gives

(14)
K∑
i=1

pi
pi + Pi

≤ r +
∑
i/∈R

p̂i

p̂i + P̂i
+ r =

∑
i/∈R

p̂i

p̂i + P̂i
+ 2r.

Therefore, we continue by bounding from above the right-hand side of (14). We first
observe that

(15)
∑
i/∈R

p̂i

p̂i + P̂i
=
∑
i/∈R

ŝi

ŝi + Ŝi
and Ŝi =

∑
j : j−→i,j 6=i

ŝj ,

where ŝi = Mp̂i, i = 1, . . . ,K, are integers. Based on the original graph G, we
construct a new graph Ĝ made up of connected cliques. In particular:

• Each node i of G is replaced in Ĝ by a clique Ci of size ŝi; nodes within Ci
are connected by length-two directed cycles.

• If arc (i, j) is in G, then for each node of Ci draw an arc toward each node
of Cj .

We would like to apply Lemma 13 to Ĝ. Note that, by the above construction,
• the independence number of Ĝ is the same as that of G,
• the indegree d̂−k of each node k in clique Ci satisfies d̂−k = ŝi − 1 + Ŝi, and
• the total number of nodes of Ĝ is

K∑
i=1

ŝi = M

K∑
i=1

p̂i < M

K∑
i=1

(
pi +

1
M

)
= M +K.

Hence, we can apply Lemma 13 to Ĝ with indegrees d̂−k and find that

∑
i/∈R

ŝi

ŝi + Ŝi
=
∑
i/∈R

∑
k∈Ci

1

1 + d̂−k
≤

K∑
i=1

∑
k∈Ci

1

1 + d̂−k
≤ 2α ln

(
1 +

M +K

α

)
.

Combining (14) and (15) and recalling the value of M gives the claimed result.
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Proof of Theorem 8. We are now ready to derive the proof of the theorem.
We start from the upper bound (5) in the statement of Lemma 7. We want to bound
the quantities |Rt| and Q

(bt)
t occurring therein at any step t in which a restart does

not occur—the regret for the time steps when a restart occurs is already accounted
for by the term O

(
(lnK) ln(KT )

)
in (5). Now, Lemma 14 gives

|Rt| = O
(
α(Gt) lnK

)
.

If νt = ν
(bt)
t for any time t when a restart does not occur, it is not hard to see that

νt = Ω
(√

(lnK)/(KT )
)
. Moreover, Lemma 16 states that

Qt = O
(
α(Gt) ln(K2/νt) + |Rt|

)
= O

(
α(Gt) ln(K/νt)

)
.

Hence,
Qt = O

(
α(Gt) ln(KT )

)
.

Putting this together as in (5) and moving the expectation inside the square root by
Jensen’s inequality gives the desired result.

Appendix C. Technical lemmas and proofs from section 4.2. As in the
previous appendices, we will use here Et[ · ] as shorthand for the conditional expec-
tation E

[
· | {`i,r}i∈V , {Si,r}i∈V , r = 1, . . . , t, I1, . . . , It−1

]
. Under this conditioning,

we can treat random variables such as pi,t, `i,t, and Si,t as fixed, and only consider
randomness with respect to the algorithm’s play at round t.

C.1. Proof of Theorem 9. The following lemmas are of preliminary impor-
tance in order to understand the behavior of the ELP.P algorithm. Recall that for a
directed graph G = (V,D), with vertex set V = {1, . . . ,K} and arc set D, we write
{j : j −→ i} to denote the set of nodes j which are in-neighbors of node i, including
node i itself. Similarly, {j : i −→ j} is the set of out-neighbors of node i where, again,
node i is included in this set. Let ∆K be the K-dimensional probability simplex.

Lemma 17. Consider a directed graph G = (V,D), with vertex set V = {1, . . . ,K}
and arc set D. Let mas(G) be the size of a largest acyclic subgraph of G. If s1, . . . , sK
is a solution to the linear program

(16) max
(s1,...,sK)∈∆K

min
i∈V

 ∑
j : j−→i

sj

 ,

then we have
max
i∈V

1∑
j : j−→i sj

≤ mas(G).

