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Abstract

We consider judgment aggregation over multiple in-
dependent issues, where the chairperson has her own
opinion, and can try to bias the outcome by bundling
several issues together. Since for each bundle judges
must give a uniform answer on all issues, different par-
titions of the issues may result in an outcome that sig-
nificantly differs from the “true”, issue-wise, decision.

We prove that the bundling problem faced by the chair-
person, i.e. trying to bias the outcome towards her
own opinion, is computationally difficult in the worst
case. Then we study the probability that an effec-
tive bundling attack exists as the disparity between the
opinions of the judges and the chair varies. We show
that if every judge initially agrees with the chair on
every issue with probability of at least 1/2, then there
is almost always a bundling attack (i.e. a partition)
where the opinion of the chair on all issues is approved.
Moreover, such a partition can be found efficiently. In
contrast, when the probability is lower than 1/2 then
the chair cannot force her opinion using bundling even
on a single issue.

Introduction
Consider a committee that has gathered to vote over
several issues (say, applications for tax reductions by re-
tailers). The chairperson running the meeting decides
that issues will not be voted on sequentially or inde-
pendently. Rather, she insists that the committee will
hold a single voting round, thereby either approving or
denying all of the applications.

As a result, members who only support the approval
of some applications, may now prefer to approve all of
them (or to deny all). The Ostrogorski Paradox pre-
sented in the next section shows that there are cases
where there is a majority for denying every single ap-
plication, yet by bundling the issues for a single voting
round all of them will be approved (Levmore 1999).
This example demonstrates that the chairperson set-
ting the agenda can have significant power to bias the
outcome towards her own opinion.

This power becomes even stronger if the chairper-
son can apply more intricate partitions of the issues to
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“bundles”, coercing the voters to vote on each bundle
separately. By carefully bundling and partitioning the
issues, the chairperson may be able to achieve any out-
come she has in mind. Throughout this work we assume
the goal of the chairperson is to approve all issues.1 We
henceforth refer to such a partitioning as a bundling
manipulation or bundling attack. A perfect bundling is
a partition that guarantees the approval of all issues.

In this paper we study the limits of the chairperson’s
manipulation power from two perspectives. First, we
ask how hard is it to find a bundling attack given a
preference profile, i.e. what is the worst case complex-
ity of this problem. Second, we study the likelihood
that such a partition exists when the preference profile
is sampled from a parametrized distribution. The lat-
ter question is also tightly related to the average case
complexity of finding a bundling attack.

Multi-issue voting usually raises conceptual and tech-
nical problems due to interdependencies between is-
sues (Farquharson 1969; Lacy and Niou 2000; Xia,
Lang, and Ying 2007). Even if voters try to be “truth-
ful” it is not always clear what they should vote. We
consider independent judgment aggregation, where the
preferences of voters over issues are independent. In
such a setting the behavior of a judge is straight-
forward: the judge will approve exactly those issues he
supports. Further, if he treats all issues as equally im-
portant, then this behavior can be naturally extended
to any given agenda (i.e. partition to bundles): the
judge will approve bundles where he supports at least
half the issues, and will reject the other bundles.

Other than the committee example given above, sim-
ilar situations may occur in economic and political set-
tings. Consider a vendor bundling together groups of
features or products, when the decision what to buy is
the responsibility of a board or committee representing
the buyer. Thus the vendor may “trick” the buyer to
buy all features/products, where none of them would
be approved separately.

A more intricate example is a political party wrap-
ping together multiple issues, thereby making voters
choose whether to support it as a whole.

1This is w.l.o.g. in most problems we consider.



Related work
Baumeister et al. (2012) considered several types of con-
trol by the chair in judgment aggregation, namely by
adding, removing, or replacing some of the judges. Fol-
lowing Endriss et al. (2010a; 2010b), they assume an
underlying agenda defined by a set of logical formulae.
That is, the opinion of each agent over an issue may
depend on his opinions over other issues on the agenda.
Baumeister et al. study the computational complexity
of these problems under a particular aggregation rule.

Conitzer, Lang and Xia (2009) studied several varia-
tions of agenda manipulation problems in voting with
multiple binary issues. They considered issues that are
interdependent, and thus setting the order by which is-
sues are voted on can significantly change the outcome.

