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Abstract. A family of axis-aligned boxes in Rd is k-neighborly if the intersection of every
two of them has dimension at least d−k and at most d−1. Let n(k, d) denote the maximum
size of such a family. It is known that n(k, d) can be equivalently defined as the maximum
number of vertices in a complete graph whose edges can be covered by d complete bipartite
graphs, with each edge covered at most k times.

We derive a new upper bound on n(k, d), which implies, in particular, that n(k, d) 6
(2− δ)d if k 6 (1− ε)d, where δ > 0 depends on arbitrarily chosen ε > 0. The proof applies
a classical result of Kleitman, concerning the maximum size of sets with a given diameter
in discrete hypercubes. By an explicit construction we obtain also a new lower bound for
n(k, d), which implies that n(k, d) > (1 − o(1))d

k

k! . We also study k-neighborly families of
boxes with additional structural properties. Families called total laminations, that split in a
tree-like fashion, turn out to be particularly useful for explicit constructions. We pose a few
conjectures based on these constructions and some computational experiments.

1. Introduction

Let k, d be two positive integers, with k 6 d. A standard box in Rd is a set of the form
K = K1×· · ·×Kd, whereKi ⊂ R is a closed interval, for each i ∈ [d], where [d] = {1, 2, . . . , d}.
Two standard boxes K,L ⊂ Rd are k-neighborly if d− k 6 dim(K ∩L) 6 d− 1. A family F

of standard boxes is k-neighborly if every two boxes in F are k-neighborly.
Let n(k, d) be the maximum possible cardinality of a family F of k-neighborly standard

boxes in Rd. In 1985 Zaks [12] proved that n(1, d) = d+1 by relating the problem to the well-
known theorem of Graham and Pollak [6] on bipartite decompositions of complete graphs. It
is also not hard to demonstrate that n(d, d) = 2d. More generally, as explained in [1], n(k, d)

is the maximum possible number of vertices in a complete graph that can be covered by d
complete bipartite subgraphs (bicliques) so that every edge is covered at least once and at
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most k times. Using this interpretation, the following general bounds were proved in [1]:

(1.1)
(
d

k

)k

6
k−1∏
i=0

(⌊
d+ i

k

⌋
+ 1

)
6 n(k, d) 6

k∑
i=0

2i

(
d

i

)
< 2 · (2e)k ·

(
d

k

)k

.

An improvement of the upper bound, namely, n(k, d) 6 1 +
∑k

i=1 2i−1(d
i

)
, was obtained by

Huang and Sudakov in [7] (see also [5] for a generalization). These upper bounds are not
very far from the lower bound for k much smaller than d. For large k, however, the gap is
very large. In particular, for k > 0.23d and large d these bounds are larger than the trivial
2d upper bound which holds for every k 6 d.

In the present paper we give a new upper bound on n(k, d), which improves the above
estimate if k is close enough to d. It is stated in the following theorem, where an easy lower
bound on n(k, d) is also included, for comparison.

Theorem 1. For every 1 6 k 6 d− 1,

(1.2) n(k, d) >
bk/2c∑
i=0

(
d

i

)
.

For every 1 6 k 6 k + 2t− 2 6 d− 1, where t is an arbitrary positive integer,

(1.3) n(k, d) 6 2d−t +

d(k+2t−2)/2e∑
i=0

(
d

i

)
.

Two simple corollaries of the above result are the following.

Corollary 1. For any ε > 0 there is δ > 0 so that for any k 6 (1− ε)d,

(1.4) n(k, d) 6 (2− δ)d.

Corollary 2. If d, k tend to infinity so that d− k →∞ and d− k = o(d2/3), then

(1.5) n(k, d) = (1 + o(1))

bk/2c∑
i=0

(
d

i

)
.

Note that a special case of Corollary 2 gives us n(k, d) = (1 + o(1))2d−1 for any k = d− s,
with s tending to infinity and satisfying s = o(d1/2).

The proof of Theorem 1 is quite simple, however, it relies on a fundamental result of
Kleitman [9] (conjectured by Erdős) concerning the maximum size of sets with given diameter
in a discrete hypercube (see Section 2). It is worth noticing that Kleitmen’s result is a
consequence of a slightly earlier theorem of Katona [8] concerning intersecting set systems.
Actually, by a more detailed analysis based on extremal sets with given diameter one may
derive slightly more precise upper bounds on n(k, d), as demonstrated in Subsection 3.3.
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In Section 4 we present further results on neighborly families of boxes and some conse-
quences for the related problem of biclique coverings of complete graphs. We will use there
some observations stemmed from the proof of the following fact, giving another precise value
of the function n(k, d).

Proposition 1. For every d > 2 we have

(1.6) n(d− 1, d) = 3 · 2d−2.

Let us remark that following the application of Kleitman’s theorem in the study of this
problem described in the first arXiv version of the present paper, Cheng, Wang, Xu, and
Yip [4] also obtained new upper bounds on n(k, d). For some values of parameters k and d
their bounds are better than ours. Interestingly, for small values of d and k, they determined
exact values of n(k, d) (see Table 2 and tables in [4]).

We also provide a general construction of k-neighborly families of boxes which gives a
substantial improvement of the existing lower bounds on n(k, d), for every fixed k > 2 and
sufficiently large d.

Theorem 2. Let 2 6 k 6 m 6 d be given integers such that d >
(
m
k

)
− 1 +m. Then

(1.7) n(k, d) >

(
d−

(
m

k

)
+ 1

)k

·
(
m
k

)
mk

.

In consequence,

(1.8) n(k, d) > (1− o(1))
dk

k!
.

