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Abstract

Let F be a family of subsets of the ground set [n] = {1, 2, . . . , n}. For each i ∈
[n] we let p(F , i) be the number of pairs of subsets that differ in the element i and
exactly one of them is in F . We interpret p(F , i) as the influence of that element. The
normalized Banzhaf vector of F , denoted B(F), is the vector (B(F , 1), . . . , B(F , n)),
where B(F , i) = p(F ,i)

p(F) and p(F) is the sum of all p(F , i). The Banzhaf vector has been
studied in the context of measuring voting power in voting games as well as in Boolean
circuit theory. In this paper we investigate which non-negative vectors of sum 1 can be
closely approximated by Banzhaf vectors of simple voting games. In particular, we show
that if a vector has most of its weight concentrated in k < n coordinates, then it must
be essentially the Banzhaf vector of some simple voting game with n− k dummy voters.

1 Introduction

A fundamental question when analyzing a voting method is what is the distribution of power

among the voters. The most common measure of power, the Banzhaf index, quantifies the

percentage of power of a voter by its ability to alter the outcome, i.e., the probability that if

that voter were to change its vote, the outcome would change. There are numerous theorems

that show how to compute the Banzhaf index in various circumstances. This paper will be

about the inverse problem: if we fix a vector of prospective percentages of power, can we find

a voting method which will give us a good approximation to those desired powers ?
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The problem of designing a voting system to achieve a certain distribution of power is not a

purely theoretical one. In New York State there are a number of counties whose governmental

structure is produced in just this way. Each town in the county is assigned a representative,

but that representative is assigned a weighted vote in such a way that the representative’s

Banzhaf index is close to the percentage of the population of the county living in the particular

town. These computations are re-done every ten years after the official census of the county

is taken.1

The work that has been done on the inverse Banzhaf problem has been computational in

nature. Iterative algorithms have been designed that take as input a vector in the standard

simplex and a threshold value, and output a weighted voting game whose Banzhaf vector is

within the threshold of the given one. See Laruelle and Widgren [6], Sutter [7] and Aziz,

Paterson and Leech [1] for examples of such iterative algorithms which seem to work well in

practice. Nevertheless, there is a fundamental problem in analyzing any such algorithm fully.

There are no theoretical results that give a priori estimates of what thresholds are achievable.

Without some such bound, it is hard to know when an iterative algorithm has converged

sufficiently.

When the number of voters is small, it is clear that one can not closely approximate every

power vector. There are just not enough different voting games to get close to every vector.

But, one might think that as the number of voters increases one can closely approximate every

vector. In this paper we show this to be false by exhibiting vectors in the standard n-simplex

for all n that can not be well approximated. Our focus will be on those vectors where the

power is concentrated mainly on some strict subset of the voters, say k out of n. We will

show that if the power is concentrated on only k of the n voters, then it can not be closely

approximated unless it is essentially the power vector of a voting game with only k voters.

The Banzhaf index is usually defined in terms of a simple voting game. We will adopt a

somewhat more general setting here. For positive integers k < n, let [n] = {1, 2, . . . , n}, and

(k, n] = {k + 1, . . . , n}. For a set X, let 2X denote the family of all subsets of X. Let F be a

family of subsets of [n]. For each i, 1 ≤ i ≤ n, let

p(F , i) = |{A ⊆ [n]− {i} : |{A,A ∪ {i} } ∩ F| = 1}|.

be the number of pairs of subsets of [n] that differ in one element, so that exactly one of

1While this form of representation was found to be unconstitutional for Nassau County, New
York in Jackson v. Nassau County Board of Supervisors, 818 F.Supp. 509(1993), that holding was
not binding outside of the Eastern District of New York. Weighted voting continues to be used
elsewhere in the state, e.g., Essex County (see www.co.essex.ny.us/bos.asp) and Washington County
(www.co.washington.ny.us/Departments/bos/bos wgt.htm ).
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them lies in F . Let p(F) =
∑n
i=1 p(F , i). If p(F) > 0, the (normalized) Banzhaf vector of F ,

denoted B(F), is the vector (B(F , 1), B(F , 2), . . . , B(F , n)), where B(F , i) = p(F ,i)
p(F)

.

A collection W ⊂ 2X is called a simple voting game if it satisfies the following three

conditions

1. X ∈ W ;

2. ∅ 6∈ W ;

3. Whenever A ⊆ B ⊆ X and A ∈ W , then B ∈ W .

The elements of X are called the voters and the sets inW are referred to as winning coalitions.

If |X| = n then we will refer to W as an n-game. A voter x is a dummy if there are no

winning coalitions A ∈ W such that x ∈ A and A− {x} 6∈ W . That is to say, x is a dummy

if p(W , x) = 0. Note also that for any n-game W we have that p(W) > 0.