Proof. We first show that the above inequality holds when the right-hand side is
replaced by γ(G), the domination number of G. Then let R be a smallest (min-
imal) dominating set of G, so that |R| = γ(G). Consider the valid assignment
si = I{i ∈ R}/γ(G) for all i ∈ V . This implies that for all i,

∑
j : j−→i sj ≥ 1/γ(G),

because any i ∈ V either is in R or is dominated by a node in R. Therefore, for this
particular assignment, we have

max
i∈V

1∑
j : j−→i sj

≤ γ(G).
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The assignment returned by the linear program might be different, but it can only
make the left-hand side above smaller,12 so the inequality still holds. Finally, γ(G) ≤
mas(G) because any set M ⊆ V of nodes belonging to a maximal acyclic subgraph
of G is itself a dominating set for G. In fact, assuming the contrary, let j be any
node such that j /∈ M . Then, including j in M would create a cycle (because of
the maximality of M), implying that j is already dominated by some other node
in M .

Lemma 18. Consider a directed graph G = (V,D), with vertex set V = {1, . . . ,K}
and arc set D. Let mas(G) be the size of a largest acyclic subgraph of G. Let
(p1, . . . , pK) ∈ ∆K and (s1, . . . , sK) ∈ ∆K satisfy

K∑
i=1

pi∑
j : j−→i pj

≤ mas(G) and max
i∈V

1∑
j : j−→i sj

≤ mas(G)

with pi ≥ νsi, i ∈ V , for some ν > 0. Finally, introduce the shorthand qi =
∑
j : j−→i pj

for i ∈ V . Then the following relations hold:
1.
∑K
i=1

pi

q2j
≤ mas2(G)

ν ;

2.
∑K
i=1 pi

∑
j : i−→j

pj

qj
= 1;

3.
∑K
i=1 pi

∑
j : i−→j

pj

q2j
≤ mas(G);

4.
∑K
i=1 pi (

∑
j : i−→j

pj

qj
)2 ≤ mas(G);

5.
∑K
i=1 pi (

∑
j : i−→j

pj

q2j
)2 ≤ mas3(G)

ν .

Proof.
1. Applying the assumptions in the lemma, we obtain

K∑
i=1

pi
q2
i

=
K∑
i=1

(
pi
qi

) (
1
qi

)

≤

(
K∑
i=1

pi
qi

) (
max
i∈V

1
qi

)

=

(
K∑
i=1

pi
qi

) (
max
i∈V

1∑
j : j−→i pj

)

≤ mas(G) max
i∈V

1

ν
(∑

j : j−→i sj

)
≤ mas2(G)

ν
.

2. We have
K∑
i=1

∑
j : i−→j

pi pj
qj

=
K∑
j=1

pj qj
qj

=
K∑
j=1

pj = 1.

3. Similar to the previous item, we can write

K∑
i=1

∑
j : i−→j

pi pj
q2
j

=
K∑
j=1

pj qj
q2
j

=
K∑
j=1

pj
qj
≤ mas(G).

12This can be seen by noting that (16) is equivalent to min(s1,...,sK)∈∆K
maxi∈V

1∑
j : j−→i

sj
.
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4. From item 2, and the assumptions of this lemma, we can write

K∑
i=1

pi

 ∑
j : i−→j

pj
qj

2

=
K∑
i=1

pi ∑
j : i−→j

pj
qj

  ∑
j : i−→j

pj
qj


≤

 K∑
i=1

pi
∑

j : i−→j

pj
qj

  K∑
j=1

pj
qj


=

K∑
j=1

pj
qj
≤ mas(G).