For instance, for k = 2 we get n(2, d) > (1 − o(1))d
2

2
, which improves the previous lower

bound, n(2, d) > d2

4
. As mentioned earlier by Alon [1] and Huang and Sudakov [7], deter-

mining the precise asymptotic order of n(2, d) seems to be a hard task. In the final section
we pose a general conjecture which, together with the above lower bound would imply that

lim
d→∞

n(2, d)

d2
=

1

2
.

However, as yet we do not even know whether the limit above exists.

2. The setting

In this section we recall basic notions and terminology. Also, the aforementioned result of
Kleitman [9] is stated, in an expanded version due to Bezrukov [3].

Let Hd = {0, 1}d denote the Hamming cube of dimension d, that is, the set of binary
strings of length d representing the vertices of the cube, with the Hamming distance between
two vertices defined by h(x, y) = |{i ∈ [d] : xi 6= yi}|. Two strings x, y ∈ Hd are called
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complementary if xi 6= yi for all i ∈ [d]. For a subset A ⊆ Hd, let D(A) = max{h(x, y) : x, y ∈
A} denote the diameter of A. By Bt(x) ⊆ Hd we denote the ball of radius t centered at
x ∈ Hd. Notice that the size of Bt(x) is equal to

∑t
i=0

(
d
i

)
, while the diameter D(Bt(x))

equals 2t, for t < d/2.
In 1961 Erdős conjectured that no set of diameter 2t 6 d− 1 in Hd can have more points

than the ball Bt(x). This was confirmed by Kleitman [9] in 1966, and independently (and
indirectly) by Katona [8] in 1964. As observed by Bezrukov [3], a similar assertion holds for
sets of odd diameters, with an extremal example being formed of two balls Bt(x) ∪ Bt(y)

centered at any two points x, y ∈ Hd, with h(x, y) = 1. Bezrukov [3] also proved that there
are no other extremal sets as long as k < d− 1. If k = d− 1, then, by elementary reasoning,
every extremal set consists of exactly one element from every complementary pair.

Theorem 3 (Katona [8], Kleitman [9], Bezrukov [3]). Let A ⊆ Hd be a set of diameter
k 6 d− 1 and maximum size. If k = 2t, then

(2.1) |A| 6
t∑

i=0

(
d

i

)
.

If k = 2t+ 1, then

(2.2) |A| 6
(
d− 1

t

)
+

t∑
i=0

(
d

i

)
.

Below we also recall a basic setting showing the relationship between neighborly boxes and
biparitte coverings, as introduced in [12] and generalized in [1].

Let S = {0, 1, ∗} be a set of symbols and let Sd be the set of all strings of length d over
S. The elements of Sd can be interpreted as vertices of the Hamming cube Hd with some
positions replaced by the new symbol ∗, called joker. In this way, any string x ∈ Sd defines a
subcube H(x) of Hd, where H(x) consists of all strings obtained by changing all the jokers in
x to 0 or 1 in all possible ways. The number of jokers in x, denoted as j(x) is the dimension
of the subcube H(x), and its cardinality is 2j(x).

For, x, y ∈ Sd, let d(x, y) denote the number of positions in which one string has 0 and
the other has 1. Note that if d(x, y) > 1, then the subcubes H(x) and H(y) are pairwise
disjoint. Note also that if the dimension of H(x) is i and that of H(y) is j, then any two
binary strings, u ∈ H(x) and v ∈ H(y), differ in at most d(x, y) + i+ j coordinates.

Another interpretation of strings in Sd is connected to a special family S d of standard
boxes formed of just three different intervals, [−1, 0], [0, 1], and [−1, 1]. Given such a box
K = K1×· · ·×Kd, with Ki being one of those three intervals, for each i ∈ [d], we may assign
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to it a unique string v(K) = v1 · · · vd in Sd by the formula:

vi =


0, if Ki = [−1, 0],

1, if Ki = [0, 1],

∗, if Ki = [−1, 1].

It is not hard to verify that two boxes K,L ∈ S d are k-neighborly if and only if the
corresponding strings, v(K) and v(L), differ on at least one, and on at most k non-joker
positions (in both strings). In other words, if we add up the two strings v(K) and v(L)

as vectors, with additional rule that i + ∗ = ∗, for each i ∈ S, then the resulting string
v(K) + v(L) should have its number of 1’s in the interval [1, k].

Moreover, it can be easily demonstrated that for every family F of k-neighborly standard
boxes in Rd there is an equivalent family of boxes in S d (preserving dimensions of all inter-
sections of members of the family F ). A detailed argument can be found in [1]. Hence, the
problem of determining the function n(k, d) can be reduced to families of boxes in S d and
studied through their representing strings in Sd.

A connection between Sd and bipartite coverings is obtained by assigning to each vertex v
of a complete graph covered by d bicliques with vertex classes (Li, Ri), 1 6 i 6 d, a string in
Sd, whose i-th coordinate is 0 if v ∈ Li, it is 1 if v ∈ Ri and it is ∗ if v 6∈ Li ∪Ri. Therefore,
n(k, d) is the maximum possible number of strings in a family F ⊆ Sd so that 1 6 d(x, y) 6 k

holds for any two distinct x, y ∈ F .

3. Upper bound on n(k, d) via sets of maximum diameter in Hd

In this section we prove one of our main results (Theorem 1) in subsection 3.2. The main
idea is seen in a simple proof of a special case for k = d − 1, where we get the exact value
matching the lower bound in (1.1). We start with this proof in the first subsection 3.1. In
subsection 3.3 we provide more detailed calculations based on similar ideas improving slightly
the obtained bounds for some specific values of parameters k and d.

3.1. Proof of equality n(d− 1, d) = 3 · 2d−2.

Proof of Proposition 1. Let F be a family of k-neighborly boxes in S d, or, equivalently, a
family F of strings in Sd such that 1 6 d(x, y) 6 k, for each pair x, y ∈ F . Assume that the
size of F is as large as possible. Denote by F ∗ the subset of F consisting of all strings with
at least one joker, and set F0 = F \ F ∗.