For an n-game W ⊆ 2[n] and for A ⊆ [k], define WA = {B ⊆ (k, n] : A ∪ B ∈ W}. It is

easy to check thatWA is one of three types;WA = ∅,WA = 2(k,n] orWA is an n−k-game. Call

an n-game W k-pure if for every A ⊆ [k], WA is either empty or equal to 2(k,n]. Equivalently,

W is k-pure if all of the voters in (k, n] are dummies. Clearly, if W is k-pure, then the family

V ⊆ 2[k] of all sets A ⊆ [k] for which WA = 2(k,n] is itself a k-game. Moreover, in this case

the vector consisting of the first k coordinates of B(W) is equal to B(V), and the last n− k
coordinates of B(W) vanish. Our main result is the following theorem, that shows that if

almost all the weight of a Banzhaf vector of an n-game is concentrated in k coordinates, then

its Banzhaf vector is close to a Banzhaf vector of a k-pure game, i.e., a game with n − k

dummy voters.

Theorem 1.1 Let n > k be positive integers, let ε < 1
k+1

be a positive real, and let W ⊆ 2[n]

be an n-game. If
∑n
i=k+1B(W , i) ≤ ε, then there exists a k-pure n-game W ′ so that

||B(W ′)−B(W)||1 =
n∑
i=1

|B(W ′, i)−B(W , i)| ≤ (2k + 1)ε

1− (k + 1)ε
+ ε.

This shows that the significant part of the Banzhaf vector of any n-game in which most of

the weight is concentrated in the first k coordinates is essentially equal to the Banzhaf vector

of a k-game. Thus, for example, for k = 2 and ε = 0.01, the theorem implies that if for an

n-game W ,
∑n
i=3B(W , i) ≤ 0.01, then the two dimensional vector (B(W , 1), B(W , 2)) lies

within `1-distance smaller than 1/16 of one of the vectors (1, 0), (0, 1) or (0.5, 0.5), since these

are the only vectors in the plane that are realizable as Banzhaf vectors. In other words, if

two voters together share almost all the power in a voting scheme, and none of them is a near

dictator, then they must have almost the same power.
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2 The proof

In this section we present the proof of the main result. The basic idea is to show that if almost

all weight of the Banzhaf vector is concentrated in the first k coordinates, then it is possible

to add or delete a relatively small number of coalitions to the game to get a k-pure game.

The result follows by showing that such a small number of modifications cannot change the

Banzhaf vector significantly. We proceed with the details.

Proof of Theorem 1.1: Let W ⊆ 2[n] be an n-game, and assume that
∑n
i=k+1B(W , i) ≤ ε,

where 0 < ε < 1
k+1

. Therefore
n∑

i=k+1

p(W , i) ≤ εp(W). (1)

Suppose that for i ∈ (k, n] and B ⊂ [n] we have that i 6∈ B, B 6∈ W , but B ∪ i ∈ W . Let

A = B∩ [1, k] and B′ = B−A. Then i 6∈ B′, B′ 6∈ WA, but B′∪ i ∈ WA. This correspondence

implies that for every i, k + 1 ≤ i ≤ n,

p(W , i) =
∑
A⊆[k]

p(WA, i). (2)

By the well-known edge-isoperimetric inequality for the cube (see [4], [2], [5]), for every

family F ⊆ 2[n],

p(F) ≥ |F|(n− log2 |F|).

In particular, if |F| ≤ 2n−1, p(F) ≥ |F|. Since one of F and F , the complement of F , has

less than half of all possible subsets and p(F) = p(F), it follows that

p(F) ≥ min{|F|, |F|}. (3)

Combining (1) and (2), and applying (3) to each of the collections WA, we conclude that

εp(W) ≥
n∑

i=k+1

p(W , i) =
n∑

i=k+1

∑
A⊆[k]

p(WA, i) =
∑
A⊆[k]

p(WA) ≥
∑
A⊆[k]

min{|WA|, |WA|}. (4)

Let W ′ ⊆ 2[n] be the family obtained from W by defining, for every A ⊆ [k], W ′A = ∅
if |WA| ≤ |WA|, and W ′A = 2(k,n] if |WA| > |WA|. It is not difficult to check that W ′ is a

collection satisfying axiom 3 of a simple voting game, and it is obviously k-pure. We will now

establish some further inequalities to show that W ′ is neither empty nor all of 2[n], and hence

is an n-game.
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By (4), the complex W ′ is obtained from W by removing or adding at most εp(W) sets.

The crucial observation is that for every fixed i, the quantity p(W , i) can change by at most

1 with the addition or deletion of a single set to W . It thus follows that for each i, 1 ≤ i ≤ k,

p(W , i)− εp(W) ≤ p(W ′, i) ≤ p(W , i) + εp(W).