Partitioning was studied in voting scenarios, where
the chair has the power to partition either the voters
or the candidates into two distinct sets, thereby af-
fecting the outcome (Bartholdi, Tovey, and Trick 1992;
Hemaspaandra, Hemaspaandra, and Rothe 2007).

In all three settings described above, much of the
conceptual and computational complexity stems from
the intricate dependency between the issues. In our
setting issues are independent, which corresponds to
premise-only agendas preference aggregation (Endriss,
Grandi, and Porello 2010b), or to separable preferences
in multi-issue voting (Conitzer, Lang, and Xia 2009).
Thus in the setting we focus on some of the previously
studied problems become trivial (for example the order
of issues is irrelevant), and the difficulty arises due to
the rich set of possible partitions.

Bundling of products has been studied in the con-
text of auctions (Palfrey 1983). In such settings the
bidders can make individual decisions, and the useful-
ness of bundling to the auctioneer is derived from her
uncertainty regarding bidders’ valuations.

Our contribution
We show that finding whether a bundling attack exists
is NP-hard under two different variations of the prob-
lem. First, it is hard to find whether a single bundle can
be used to approve a large fraction of the issues. Sec-
ond, it is hard to find a perfect bundling, i.e. a partition
that results in approving all issues.2 Interestingly, the
first problem turns out to be related to the Optimal-
Lobbying problem (Christian et al. 2007), albeit in a
non-intuitive way.

We then focus on the frequency of successful bundling
attacks, when each voter approves every issue (i.e.
agrees with the chair) with independent probability p.
Our main result shows that for p = 1/2 (and clearly
for any larger value), a perfect bundling attack almost
always exists. In contrast, when p < 1/2 the proba-
bility that even a single issue can be approved using
bundling goes to zero (when the number of voters is
not extremely small). As a corollary, finding whether

2Note that checking whether a perfect outcome can be
attained with single bundle is trivial - just bundle all issues
and check if all issues are approved.

a perfect bundling attack exists is easy on average (for
any value of p).

Some proofs are omitted or replaced with a proof
sketch due to lack of space, and appear in the full ver-
sion of this paper.3

Preliminaries
We use bold characters to denote column vectors, as
in a = (a1, a2, . . .), upper case letters A,B,C, . . . to de-
note sets, and X,Y, Z to denote random variables. Row
vectors are denoted with an overbar, e.g. a. Matrices
are denoted with calligraphic letters A,B, etc. For bi-
nary vectors, we denote by |a| the number of ’1’ entries
in a (i.e. the Hamming weight of a). We denote the set
{1, . . . ,m} by [m].

We denote 1 = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0). For
a binary vector a, let maj(a) ∈ {0, 1} be the majority of
entries. As a convention, we break ties toward 1 (other
tie-breaking methods require slight modifications).

An instance of Independent judgment aggregation
(IJA) is composed of n judges J (also called voters),
m issues I, and a n×m binary matrix A = (aji)

n
j=1

m

i=1
,

where aji = 1 when judge j is in favor of approving
issue i, and aji = 0 otherwise. Denote the i’th column
(issue) of A by ai , and the j’th row (judge) by aj .

The outcome of aggregating the opinions on each
issue separately, is denoted by s = maj(A) =
(maj(a1), . . . ,maj(am)). Intuitively, the outcome of a
bundling attack (a partition) on IJA A is as if every
judge answers the same on all issues in each bundle,
according to the majority of issues in the bundle. Thus
the final outcome can be very different from maj(A).

Formally, let the submatrix A|C contain columns
i ∈ C of the matrix A (i.e. A restricted to the bun-
dle C ⊆ I). The decision on bundle C is simply
dC(A) = maj(maj(a1|C), . . . ,maj(an|C)). That is, each
voter selects 1 or 0 according to the number of issues
in C on which he has an affirmative opinion, and then
the majority of voters decides on a uniform decision for
all issues. We denote by s(C,A) ∈ {0|C|, 1|C|} the row
vector where every entry equals to dC(A).

Bundling attacks
A Bundling attack on IJA instance A is a partition P
of the m issues. Let P = (C1, . . . , Ct∗). The outcome of
the attack is accepted by concatenating the outcomes
of all bundles. Formally,

s′ = s(P,A) = (s(C1,A), s(C2,A), . . . , s(Ct∗ ,A)).