As explained above, every string x ∈ F corresponds to a subcube H(x) of Hd whose
dimension is exactly the number of jokers in x. Since every pair of strings in F differs on
at least one non-joker position, these subcubes are pairwise disjoint. Hence, the number of
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strings in F ∗ cannot be greater than half of the total number of vertices spanned by the
corresponding subcubes. Consequently,

(3.1) |F ∗| 6 1

2
· |Hd \ F0|.

So, we may write

(3.2) |F | = |F0|+ |F ∗| 6 |F0|+
1

2
· (2d − |F0|) = 2d−1 +

1

2
· |F0|.

Suppose now that k = d− 1 and F is a k-neighborly family. Then F0 cannot contain any
complementary pair of strings from Hd, and therefore |F0| 6 1

2
· |Hd| = 2d−1. In this way we

get

(3.3) |F | 6 2d−1 + 2d−2 = 3 · 2d−2.

One may easily check that the obtained bound mathces the lower bound following from (1.1),
which completes the proof. �

3.2. Proofs of Theorem 1 and Corollaries 1 and 2.

Proof of Theorem 1. The proof of inequality (1.2) is very simple. Indeed, the family F of
all binary strings of length d in a Hamming ball of radius bk/2c is a collection of

∑bk/2c
i=0

(
d
i

)
binary strings. These can be viewed as strings in Sd (containing no jokers). For any two
distinct x, y ∈ F , we have 1 6 d(x, y) 6 2bk/2c 6 k, which implies (1.2).

The proof of inequality (1.3) is also short, by using Theorem 3. Let F ⊆ Sd be a family of
strings so that for any two distinct x, y ∈ F , we have 1 6 d(x, y) 6 k. For each i, 1 6 i 6 d,
let Fi be the subset of F consisting of all strings in F whose number of jokers is exactly i.
Let fi = |Fi| be the cardinality of Fi.

Since every subcube H(x), for x ∈ Fi, contains 2i points, and all these subcubes are
pairwise disjoint, it follows that

(3.4)
d∑

i=0

2ifi 6 2d and therefore, for every t,
d∑

i=t

fi 6 2d−t.

Fix a positive integer t so that k+ 2t− 2 < d. For each i, 0 6 i 6 t− 1, and for each x ∈ Fi,
let x′ be an arbitrary binary string in H(x). (For example, one can define x′ to be the string
obtained from x by replacing each of its jokers by 0.) Then all these strings x′ corresponding
to members x ∈

⋃t−1
i=0 Fi are distinct, and every two of them differ in at most k + 2t − 2

positions. It thus follows from Theorem 3 that

(3.5) f0 + f1 + . . .+ ft−1 6
d(k+2t−2)/2e∑

i=0

(
d

i

)
.
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By (3.4) and (3.5), we obtain

|F | =
d∑

i=0

fi = (f0 + f1 + . . . ft−1) +
d∑

i=t

fi 6
d(k+2t−2)/2e∑

i=0

(
d

i

)
+ 2d−t,

which gives the inequality (1.3). The proof is complete. �

Proof of Corollary 1. In (1.3) of Theorem 1 choose t = εd
4
and apply the standard estimates

for binomial distributions (cf., e.g., [2], Theorem A.1.13) to conclude that the assertion of
the corollary holds with δ = Ω(ε2). �

Proof of Corollary 2. Put k = d−s. By assumption d and s tend to infinity, and s = o(d2/3).
If s 6 10

√
d, apply inequality (1.3) of Theorem 1, with t = 2 log s (in fact any t tending to

infinity and satisfying t = o(s) will do) to obtain the desired result.
If s > 10

√
d (and s = o(d2/3)), apply (1.3) of Theorem 1 with t = 10s2/d. By assumption

t = o(d/s) and it is not difficult to verify that this implies that
d(k+2t−2)/2e∑

i=0

(
d

i

)
= (1 + o(1)) ·

bk/2c∑
i=0

(
d

i

)
.

It is also not too difficult to check that with this choice of t,

2d−t = o

bk/2c∑
i=0

(
d

i

) .

The desired result follows by plugging these two inequalities in (1.3) of Theorem 1. �

3.3. An estimation of n(k, d) by a combination of sizes of maximal sets. Suppose
that F is a family of k-neighborly subcubes of Hd. Again, let Fi be the subfamily of F
that consists of all subcubes of dimension i or less. Let fj be the number of all subcubes
of dimension j belonging to F . Then the number of elements of Hd covered by Fi is equal
f0 + 2f1 + · · ·+ 2ifi. Moreover, the Hamming distance between any two such elements does
not exceed k + 2i.

Let κ(s, d) denotes the maximum size of sets whose diameter is not greater than s. In
particular, κ(s, d) = 2d, for s > d. Then

f0 + 2f1 + · · ·+ 2ifi 6 κ(k + 2i, d). (κi)

A trivial constraint
f0 + 2f1 + · · ·+ 2d−1fd−1 6 2d. (τ)

is identical with (κi) for i = d− 1 and k > 2.
We want to bound from above |F | = f0 +f1 + . . .+fd−1. It can be achieved by considering

an integer optimization problem where the objective is to maximize f0+f1+. . .+fd−1 subject
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to the constraints given by (κi). Among all the optimal solutions, let us choose the one, say
f0 = a0, . . . , fd−1 = ad−1, which is maximal with respect to the lexicographical order. We
claim that it satisfies the following inequalities:

κ(k + 2i, d) < f0 + 2f1 + · · ·+ 2ifi + 2i, (κ+i ).