By summing over all i, 1 ≤ i ≤ k, and by noting that for each i ≥ k + 1, p(W ′, i) = 0 and

that
∑n
i=k+1 p(W , i) ≤ εp(W) this implies that

[1− (k + 1)ε]p(W) ≤ p(W ′) ≤ p(W) + kεp(W) < [1 + (k + 1)ε]p(W)

Note, in particular, that since ε < 1
k+1

this implies that p(W ′) > 0, showing that W ′ cannot

be the collection of all sets or empty. Thus W ′ is an n-game.

It remains to show that the last two inequalities imply that the two vectors B(W ′) and

B(W) are close to each other in the `1-norm. Indeed, by the above inequalities, for every i,

1 ≤ i ≤ k
p(W , i)− εp(W)

[1 + (k + 1)ε]p(W)
≤ p(W ′, i)

p(W ′)
≤ p(W , i) + εp(W)

[1− (k + 1)ε]p(W)
,

that is
B(W , i)

1 + (k + 1)ε
− ε

1 + (k + 1)ε
≤ B(W ′, i) ≤ B(W , i)

1− (k + 1)ε
+

ε

1− (k + 1)ε
.

Therefore, for each 1 ≤ i ≤ k,

−B(W , i)
(k + 1)ε

1 + (k + 1)ε
− ε

1 + (k + 1)ε
≤ B(W ′, i)−B(W , i)

≤ B(W , i)
(k + 1)ε

1− (k + 1)ε
+

ε

1− (k + 1)ε
,

and thus

|B(W ′, i)−B(W , i)| ≤ (k + 1)ε

1− (k + 1)ε
B(W , i) +

ε

1− (k + 1)ε
. (5)

Summing (5) over all 1 ≤ i ≤ k, and using the fact that
∑k
i=1B(W , i) ≤ 1 we conclude that

k∑
i=1

|B(W ′, i)−B(W , i)| ≤ (2k + 1)ε

1− (k + 1)ε
.

Since
∑n
i=k+1 |B(W ′, i) − B(W , i)| ≤ ε it follows that ||B(W ′) − B(W)||1 ≤ (2k+1)ε

1−(k+1)ε
+ ε,

completing the proof.

5



3 Concluding remarks

We have seen that some vectors of distribution of power cannot be approximated well by

Banzhaf vectors of simple voting games. In some voting schemes, the voters are distributed

into regions, and we may be interested in the distribution of power among the regions, rather

than among the individual voters. In the next simple proposition we observe that if every

region is large, we can always approximate well any distribution of power among the regions.

Proposition 3.1 Let r be an integer, let ε > 0 be a real, and let (b1, b2, . . . , br) be a vector

of probabilities, that is, bi ≥ 0 for all i and
∑r
i=1 bi = 1. Let [n] = N1 ∪ N2 ∪ . . . ∪ Nr be a

partition of [n] = {1, 2, . . . , n} into r pairwise disjoint sets Ni so that |Ni| > r
ε

for all i. Then

there is an n-game W so that for Bi =

∑
j∈Ni

p(W,j)

p(W)
,

∑r
i=1 |Bi − bi| ≤ ε.

Proof: Define t = d r
ε
e. For each i, 1 ≤ i ≤ r, let ti be an integer satisfying bbitc ≤ ti ≤ dbite,

so that
∑r
i=1 ti = t. Let Ri be an arbitrary subset of cardinality ti of Ni, which will be called

the set of representatives of Ni. The set R = ∪ri=1Ri is the set of all representatives. The

n-game W consists of all subsets of [n] that contain at least t/2 elements of R. (In fact,

any symmetric condition on the set of representatives, for example, containing at least one

representative, will do). By symmetry, each element j ∈ R has the same Banzhaf index

p(W , j), while clearly for each j ∈ [n] − R, p(W , j) = 0. It follows that for each i, Bi = ti
t
,

implying that |Bi − bi| ≤ 1
t
< ε

r
, and completing the proof.

Note that by our main result, in order to achieve a good approximation for any desired

distribution of powers, we sometimes need large sets of representatives for each region; if each

region is only allowed to have a single representative and all the power is distributed among

them, then some vectors will not admit good approximations, even if the number of regions

is large.

This paper begins the study of what vectors in the standard simplex can be closely ap-

proximated by Banzhaf vectors of simple voting games. We have shown that vectors in which

most weight is concentrated in a small number of coordinates can only be closely approxi-

mated if they are essentially the Banzhaf vectors of simple voting games on a smaller ground

set. However, we still know little of how the Banzhaf vectors are distributed throughout the

simplex. The technique used in this paper looks to be unable to provide a complete solution

of that more general question.
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