5. From items 1 and 3 above, we can write

K∑
i=1

pi

 ∑
j : i−→j

pj
q2
j

2

=
K∑
i=1

pi ∑
j : i−→j

pj
q2
j

  ∑
j : i−→j

pj
q2
j


≤

 K∑
i=1

pi
∑

j : i−→j

pj
q2
j

 (
K∑
i=1

pi
q2
i

)

≤ mas(G)
mas2(G)

ν

=
mas3(G)

ν
,

concluding the proof.

Lemma 18 applies, in particular, to the distributions st = (s1,t, . . . , sK,t) and
pt = (p1,t, . . . , pK,t) computed by ELP.P at round t. The condition for pt follows from
Lemma 10, while the condition for st follows from Lemma 17. In other words, putting
together Lemmas 10 and 17 establishes the following corollary.

Corollary 19. Let pt = (p1,t, . . . , pK,t) ∈ ∆K and st = (s1,t, . . . , sK,t) ∈ ∆K be
the distributions generated by ELP.P at round t. Then,

K∑
i=1

pi,t∑
j : j

t−→i
pj,t
≤ mas(G) and max

i∈V

1∑
j : j

t−→i
sj,t
≤ mas(G),

with pi,t ≥ νt si,t, for all i = 1, . . . ,K.

For the next result, we need the following version of Freedman’s inequality [23]
(see also [17, Lemma A.8]).

Lemma 20. Let X1, . . . , XT be a martingale difference sequence with respect to
the filtration {Ft}t=1,...,T , and with |Xi| ≤ B almost surely for all i. Also, let V > 0
be a fixed upper bound on

∑T
t=1 E

[
X2
t | Ft−1

]
. Then for any δ ∈ (0, 1), it holds with

probability at least 1− δ that

T∑
t=1

Xt ≤

√
2 ln

(
1
δ

)
V +

B

2
ln
(

1
δ

)
.
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Lemma 21. Let {at}Tt=1 be an arbitrary sequence of positive numbers, and let
st = (s1,t, . . . , sK,t) and pt = (p1,t, . . . , pK,t) be the probability distributions computed
by ELP.P at the tth round. Then, with probability at least 1− δ,

T∑
t=1

K∑
i=1

atpi,t(ĝi,t − gi,t) ≤

√√√√2 ln
(

1
δ

) T∑
t=1

a2
t mas(Gt)

+
1
2

ln
(

1
δ

)
max

t=1,...,T

(
at mas(Gt)

)
+ β

T∑
t=1

at mas(Gt).(17)

Proof. Recall that qi,t =
∑
j : j

t−→i
pj,t for i ∈ V , and let

g̃i,t =
gi,t I{i ∈ SIt,t}

qi,t

with gi,t = 1 − `i,t. Note that ĝi,t in Algorithm 3 satisfies ĝi,t = g̃i,t + β
qi,t

, so the
left-hand side of (17) equals

T∑
t=1

K∑
i=1

atpi,t(g̃i,t − gi,t) + β

T∑
t=1

K∑
i=1

atpi,t
qi,t

,

which by Corollary 19 is at most

(18)
T∑
t=1

K∑
i=1

atpj,t(g̃i,t − gi,t) + β

T∑
t=1

at mas(Gt).

It is easy to verify that
∑K
i=1 atpi,t(g̃i,t − gi,t) is a martingale difference sequence

(indexed by t), because qi,t > 0 and therefore Et[g̃i,t] = gi,t. Moreover,

K∑
i=1

atpi,t (g̃i,t − gi,t) =
K∑
i=1

atpi,t

(
I{i ∈ SIt,t}

qi,t
− 1
)
gi,t

≤ at

K∑
i=1

pi,t
qi,t

≤ max
t=1,...,T

at mas(Gt),

and

Et

( K∑
i=1

atpi,t(g̃i,t − gi,t)

)2
 ≤ a2

t Et

( K∑
i=1

pi,tg̃i,t

)2


≤ a2
t

K∑
i=1

pi,t

 ∑
j : i

t−→j

pj,t
1
qj,t


2

≤ a2
t mas(Gt)
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by Lemma 18, item 4. Therefore, by invoking Lemma 20, we get that with probability
at least 1− δ,

T∑
t=1

K∑
j=1

atpj,t(g̃j,t − gj,t) ≤

√√√√2 ln
(

1
δ

) T∑
t=1

a2
t mas(Gt) +

1
2

ln
(

1
δ

)
max

t=1,...,T
at mas(Gt).