If not, let us choose i = s for which (κ+i ) does not hold. Then, we can define a new
sequence (bi : i = 1, . . . , d− 1) as follows.

• Let us set bs = as +1, and let t > s be the first index, if there is any, for which at > 0.
• Let us set bt = at − 1, and for all the remaining indices u, let bu = au.

It is rather clear that since (κ(k + 2i, d) : i 6 d − 1) is increasing and 2s < 2t, the resulting
sequence satisfies all the constraints. Moreover, it also has to be optimal. On the other hand,
it is larger with respect to the lexicographical order, which is a contradiction.

Observe now that if d− k is divisible by 2, then plugging i = d−k
2

into (κ+i ) gives us

2d < f0 + 2f1 + · · ·+ 2
d−k
2 f d−k

2
+ 2

d−k
2 ,

which readily implies, that aj = 0 for j > d−k
2
. If d − k is not divisible by 2, then plugging

i =
⌊
d−k
2

⌋
into (κ+i ) and (κi) yields

f0 + 2f1 + · · ·+ 2b
d−k
2 cfb d−k

2 c 6 κ(d− 1, d) = 2d−1 < f0 + 2f1 + · · ·+ 2b
d−k
2 cfb d−k

2 c + 2b
d−k
2 c.

Since the sequence fi = ai is maximal with respect to the lexicographical order, and satisfies
the constraints including (τ), we deduce that

ab d−k
2 c+1 = 2d−b d−k

2 c−2, (λ)

and aj = 0 for j >
⌊
d−k
2

⌋
+ 1.

Now we are ready to estimate the optimal value of the objective function. Suppose that
0 ≤ i− 1 < i 6 d−k

2
. Then, by (κ+i−1) and (κi), we obtain

κ(k + 2i, d)− κ(k + 2(i− 1), d) > 2iai − 2i−1.

Consequently,

ai 6
1

2i
κ(k + 2i, d)− 1

2i
κ(k + 2(i− 1), d) +

1

2
.

For x ∈ R, let us denote bxe = dx− 1e. Since ai is an integer, we have

ai 6

⌊
1

2i
κ(k + 2i, d)− 1

2i
κ(k + 2(i− 1), d) +

1

2

⌉
.

Suppose first that k is even. Since, by Theorem 3, κ(s, d) =
∑ s

2
j=0

(
d
j

)
, whenever s < d and s

is even, we have

κ(k + 2i, d)− κ(k + 2(i− 1), d) =

(
d

k
2

+ i

)
.
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Therefore,

ai 6

⌊
1

2i

(
d

k
2

+ i

)
+

1

2

⌉
6

1

2i

(
d

k
2

+ i

)
+

1

2
, (η)

whenever 1 6 i < d−k
2
. If i = d−k

2
, that is, also d is even, then

κ(k + 2i, d)− κ(k + 2(i− 1), d) = κ(d, d)− κ(d− 2, d) = 2d −
d−2
2∑

s=0

(
d

s

)
= 2d−1 +

1

2

(
d
d
2

)
.

Thus,

a d−k
2
6

⌊
2

d+k
2
−1 +

1

2
d−k
2

+1

(
d
d
2

)
+

1

2

⌉
. (η′)

Suppose now that k is odd. Since, by Theorem 3, κ(s, d) =
(d−1
b s2c
)

+
∑b s2c

j=0

(
d
j

)
, whenever

s < d and s is odd, we have

κ(k + 2i, d)− κ(k + 2(i− 1), d) =

(
d− 1⌊
k
2

⌋
+ i

)
−
(

d− 1⌊
k
2

⌋
+ i− 1

)
+

(
d⌊

k
2

⌋
+ i

)
= 2

(
d− 1⌊
k
2

⌋
+ i

)
,

whenever 1 6 i < d−k
2
. Therefore,

ai 6

⌊
1

2i−1

(
d− 1⌊
k
2

⌋
+ i

)
+

1

2

⌉
6

1

2i−1

(
d− 1⌊
k
2

⌋
+ i

)
+

1

2
, (ω)

whenever 1 6 i < d−k
2
. If i = d−k

2
, that is, also d is odd

κ(k + 2i, d)− κ(k + 2(i− 1), d) = 2d −
(
d− 1⌊
d−2
2

⌋)− b d−2
2 c∑

s=0

(
d

s

)
= 2d−1 +

(
d− 1
d−1
2

)
.

Thus,

a d−k
2
6

⌊
2

d+k
2
−1 +

1

2
d−k
2

(
d− 1
d−1
2

)
+

1

2

⌉
. (ω′)

If k and d are even, then summing up ai, with respect to i = 1, . . . , d−k
2

and bearing in
mind that a0 6 κ(k, d) by (η) and (η′) we obtain

n(k, d) 6
∑
i

ai ≤
k
2∑

s=0

(
d

s

)
+

d−k
2
−1∑

i=1

⌊
1

2i

(
d

k
2

+ i

)
+

1

2

⌉
+

⌊
2

d+k
2
−1 +

1

2
d−k
2

+1

(
d
d
2

)
+

1

2

⌉

6
d− k

4
+ 2

d+k
2
−1 +

1

2
d−k
2

+1

(
d
d
2

)
+

k
2∑

s=0

(
d

s

)
+

d−k
2
−1∑

i=1

1

2i

(
d

k
2

+ i

)
.

(3.6)
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If k is even and d is odd, then taking into account (λ) we get

n(k, d) 62d−b d−k
2 c−2 +

k
2∑

s=0

(
d

s

)
+

b d−k
2 c∑

i=1

⌊
1

2i

(
d

k
2

+ i

)
+

1

2

⌉

6
1

2

⌊
d− k

2

⌋
+ 2d−b d−k

2 c−2 +

k
2∑

s=0

(
d

s

)
+

b d−k
2 c∑

i=1

1

2i

(
d

k
2

+ i

)
.