We allow to specify partial partitions, where the un-
specified columns are assumed to be singletons.

Suppose that the goal of the chair is to approve all
issues. Then the success of a bundling attack (i.e. a
partition P to bundles) is determined by the number
of positive issues in the outcome, i.e. by |s(P,A)|. In
particular, we say that P is a perfect bundling attack if
s(P,A) = 1, i.e. if the goal of the chair is achieved on
all issues.

3Available from http://tinyurl.com/dx9cuh6.



Remark 1. As long as there are no assumptions on
the distribution, w.l.o.g. the goal vector is 1.

This is since we can replace 1 with any other tar-
get vector t, and replace A with a modified matrix
where the names 0 and 1 are flipped in the appropriate
columns, formally A′ = A+1× (1−t)( mod 2). Then
|{i : s(P,A)i = ti}| equals to |s(P,A′)|.

As for the power of bundling attacks, there are simple
examples where maj(A) = 0, but maj(P,A) = 1 (for a
single bundle P = {I}). If the fraction of 1’s in A is
less than 1/4, then it is not hard to see that a perfect
bundling attack is impossible.

J \ I i1 i2 i3
1 0 0 0
2 0 0 0
3 1 1 0
4 1 0 1
5 0 1 1
s 0 0 0

The Ostrogorski paradox.
The following IJA instance ap-
pears in (Levmore 1999):

If we aggregate the opinions
of the five judges on each issue
separately, we get 0 is all issues,
i.e. s = maj(A) = (0, 0, 0).
However, if we bundle all issues together then the three
last voters will vote 1, and hence the biased outcome
will become s′ = s(I,A) = (1, 1, 1). This example
shows that there are cases where the chair can ex-
ploit disagreement among judges to achieve a perfect
bundling attack even when it completely reverses the
original outcome.

Hardness of Bundling
We define the following variations of the bundling prob-
lem. The first is achieving as many positive issues as
possible with a single bundle. The second problem is to
guarantee that all issues will reach a positive decision,
allowing as many bundles as needed.

AnyBundling
input An IJA instance A.
question Is there a bundle C⊆I, s.t. s(C,A)=1?

k-Bundling
input An IJA instance A, a number k ≤ m.
question Is there a bundle C ⊆ I of size k, s.t.
s(C,A) = 1?

PerfectBundling
input An IJA instance A.
question Is there a partition P , s.t. s(P,A)=1?
All three problems are clearly in NP.

Bundling with a single bundle is hard
We claim that the first two problems are NP-hard. To
that end, we want to use a reduction from Optimal-
Lobbying (OL) (Christian et al. 2007). However, we
need to slightly modify the original OL problem.

We define the function majr : {0, 1}l∗ → {0, 1} as
follows. majr(a) returns 1 if |a| ≥ (l∗ + r)/2 ones, and
otherwise returns 0 (i.e. maj0 ≡ maj). We extend majr
to operate on matrices by operating on each column
independently, as we did with maj.

OptimalLobbying’ (OL’)

input An IJA instance A with n∗ voters, m∗ is-
sues, a natural number r ≤ n∗/2.
question Is there A′ ∈ {0, 1}n∗×m∗ s.t. A,A′ dif-
fer in at most r rows, and |majr(A′)| ≥ m∗/2 ?

Note that w.l.o.g. modified rows in matrix A′
are 1. Recently, Nehama (2013) proved that a wide
parametrized family of problems that include OL, are
all NP-hard. It can be shown that OL’, which is similar
in spirit to these variations, is also NP-hard.

We are now ready to prove the hardness of our own
problem. The reduction from OL’ demonstrates the
reversed roles of the elements: the voters of the OL’
problem become issues in k-Bundling and vice versa.

Proposition 1. k-Bundling is NP-complete.

Proof sketch. Given an OL’ instance (A, r), we define
an instance of k-Bundling where the IJA matrix is
B = AT (i.e. the transpose of A), and k = n∗ − r.
Note that in the k-Bundling instance we have n =
m∗ voters and m = n∗ issues. Let K ⊆ [m] of size
k, and R = [m] \ K. It can be verified that K is a
successful bundling attack on B iff R is a successful
lobbying attack on A.

