
Spanning subgraphs of Random Graphs

(A research problem)

Noga Alon

Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences

Tel Aviv University, Tel Aviv, Israel

and

Zoltán Füredi
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Abstract

We propose a problem concerning the determination of the threshold function for the edge

probability that guarantees, almost surely, the existence of various sparse spanning subgraphs

in random graphs. We prove some bounds and demonstrate them in the cases of a d-cube and

a two dimensional lattice.

B. Bollobás (cf. e.g., [3]) raised the following problem:

Let G be a random graph with n = 2d vertices, in which each edge is taken randomly and indepen-

dently with probability p = 1− ε, where ε is a positive small constant. Is it true that for d > d(ε)

almost surely G contains a copy of the d-cube, Qd? Note that Qd has 2d−1d = O(n log n) edges,

and is thus a relatively sparse graph.

Here we show that the answer is ”yes” for every fixed p > 1/2 and observe that it is ”no” for

p ≤ 1/4. This is a special case of the following general theorem.
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Theorem 1 Let G = G(n, p) be a random graph on a set V of n labelled vertices obtained by

choosing each pair of vertices to be an edge randomly and independently, with probability p. Let

H = (U,F ) be a fixed simple graph on n vertices with maximum degree d, where (d2 + 1)2 < n. If

pd >
10 log(bn/(d2 + 1)c)

(bn/(d2 + 1)c)
, (1)

then the probability that G does not contain a copy of H is smaller than 1/n.

Remark 1. The number 10 can be easily improved. We make no attempt to optimize it.

Remark 2. In case H is d-regular, the expected number of copies of H in G is at most n!pnd/2,

which is o(1) for p = n−2/d. Thus for such a p almost surely G has no copy of H, whereas the

theorem gives that for p ≥ c(log n/n)1/d almost surely G does have a copy of H.

The d-cube. In case H = Qd is the d-cube, the right hand side of (1) is 2−dO(d3) and hence the

theorem implies that for every fixed p > 1/2, almost surely G(n, p) has a spanning d-cube. On the

other hand, Remark 2 shows that for p ≤ 1/4 almost surely G(n, p) does not contain a spanning

d-cube. We strongly believe that the threshold probability, p(Qd), defined as the infimum value of

the numbers p such that almost surely G(n, p) contains a spanning Qd is much closer to 1/4 than

to 1/2. I.e., we suspect that as usual, the computation of the expectation gives the correct bound.

The two dimensional lattice. Let Lk denote the 2-dimensional lattice of size n = k2, i.e. the

graph with vertex set {(x1, x2) : 1 ≤ x1, x2 ≤ k} in which there is an edge between the vertices

(x1, x2) and (y1, y2) if and only if |x1− y1|+ |x2− y2| = 1. Then the simple argument of Remark 2

gives that the threshold probability p(Lk) for the existence of a spanning Lk is at least Ω((1/n)1/2).

On the other hand, Theorem 1 shows that p(Lk) ≤ O((log n/n)1/4). The problem of estimating

p(Lk) was raised by Levin and Venkatesan [5], who were motivated by the study of certain graph

coloring problems which are computationally hard, even on random instances. They proved that

p(Lk) = o(1).

Proof of Theorem 1 (sketch). By applying a well known theorem of Hajnal and Szemerédi

[4] to the square of H we obtain a partition of the vertex set U of H into D = d2 + 1 pairwise

disjoint sets U1, . . . , UD so that each Uk is an independent set in H, no two vertices of Uk have a

common neighbor in H and the cardinality of each Uk is either bn/Dc or dn/De. Now let us split,

arbitrarily, the set of vertices V of G into pairwise disjoint sets V1, . . . VD so that |Vk| = |Uk| for all

k.
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We next show that with high probability there is a one to one function f : U 7→ V , which maps

each Uk onto Vk and which maps H into a copy of H in G. To do so we define f on each Uk in

its turn. Start with an arbitrary one to one mapping of U1 onto V1. Assume, by induction, that

we have already defined f : U1 ∪ . . . ∪ Uk 7→ V1 ∪ . . . ∪ Vk and that f maps the induced subgraph

of H on U1 ∪ . . . ∪ Uk into a copy of it in V1 ∪ . . . ∪ Vk. We next show how to extend this f and

define it on Uk+1. Suppose Uk+1 = {u1, . . . , um} and Vk+1 = {v1, . . . , vm}. Construct a bipartite

graph B with classes of vertices X = {x1, . . . , xm} and Y = {y1, . . . , ym} by joining xi by an edge

to yj if and only if we can define f(ui) = vj . More formally, xi is joined by an edge to yj if and

only if in the graph G, the vertex vj is joined by an edge to all the vertices f(u), where u is a

neighbor of ui in H which belongs to U1 ∪ . . . ∪ Uk. Observe that for each i and j, the probability

that ui is adjacent to vj is at least pd. The crucial fact is that all these probabilities are mutually

independent, since they all depend on pairwise disjoint sets of edges of G. Thus we can apply the

known results on the existence of perfect matchings in graphs (see, e.g., [1]) and conclude that in

view of (1) (and the fact that D2 < n) the probability that there is no perfect matching in B is at

most 1/(nD). We can now define f according to this perfect matching; if it matches xi to yj we

define f(ui) = vj .

The probability that all these D − 1 matchings exist is at least 1− 1/n, completing the proof.

2

Remark 3. As pointed out by J. Spencer, an indication for the belief that the lower bound is

closer to the truth than the upper bound is the fact that an edge probability which is only slightly

larger than the lower bound already implies, almost surely, the existence of a large piece of the

required spanning subgraph. Here is a demonstration of this fact for the grid Lk. Suppose n = k2

where k is even, and let p = c
√

log n/n where c is a large positive constant. Let U1 and U2 be two

arbitrarily chosen disjoint subsets of vertices of G(n, p), each having cardinality k2/2. Let A and

B be the two vertex classes of the bipartite graph Lk and choose an arbitrary one to one mapping

from A to U1. We can now extend this mapping by mapping vertices of B to suitable vertices of

U2. It is easy to see that with high probability this Markov-type process breaks down only after

at least (1− o(1))k2 of the vertices are mapped. In other words, G(n, p) contains, almost surely, a

large piece of Lk.

The difficult problem is of course the question if this process can be finished to give a full

copy of Lk. When Lk is replaced by a cycle, the required last step has been established by Pósa,

who proved a clever lemma that enabled him to conclude that edge probability Θ(logn/n) suffices
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(and is also necessary) for the existence, almost surely, of a Hamilton cycle (cf. [1]). It would be

interesting to decide if there exists an appropriate Pósa-type Lemma for the case of the grid too.

Bandwidth. The generalized bandwidth problem is the following. Let H and G be two graphs

with the same number of vertices. Given a bijection b from V (H) to V (G) let |b| denote the

maximum, over all edges xy of H, of the distance in G between b(x) and b(y). Finally, let B(H,G)

be the minimum value of |b| over all such b. Clearly, B(H,G) = 1 if and only if H is a spanning

subgraph of G.

When G is a path the parameter B(H,G) is known as the bandwidth B(H) of H. The case in

which G is a multidimensional lattice and H is a random graph has been investigated by McDiarmid

and Miller (see [2], and the references there). The cases in which G is a random graph (and H

varies) also look interesting and difficult, but certainly there are interesting solvable special cases.
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