(3.7)

If k is odd and d is even, then by (ω), (λ) and the expression on κ(k, d) we get

n(k, d) 62d−b d−k
2 c−2 +

(
d− 1⌊

k
2

⌋ )+

b k2c∑
s=0

(
d

s

)
+

b d−k
2 c∑

i=1

⌊
1

2i−1

(
d− 1⌊
k
2

⌋
+ i

)
+

1

2

⌉

6
1

2

⌊
d− k

2

⌋
+ 2d−b d−k

2 c−2 +

(
d− 1⌊

k
2

⌋ )+

b k2c∑
s=0

(
d

s

)
+

b d−k
2 c∑

i=1

1

2i−1

(
d− 1⌊
k
2

⌋
+ i

)
.

(3.8)

If both k and d are odd, then we proceed similarly to the case k and d are even, however,
we have to apply (ω) and (ω′) instead of (η) and (η′):

n(k, d) 6

(
d− 1⌊

k
2

⌋ )+

b k2c∑
s=0

(
d

s

)
+

d−k
2
−1∑

i=1

⌊
1

2i−1

(
d− 1⌊
k
2

⌋
+ i

)
+

1

2

⌉
+

⌊
2

d+k
2
−1 +

1

2
d−k
2

(
d− 1
d−1
2

)
+

1

2

⌉

6
d− k

4
+

(
d− 1⌊

k
2

⌋ )+ 2
d+k
2
−1 +

1

2
d−k
2

(
d− 1
d−1
2

)
+

b k2c∑
s=0

(
d

s

)
+

d−k
2∑

i=1

1

2i−1

(
d− 1⌊
k
2

⌋
+ i

)
.

(3.9)

4. Lower bound on n(k, d) via product constructions and other results

In this section we prove our second main result (Theorem 2) improving lower bounds for
n(k, d). The proof is contained in subsection 4.1 together with a simple argument giving
the previous lower bound (1.1) and some examples illustrating the enhanced construction.
In subsection 4.2 we give further results on neighborly families with additional structural
properties.

4.1. Product constructions and proof of Theorem 2. We start with a general result,
which immediately implies the lower bound for n(k, d) given in [1].

Proposition 2. Let 1 6 ki 6 di, i = 1, . . . , s, be given integers. Then

(4.1) n(k1, d1)n(k2, d2) · · ·n(ks, ds) 6 n(k1 + · · ·+ ks, d1 + · · ·+ ds).

Proof. For two families F ⊆ Sd and G ⊆ Sm, let FG = {uv : u ∈ F, v ∈ G} be the family
of strings in Sd+m consisting of all possible concatenations of strings from F and G. Clearly,
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we have |FG| = |F | · |G|. In case of singleton families {v} we will write simply vF instead
of {v}F , and also vm for a concatenation of m copies of a string v.

Let Fi denote a ki-neighborly family of maximum size in Sdi , for i = 1, . . . , s. It is not
hard to see that F = F1F2 · · ·Fs is a k-neighborly family in Sd, where k = k1 + · · ·+ ks and
d = d1 + · · ·+ ds, which proves the assertion. �

The lower bound for n(k, d) in (1.1) may be derived now easily by applying the trivial
inequality n(1, d) > d + 1 (which actually is an equality by the Graham-Pollak Theorem).
Indeed, put in the above result s = k, ki = 1, for each i ∈ [s], and d = d1 + · · ·+ dk. Then

(4.2) n(k, d) > n(1, d1) · · ·n(1, dk) = (d1 + 1) · · · (dk + 1).

The last product is maximized when d is partitioned most evenly into summands di, which
coincides with the product

∏k−1
i=0

(⌊
d+i
k

⌋
+ 1
)
.

Proof of Theorem 2. Let k 6 m 6 d be fixed. Suppose that d = a1 + · · · + am +
(
m
k

)
− 1,

where ai are positive integers. Let
(
[m]
k

)
denote the set of all k-element subsets of [m]. For a

subset B ∈
(
[m]
k

)
, denote pB =

∏
i∈B(ai + 1). We will describe an explicit construction of a

k-neighborly family of strings in Sd with exactly
∑

B∈([m]
k ) pB members.

Let Ai ⊆ Sai be any 1-neighborly family of size ai + 1, for i = 1, . . . ,m. For a fixed
subset B ∈

(
[m]
k

)
, consider a set RB of strings in Sa1+···+am defined by RB = X1 · · ·Xm,

where Xi = Ai if i ∈ B and Xi = {∗ai}, otherwise. This construction can be described in
words as follows. Split the set [a1 + · · ·+ am] into consecutive intervals I1, . . . , Im of lengths
a1, . . . , am, respectively. Next, for each i ∈ B, fill the interval Ii with any string from Ai,
while every other interval Ij, fill up with jokers. Clearly, we have |RB| = pB. Moreover,
denoting R =

⋃
B∈([m]

k )RB, we have |R| =
∑

B∈([m]
k ) pB, since no two constructed strings are

the same.
It is not hard to see that any two strings u, v ∈ RB satisfy 1 6 d(u, v) 6 k. Also, it is not

hard to check that for any two different subsets B′ and B′′ in
(
[m]
k

)
, and any strings u ∈ B′

and v ∈ B′′, we must have d(u, v) 6 k− 1, though sometimes we may have d(u, v) = 0. This
last obstacle may be easily fixed as follows.