Substituting into (18), the lemma follows.

Lemma 22. Let st = (s1,t, . . . , sK,t) and pt = (p1,t, . . . , pK,t) be the probability
distributions computed by ELP.P, run with β ≤ 1/4, at round t. Then, with probability
at least 1− δ,

T∑
t=1

K∑
i=1

pi,tĝ
2
i,t ≤

T∑
t=1

(
β2 mas2(Gt)

νt
+ 2 mas(Gt)

)

+

√√√√2 ln
(

1
δ

) T∑
t=1

(
4β2 mas4(Gt)

ν2
t

+
3 mas3(Gt)

νt

)

+ ln
(

1
δ

)
max

t=1,...,T

mas2(Gt)
νt

.

Proof. Recall that qi,t =
∑
j : j

t−→i
pj,t for i ∈ V . By the way we defined ĝi,t and

Lemma 18, item 1, we have that

K∑
i=1

pi,tĝ
2
i,t ≤

K∑
i=1

pi,t

(
1 + β

qi,t

)2

≤ (1 + β)2mas2(Gt)
νt

.

Moreover, from gi,t ≤ 1, and again using Lemma 18, item 1, we can write

Et


 K∑
j=1

pj,tĝ
2
j,t

2
 ≤ K∑

i=1

pi,t

 K∑
j=1

pj,t

(qj,t)
2

(
I{i t−→ j}+ β

)2

2

=
K∑
i=1

pi,t

β2
K∑
j=1

pj,t

(qj,t)
2 + (2β + 1)

∑
j : i

t−→j

pj,t

(qj,t)
2


2

≤
K∑
i=1

pi,t

β2 mas2(Gt)
νt

+ (2β + 1)
∑

j : i
t−→j

pj,t

(qj,t)
2


2

,

which, by expanding, using Lemma 18, items 3 and 5, and slightly simplifying, is at
most

(β4 + 2β2(2β + 1)) mas4(Gt)
ν2
t

+
(2β + 1)2 mas3(Gt)

νt
≤ 4β2 mas4(Gt)

ν2
t

+
3 mas3(Gt)

νt
,

the last inequality exploiting the assumption β ≤ 1/4. Invoking Lemma 20 we get
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that with probability at least 1− δ

T∑
t=1

K∑
i=1

pi,tĝ
2
i,t ≤

T∑
t=1

K∑
i=1

pi,tEt[ĝ2
i,t] +

√√√√2 ln
(

1
δ

) T∑
t=1

(
4β2 mas4(Gt)

ν2
t

+
3 mas3(Gt)

νt

)

+
(1 + β)2

2
ln
(

1
δ

)
max
t=1...T

mas2(Gt)
νt

.(19)

Finally, from gi,t ≤ 1, Lemma 18, item 1, and the assumptions of this lemma, we have

K∑
i=1

pi,tEt[ĝ2
i,t] ≤

K∑
i=1

pi,t

K∑
j=1

pj,t

(
I{j t−→ i}+ β

qi,t

)2

= β2
K∑
i=1

pi,t

(qi,t)
2 + (2β + 1)

K∑
i=1

pi,t
∑

j : j
t−→i

pj,t

(qi,t)
2

= β2
K∑
i=1

pi,t

(qi,t)
2 + (2β + 1)

K∑
i=1

pi,t
qi,t

≤ β2 mas2(Gt)
νt

+ (2β + 1) mas(Gt)

≤ β2 mas2(Gt)
νt

+ 2 mas(Gt),

where we used again β ≤ 1/4. Plugging this back into (19) the result follows.