Let A be any 1-neighborly family in S(m
k)−1 of size

(
m
k

)
. So, the elements of A may be

indexed by subsets B in
(
[m]
k

)
as vB. For each B ∈

(
[m]
k

)
, we may now form a new family

R′B = vBRB = {vBx : x ∈ RB} by appending the string vB at the beginning of every string
x in RB. Now, every pair of strings u, v ∈ R′ =

⋃
B∈([m]

k )R
′
B satisfies 1 6 d(u, v) 6 k, which

means that R′ is k-neighborly. This completes construction of a k-neighborly family with the
aforementioned size, as |R′| = |R|.
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It remains to demonstrate that choosing appropriate numbers a1, . . . , am, summing up
to t = d −

(
m
k

)
+ 1, gives the asserted lower bound. It is not hard to see that the product

pB =
∏

i∈B(ai+1) becomes maximal when its terms are equal as possible. So, we may assume
that each ai satisfies ai > bt/mc, which implies that ai + 1 > t/m, for all i = 1, . . . ,m. In
consequence, the maximum value of pB is at least (t/m)k. Hence, the maximal size of the
family R′ is at least

(
m
k

)
(t/m)k, which completes the proof of the first part of the theorem.

The second part follows immediately by considering m and d tending to infinity so that(
m
k

)
/d tends to zero. �

Let us illustrate the construction from the proof of Theorem 2 by a concrete example. Our
building blocks are 1-neighborly families of strings of the following basic form:

(4.3) C1 = {0, 1}, C2 = {00, 01, 1∗}, C3 = {000, 001, 01∗, 1 ∗ ∗}, . . . .

In general, Cd arises from Cd−1 by appending 0 at the beginning of every existing string and
adding 1 ∗ ∗ · · · ∗ to the collection. Clearly, Cd has size d+ 1 and is a maximal 1-neighborly
family in Sd.

Let us compute the lower bound for n(2, 7). By applying Proposition 2 (or directly the
lower bound from (1.1)), we find that n(2, 7) > n(1, 3) · n(1, 4) = 4 · 5 = 20. An explicit
family of strings of that size is C3C4.

However, we may get a better bound by the method from the proof of Theorem 2. Indeed,
taking m = 3, we have 7 −

(
3
2

)
+ 1 = 5, which leads to a1 = 2, a2 = 2, and a3 = 1. The

corresponding families of strings may be written as

(4.4) (00)(C2C2∗), (01)(C2 ∗ ∗C1), (1∗)(∗ ∗ C2C1),

while particular strings are obtained by substituting each symbol Ci with an arbitrary string
from Ci. Thus, the sizes of these families are, respectively, 3 · 3 = 9, 3 · 2 = 6, and 3 · 2 = 6,
which makes the total size of their union equal to 9 + 6 + 6 = 21 > 20.

Though this “fragmented” construction gives better results for k = 2 than a more direct one
form Proposition 2, for bigger k an opposite situation may happen. Consider, for instance,
the case of n(3, 10). Using the former method, an optimal value for the lower bound is
obtained by taking m = 4 and a1 = a2 = a3 = 2, a4 = 1, which gives four families of strings

(4.5) (000)(C2C2C2∗), (001)(C2C2 ∗ ∗C1), (01∗)C2 ∗ ∗C2C1, (1 ∗ ∗)(∗ ∗ C2C2C1),

whose union has total size 3 · 3 · 3 + (3 · 3 · 2) · 3 = 27 + 54 = 81. However, using Proposition 2
and the just computed lower bound n(2, 7) > 21, we get n(3, 10) > n(2, 7) ·n(1, 3) > 21 · 4 =

84 > 81. This leads to the following definition.
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Letm(k, d) denote the maximum size of a k-neighborly family in Sd that can be constructed
as in the proof of Theorem 2. More explicitly, m(k, d) is the maximum value of the expression∑

B∈([m]
k )
∏

i∈B(ai+1) over all m and a1, . . . , am such that
(
m
k

)
+m−1 6 d and a1+· · ·+am 6

d−
(
m
k

)
− 1. For instance, m(3, 10) = 81. Clearly, we have m(k, d) 6 n(k, d).

However, to take the advantage of construction from Proposition 2 that we have seen,
we define m(k, d) = max{

∏s
i=1m(ki, di)}, where the maximum is taken over all pairs of

partitions, k = k1 + · · · + ks and d = d1 + · · · + ds, with 1 6 ki 6 di. For instance, we have
m(3, 10) = 84. Clearly, we always have

m(k, d) 6 m(k, d) 6 n(k, d).

We shall discuss some properties of these functions in the final section.

4.2. Partitions and laminations. In this subsection we present further observations on
k-neighborly families of boxes with additional structural properties. Staying in string termi-
nology, we shall somewhat rely on geometric intuitions.

For a given family F ⊆ Sd, let us define the quantity vol(F ) =
∑

x∈F 2j(x), where j(x)

is the number of jokers in x. If F is a k-neighborly family, then vol(F ) is just the total
number of elements of Hd contained in the family of subcubes H(x), with x ∈ F . Clearly,
we have then vol(F ) 6 2d. Also notice that 2j(x) is a real geometric volume of the standard
box in S d corresponding to x and vol(F ) is the total sum of volumes of all standard boxes
corresponding to members in the family F .

We are interested below in those k-neighborly families F having the maximum possible
volume, namely vol(F ) = 2d. They are simply called partitions. We start with the following
simple lemma.

Lemma 1. Let F ⊆ Sd be a k-neighborly family of maximum size. Then each string in F

may have at most d− k jokers.

Proof. Suppose that there is a string x ∈ F with d − k + 1 jokers. Let x(0) and x(1) be two
strings obtained from x by changing one chosen joker into 0 and 1, respectively. Clearly,
d(x(0), x(1)) = 1, and for every y ∈ F , y 6= x, we still have 1 6 d(x(i), y) 6 k, for both
i = 0, 1. Hence, F \ {x} ∪ {x(0), x(1)} is a strictly larger k-neighborly family, contrary to our
assumption. �

Proposition 3. Every (d− 1)-neighborly family F ⊆ Sd of maximum size is a partition.