Lemma 23. Suppose that the ELP.P algorithm is run with β ≤ 1/4. Then it holds
with probability at least 1− δ that for any i = 1, . . . ,K,

T∑
t=1

ĝi,t ≥
T∑
t=1

gi,t −
ln(K/δ)

β
.

Proof. The lemma, including its proof, is very similar to the one used in the
analysis of the standard Exp3.P algorithm (see [17, Lemma 6.7]) and is provided here
for completeness. Let λ > 0 be a parameter to be specified later. Since exp(x) ≤
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1 + x+ x2 for x ≤ 1, we have by definition of ĝi,t that

Et
[
exp (λ(gi,t − ĝi,t))

]
= Et

[
exp

(
λ

(
gi,t −

gi,tI{It
t−→ i}

qi,t

)
− βλ

qi,t

)]

≤

1 + Et

[
λ

(
gi,t −

gi,tI{It
t−→ i}

qi,t

)]
+ Et

(λ(gi,t − gi,tI{It
t−→ i}

qi,t

))2


× exp
(
− βλ
qi,t

)

≤

1 + 0 + λ2Et

(gi,tI{It t−→ i}
qi,t

)2
 exp

(
− βλ
qi,t

)

≤

1 + λ2
∑

j : j
t−→i

pj,t

(qi,t)
2

 exp
(
− βλ
qi,t

)

=
(

1 +
λ2

qi,t

)
exp

(
− βλ
qi,t

)
.

Picking λ = β and using the fact that (1+x) exp(−x) ≤ 1, we get that this expression
is at most 1. As a result, we have

Et

[
exp

(
λ

T∑
t=1

(gi,t − ĝi,t)

)]
≤ 1.

This holds for the conditional expectation Et. Taking expectations, we can remove
the conditioning and get that

E

[
exp

(
λ

T∑
t=1

(gi,t − ĝi,t)

)]
≤ 1.

Now, by a standard Chernoff technique, we know that for any λ > 0,

P

(
T∑
t=1

(gi,t − ĝi,t) > ε

)
≤ exp(−λε)E

[
exp

(
λ

T∑
t=1

(gi,t − ĝi,t)

)]
.

In particular, for our choice of λ, we get the bound

P

(
T∑
t=1

(gi,t − ĝi,t) > ε

)
≤ exp (−βε) .

Substituting δ = exp(−βε), solving for ε, and using a union bound to make the result
hold simultaneously for all i, the result follows.

Proof of Theorem 9. With these key lemmas in hand, we can now prove
Theorem 9. We have

(20)
Wt+1

Wt
=
∑
i∈V

wi,t+1

Wt
=
∑
i∈V

wi,t
Wt

exp(ηĝi,t).
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Now, by definition of qi,t and νt in Algorithm 3 we have

qi,t ≥ νt
∑

j : j
t−→i

sj,t ≥ (1 + β) η

for all i ∈ V , so that

ηĝj,t ≤ ηmax
i∈V

(
1 + β

qi,t

)
≤ 1.

Using the definition of pi,t and the inequality exp(x) ≤ 1 + x+ x2 for any x ≤ 1, we
can then upper bound the right-hand side of (20) by

∑
i∈V

pi,t − νtsi,t
1− νt

(
1 + ηĝi,t + η2ĝ2

i,t

)
≤ 1 +

η

1− νt

∑
i∈V

pi,tĝi,t +
η2

1− νt

K∑
i=1

pi,tĝ
2
i,t.

Taking logarithms and using the fact that ln(1 + x) ≤ x, we get

ln
(
Wt+1

Wt

)
≤ η

1− νt

∑
i∈V

pi,tĝi,t +
η2

1− νt

∑
i∈V

pi,tĝ
2
i,t.

Summing over all t, and canceling the resulting telescopic series, we get

(21) ln
(
WT+1

W1

)
≤

T∑
t=1

∑
i∈V

η

1− νt
pi,tĝi,t +

T∑
t=1

∑
i∈V

η2

1− νt
pi,tĝ

2
i,t.