Proof. Let F0 and F ∗ be as in the proof of Proposition 1. From this proof we know that
|F0| 6 2d−1 and |F0| + |F ∗| = 2d−1 + 2d−2. By Lemma 1 we know that each string in
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F ∗ has exactly one joker. It follows that |F0| = 2d−1 and |F ∗| = 2d−2, and consequently,
vol(F ) = 2d. �

Our next results will have consequences for the opposite side of the scene, namely, for at
most 2-neighborly families F . In order to state it we need to introduce some notation and
terminology.

For a given family of strings F ⊆ Sd, denote by F i,s a subfamily having symbol s ∈ S on
the i-th position. A family F ⊆ Sd is called a lamination if it is a partition (vol(F ) = 2d)
and F = F i,0 ∪ F i,1, for some i ∈ [d]. For x ∈ Sd, let prop(x) = {i ∈ [d] : xi ∈ {0, 1}} be the
set of non-joker positions in x. Also, let sgn(x) = (−1)|{i∈[d] : xi=1}|.

The following lemma is a special case of a more general result given in [10] (Corollary 6.2).

Lemma 2. Let F ⊆ Sd be a partition and let v ∈ F be a string with the least number of
jokers. Then, denoting Pv = {x ∈ F : prop(x) = prop(v)}, we have

(4.6)
∑
x∈Pv

sgn(x) = 0.

Proof. If prop(v) = [d], then the set of strings F \Pv can be partitioned into edges of {0, 1}d

(strings with one joker). Thus, a half of strings in Pv contain an odd number of 1’s, and the
other half an even number of 1’s.

Let now |prop(v)| = k < d. We may assume that v = v1 · · · vk ∗ · · · ∗, where vi ∈ {0, 1} for
i ∈ [k]. Note that the set of strings

G = {w ∈ F : wi ∈ {0, ∗} for i > k + 1}

is a partition in dimension k. Moreover, the set P ′v = {w1 · · ·wk : w ∈ Pv} consists of all
strings in G which do not contain jokers. Thus, by the first part of the proof, the equality
(4.6) holds. �

A pair of strings x, y ∈ Sd is a twin pair if xi + yi = 1 for precisely one i ∈ [d] and
xj = yj for all j ∈ [d] \ {i}. A union x ∪ y of a twin pair x, y is the string z ∈ Sd such that
zi = ∗ if xi + yi = 1 and zj = xj for all j ∈ [d] \ {i}. In our geometric interpretation, a box
corresponding to z is the union of boxes corresponding to x and y.

Using the above lemma we prove that among k-neighborly families, with k 6 2, every
partition is a lamination.

Proposition 4. Let F ⊆ Sd be a k-neighborly family, with k 6 2. If F is a partition, then
F is a lamination.

Proof. Let x ∈ F be a string with the least number of jokers. Since k 6 2, by Lemma 2 there
is y ∈ F \ {x} such that x, y is a twin pair. Let G = (F \ {x, y}) ∪ {x ∪ y}. Obviously, the
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partition G is still at most 2-neighborly and |G| = |F |−1. Continuing this process we obtain
the partition P = {∗ · · · ∗ 0 ∗ · · · ∗, ∗ · · · ∗ 1 ∗ · · · ∗}, where 0, 1 stand at some ith position.
Then F = F i,0 ∪ F i,1. �

Let v ∈ Sd be a string of length d. For i ∈ [d], let v−i = v1 · · · vi−1vi+1 · · · vd denote the result
of deletion of the i-th letter form v. More generally, for F ⊆ Sd we write F−i = {v−i : v ∈ F}.
A total lamination is defined recursively as follows. For every d > 1, the 1-element family
consisting of a string with only jokers, as well as the full Hamming cube Hd, are total
laminations. Next suppose that total laminations of dimensions up to d−1 have been already
defined. Then a lamination F ⊆ Sd is total if there is i ∈ [d] such that F = F i,0 ∪ F i,1 and
both families, F i,0

−i and F i,1
−i , are also total laminations (see Fig. 1).

It is clear that the proof of Proposition 4 gives actually the following stronger statement.

Corollary 3. Every at most 2-neighborly partition in Sd is a total lamination.

A model example of a total lamination is a canonical 1-neighborly family Cd. Indeed, the
family Cd splits along the first coordinate into Cd−1 and {∗ ∗ · · · ∗}, which are both total
laminations. For example, C3 = {000, 001, 01∗, 1 ∗ ∗} splits into C2 = {00, 01, 1∗} and {∗∗}.
This implies that all neighborly families obtained by the method based on Proposition 2 and
Theorem 2 are also total laminations.

Figure 1. Total laminations in dimension 3, F = {001, 101, ∗11, ∗ ∗ 0} and
G = {0 ∗ 1, 1 ∗ 1, ∗00, ∗10}, with |F | = |G| = n(1, 3).

5. Final comments

Let us conclude the paper with some open problems and suggestions for future studies of
the function n(k, d).

Conjecture 1. For every 1 6 k 6 d, there exists a k-neighborly total lamination F in Sd of
size n(k, d).
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As mentioned above, the conjecture is trivially true for k = 1 and k = d. By the proof of
Proposition 1 it is also true for k = d− 1. The statement holds also in all cases for which the
exact value of n(k, d) is known, except for n(6, 8) = 150, where the only construction known
to us is not a total lamination. In Table 1 we collected initial lower bounds for l(2, d) obtained
by computer experiments that improve upon the values ofm(2, d) (defined in Subsection 3.1),
for some initial dimensions d.

d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
m(2, d) = 6 9 12 16 21 27 33 40 48 56 65 75 85 96 108 120
l(2, d) > 6 9 12 16 21 27 33 40 48 57 67 78 90 102 115 129

Table 1. The lower bounds for l(2, d) 6 n(2, d) obtained by constructions
of total laminations compared to the function m(k, d) 6 n(2, d) arising from
Theorem 2.

Total laminations have many nice structural properties. For instance, one may produce
out of any k-neighborly total lamination F of dimension d a sequence of similar families with
all possible sizes from |F | down to 1. For example, to make a smaller family from C3, take
a twin pair (000, 001) and substitute it by their union 000 ∪ 001 = 00∗. This gives a new
family {00∗, 01∗, 1∗∗}, which is still a 1-neighborly total lamination. Repeating this step for
the last family with a twin pair (00∗, 01∗) gives {0 ∗ ∗, 1 ∗ ∗}, which again is a 1-neighborly
total lamination. In the same way we get {∗ ∗ ∗} in the final step. Thus, if Conjecture 1 is
true, then for every (k, d) and every 1 6 p 6 n(k, d) there is a k-neighborly total lamination
of size p.

Though a general behavior of the function n(k, d) is quite mysterious, even for fixed k, we
propose the following conjecture stating that the numbers n(k, d) satisfy a kind of “Pascal
Triangle” property.

Conjecture 2. For every 2 6 k 6 d,

(5.1) n(k, d) 6 n(k − 1, d− 1) + n(k, d− 1).

The conjecture is supported by the results of some computational experiments performed
on Gurobi solver, which are included in Table 2. One may also consult a table with bounds
for n(k, d) in a recent paper [4] and a master thesis [11]. A more theoretical argument in
favor of the conjecture stems from the following proposition (whose simple proof is left to
the reader).
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Proposition 5. For every 2 6 k 6 d,

m(k, d) 6 m(k − 1, d− 1) +m(k, d− 1).

d 5 5 6 6 6 7 7 7 7 8 8 8 8 8
k 2 3 2 3 4 2 3 4 5 2 3 4 5 6

Alon 12 18 16 27 36 20 36 54 72 25 48 81 108 144
Gurobi 12 18 16 27 37 21 37* 54 74 27** 48* 81* 114 150

Table 2. Lower bounds for n(k, d) computed by Gurobi solver (compared to
the lower bounds implied by (1.1)). The numbers marked with an asterisk may
be suboptimal solutions to the corresponding MIP problems, as computations
have not been successfully completed. The number marked with a double
asterisk has been determined separately. Bold numbers are exact values of
n(k, d), as proved in [4] and in [11].

Let us remark that Conjecture 2 has some consequences for the presumed asymptotic
properties of n(k, d). In general, it seems plausible that the following conjecture is true.

Conjecture 3. For every fixed k, there exists a real number gk such that

(5.2) lim
d→∞

n(k, d)

dk
= gk.

We know that g1 = 1 by the Graham-Pollak Theorem. For k > 2 even the existence of
the limit is not known. However, from our Theorem 2 it follows that gk > 1

k!
(assuming that

gk exists). In particular, g2 > 1
2
. Now, using the hypothetical Pascal-Triangle inequality, we

get that g2 = 1
2
. Indeed, by this inequality we have n(2, j) − n(2, j − 1) 6 j, for any j > 3.

Summing up these inequalities for j = 3, 4, . . . d, we get that n(2, d) 6 4 + (3 + 4 + · · ·+ d) =

(d+ 1) +
(
d
2

)
. So, n(2, d)/d2 6 1

2
+ o(1).
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Appendix. Examples of neighborly families of maximum size

We give here some examples of neighborly families produced by computer search. In the
first case, k = 4 and d = 6, the maximality of the family follows from a theoretical bound
obtained in [4]. In the next three cases, namely k = 2 and d = 5, 6, 7, the maximality has
been confirmed by an exhausted computer search by Łuba in [11]. In the last example, k = 2

and d = 8, the eventual maximality of a given family remains open.

0000*0 0000*1 000100 000101 000110 000111 0010** 0011*0
0011*1 010000 010001 010010 010011 010100 010101 010110
010111 01100* 01101* 011100 011101 011110 011111 1000**
1001*0 1001*1 1011** 11000* 11001* 110100 110101 110110
110111 11110* 11111* 1*10*0 1*10*1

Table 3. A maximal 4-neighborly family of 37 strings in dimension d = 6, as
follows from [4]).
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00000 1001* 00001 101**
0001* *1000 001** *1001
10000 *101* 10001 *11**

Table 4. A maximal 2-neighborly family of 12 strings in dimension d = 5, as
verified in [11].

00*00* 00*10* 01**01 0***11
10000* 10010* 10100* 10110*
110*01 111*01 1*0*11 1*1*11
*1*000 *1*100 ***010 ***110

Table 5. A maximal 2-neighborly family of 16 strings in dimension d = 6, as
verified in [11].

001*00* 001**1* 00**10* 0*000** 0*010*0 0*010*1 101*00*
101**1* 10**10* 1*000** 1*010*0 1*010*1 *11000* *110*1*
*111000 *111001 *111*10 *111*11 *1*010* *1*1100 *1*1101

Table 6. A maximal 2-neighborly family of 21 strings in dimension d = 7, as
verified in [11].

000*0*00 000*0*10 000*1*00 000*1*10 000***01 000***11 0010**0*
0010**1* 0011*00* 0011*01* 0011*10* 0011*11* 01*00**0 01*01**0
01*0***1 01*100*0 01*101*0 01*110*0 01*111*0 01*1*0*1 01*1*1*1
1*0*0**0 1*0*1**0 1*0****1 1*10**** 1*11*0** 1*11*1**

Table 7. A 2-neighborly family of 27 strings in dimension d = 8 showing that
n(2, 8) > 27.
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