Also, we have

(22) ln
(
WT+1

W1

)
≥ ln

(
maxk wk,T+1

W1

)
= η ·max

k

T∑
t=1

ĝk,t − lnK.

Combining (21) with (22) and slightly rearranging and simplifying, we get

max
k

T∑
t=1

ĝk,t −
T∑
t=1

∑
i∈V

pi,tĝi,t

≤ lnK
η

+
η

1− max
t=1,...,T

νt

T∑
t=1

∑
i∈V

pi,tĝ
2
i,t +

1
1− max

t=1,...,T
νt

T∑
t=1

∑
i∈V

νtpi,tĝi,t.(23)

In what follows, we apply the various lemmas, using a union bound. To keep things
manageable, we will use asymptotic notation to deal with second-order terms. In par-
ticular, we will use Õ notation to hide numerical constants and logarithmic factors.13

Note that by definition of β and νt, as well as Corollary 19, it is easy to verify that

(24) β = Õ(η), νt = Õ(η mas(Gt)), νt ∈
[
η,

1
2

]
.

13Technically, Õ(f) = O(f logO(1) f). In our Õ we also ignore factors that depend logarithmically
on K and 1/δ.
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Specifically, the bound for β is by definition, and the bound for νt holds since by
Lemma 17 and the assumptions that η ≤ 1/(3K) and β ≤ 1/4 we have

νt =
(1 + β)η

mini∈V
∑
j : j

t−→i
sj,t

≤ (1 + β)η mas(Gt)

≤ (1 + β) max(Gt)
3K

≤ 1 + 1/4
3

< 1/2.

We now collect the main components required for the proof. First, by Lemma 21, we
have with probability at least 1− δ that

T∑
t=1

K∑
i=1

pi,tĝi,t ≤
T∑
t=1

K∑
i=1

pi,tgi,t

+

√√√√2 ln
(

1
δ

) T∑
t=1

mas(Gt)

+ β

T∑
t=1

mas(Gt)

+ Õ
(

max
t=1...T

mas(Gt)
)
.(25)

Moreover, by Azuma’s inequality, we have with probability at least 1− δ that

(26)
T∑
t=1

K∑
i=1

pi,tgi,t ≤
T∑
t=1

gIt,t +

√
ln(1/δ)

2
T .

Second, again by Lemma 21 and the conditions (24), we have with probability at least
1− δ that

T∑
t=1

K∑
i=1

νtpi,tĝi,t ≤
T∑
t=1

K∑
i=1

νtpi,tgi,t + Õ
(

max
t=1,...,T

mas2(Gt)(1 +
√
Tη + Tη2)

)

≤
T∑
t=1

νt + Õ
(

max
t=1,...,T

mas2(Gt)(1 +
√
Tη + Tη2)

)
.(27)

Third, by Lemma 22, and conditions (24), we have with probability at least 1−δ that
for all i,
(28)

T∑
t=1

pi,tĝ
2
i,t ≤ 2

T∑
t=1

mas(Gt) +
(

max
t=1,...,T

(mas2(Gt))
)
Õ

(
Tη +

1
η

+

√
T

(
1 +

1
η

))
.

Fourth, by Lemma 23, we have with probability at least 1− δ that

(29) max
k

T∑
t=1

ĝk,t ≥ max
k

T∑
t=1

gk,t −
ln(K/δ)

β
.



1824 ALON ET AL.

Combining (25), (26), (27), (28), and (29) with a union bound (i.e., replacing δ by
δ/5), substituting back into (23), and slightly simplifying, we get that with probability
at least 1− δ, maxk

∑T
t=1(gk,t − gIt,t) is at most√√√√2 ln

(
5
δ

) T∑
t=1

mas(Gt) + β

T∑
t=1

mas(Gt) +

√
ln(5/δ)

2
T +

ln(5K/δ)
β

+
lnK
η

+ 4η
T∑
t=1

mas(Gt) + 2
T∑
t=1

νt + (1 +
√
Tη + Tη2) Õ

(
max

t=1,...,T
(mas2(Gt))

)
.

Substituting in the values of β and νt, overapproximating, and simplifying (in partic-
ular, using Corollary 19 to upper bound νt by (1 + β) η mas(Gt)), we get the upper
bound √√√√5 ln

(
5
δ

) T∑
t=1

mas(Gt) +
2 ln(5K/δ)

η
+ 12η

√
ln(5K/δ)

lnK

T∑
t=1

mas(Gt)

+ Õ(1 +
√
Tη + Tη2)

(
max

t=1,...,T
(mas2(Gt))

)
.

In particular, by picking η such that

η2 =
1
6

√
ln(5K/δ) (lnK)∑T

t=1mt

,

noting that this implies η = Õ(1/
√
T ), and overapproximating once more, we get the

following bound on maxk
∑T
t=1(gk,t − gIt,t):

10
ln1/4(5K/δ)

ln1/4K

√√√√ln
(

5K
δ

) T∑
t=1

mt + Õ(T 1/4)
(

max
t=1,...,T

mas2(Gt)
)
.

To conclude, we simply plug in `i,t = 1 − gi,t for all i and t, thereby obtaining the
claimed results.
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in Proceedings of the Conference on Uncertainty in Artificial Intelligence, New York, 2016,
pp. 339–346.

[32] T. Kocák, G. Neu, and M. Valko, Online learning with noisy side observations, in Proceed-
ings of the International Conference on Artificial Intelligence and Statistics, Cadiz, Spain,
2016, pp. 1186–1194.

[33] T. Kocák, G. Neu, M. Valko, and R. Munos, Efficient learning by implicit exploration in
bandit problems with side observations, in Proceedings of the Conference on Advances in
Neural Information Processing Systems, Montreal, Canada, 2014, pp. 613–621.

[34] J. Langford and T. Zhang, The epoch-greedy algorithm for multi-armed bandits with side in-
formation, in Proceedings of the Conference on Advances in Neural Information Processing
Systems, Vancouver, Canada, 2008, pp. 817–824.

[35] N. Littlestone and M. K. Warmuth, The weighted majority algorithm, Inform. Comput.,
108 (1994), pp. 212–261.

[36] O. Maillard and R. Munos, Adaptive bandits: Towards the best history-dependent strategy,
in Proceedings of the 14th International Conference on Artificial Intelligence and Statistics
(AISTATS), JMLR Workshop and Conference Proceedings Volume 15, Fort Lauderdale,
FL, 2011, pp. 570–578.

[37] S. Mannor and O. Shamir, From bandits to experts: On the value of side-observations, in
Proceedings of the 25th Annual Conference on Neural Information Processing Systems
(NIPS 2011), Granada, Spain, 2011, pp. 684–692.

[38] G. Neu, Explore no more: Improved high-probability regret bounds for non-stochastic bandits,
in Proceedings of the Conference on Advances in Neural Information Processing Systems,
Montreal, Canada, 2015, pp. 3150–3158.

[39] V. Perchet and P. Rigollet, The multi-armed bandit problem with covariates, Ann. Statist.,
41 (2013), pp. 693–721.

[40] P. Rusmevichientong and J. Tsitsiklis, Linearly parameterized bandits, Math. Oper. Res.,
35 (2010), pp. 395–411.

[41] A. Said, E. W. De Luca, and S. Albayrak, How social relationships affect user similarities,
in Proceedings of the International Conference on Intelligent User Interfaces Workshop on
Social Recommender Systems, Hong Kong, 2010, online proceedings.

[42] A. Slivkins, Contextual bandits with similarity information, in Proceedings of the 24th Annual
Conference on Learning Theory (COLT), JMLR Workshop and Conference Proceedings
Volume 19, Budapest, Hungary, 2011, pp. 679–702.
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