Note that if k is a constant, then k-Bundling can
be solved in polynomial time: just try all

(
m
k

)
possible

bundles, and check if the attack succeeds.
We emphasize that the hardness of AnyBundling

does not follow directly from k-Bundling, since in our
proof we have to allow values of k above m/2. However,
AnyBundling has been independently shown to be
NP -hard in (Alon et al. 2013).

Perfect bundling by partitioning is hard
Consider the following problem.

IsTripartite
input A 3-uniform hypergraph (V,E).
question Are there V1, V2, V3 s.t. V1 ]V2 ]V3 = V
(i.e. form a partition of V ), and every e ∈ E
intersects all three sets?

We are not aware of any previous complexity anal-
ysis of the IsTripartite problem, however it can be
easily shown to be NP-hard by a reduction from graph
3-coloring (Karp 1972).

Proposition 2. PerfectBundling is NP-complete.

Proof sketch. We prove by a reduction from IsTripar-
tite. Let t = |V |−3. We define a column (an issue) for
each vertex v ∈ V . For every hyperedge e = (v, v′, v′′),
we define 5 voters as follows. Two voters (denoted by
the set Ae) approve all three issues, and each of the 3
issues is also approved by another single voter (forming
the set Be).

Next, we add t template columns, that are approved
by all voters. Finally, we add |E| − 1 dummy voters,
with rows that are all zero. Thus we have an IJA in-
stance with n = 6|E| − 1 and m = t+ |V | = 2|V | − 3.



“⇒” Assume first that (V,E) is tripartite. Then we
can use the following partition to three bundles. We
bundle every set Vi, i ∈ {1, 2, 3} with |Vi| − 1 template
columns. In each such bundle, for every edge e, both
voters in Ae and exactly one voter from Be have more
ones than zeros. Thus the bundle is approved.

“⇐” Assume that there is a successful bundling at-
tack P = (C1, . . . , Ck). Then in every bundle Ci ∈ P
there is a majority of approved rows, i.e. at least 3|E|
non-dummy voters.

By a careful examination of the partition of template
columns, it can be shown that there are exactly 3 bun-
dles. Then, we show that exactly |E| voters of type
B approve each bundle, which means that all of the
2|E| type A voters must approve all bundles. A voter
in Ae = (v, v′, v′′) will approve all three bundles only
if each of his approved columns belongs to a different
bundle. Thus every bundle must intersect every triplet
e. In other words, the partition P projected on non-
template columns is a 3-partition of (V,E).

Frequency of Bundling Attacks

Suppose we are given a random IJA instance. A natural
question is “does an efficient bundling attack exist?”.

Let Dp = Dp(n,m) be the distribution over all n×m
matrices where each entry is (i.i.d.) 1 w.p. p. Intu-
itively, since we assume the vector 1 reflects the opin-
ion of the chair, p is the probability that a judge agrees
with the chair on a certain issue, where agreement is
decided independently for each judge and every issue.
p = 1/2 is the special case of uniform distribution over
all n ×m matrices. p > 1/2 means that judges tend to
agree with the chair, whereas lower values reflect cases
where the chair is trying to achieve a goal contrary to
the common opinion.

We denote by Rp(n,m) the probability that there
is some bundling attack P guaranteeing at least one
positive entry. I.e.

Rp(n,m) = PrA∼Dp(n,m)[∃P = P (A) s.t. |s(P,A)| ≥ 1].

Similarly, we denote by Qp(n,m) the probability that a
perfect bundling attack P exists, i.e. where |s(P,A)| =
m. Clearly Qp(n,m) ≤ Rp(n,m).

By considering the complement of every matrix A,
we observe that for any p, Rp(n,m) + Q1−p(n,m) ≥ 1
(see appendix in full version).

We think of p as fixed, and take n,m to infinity.
Without bundling, the expected fraction of columns
with outcome ‘1‘ is 1/2 when p = 1/2. For other val-
ues, the expected fraction of ‘exceptional’ columns (e.g.
positive when p < 1/2) decreases exponentially in n.

Our main result shows that there is a phase transi-
tion around p = 1/2: for values of p lower than 1

2 , no
bundling attack can succeed in changing the outcome
of even a single issue (when n is not too small), whereas
for p ≥ 1/2 there is almost always an attack that sets
all issues to ‘1‘. The most interesting case is p = 1/2,
which is shown last.

High Agreement (p > 1/2)
When there is some tendency among judges to agree
with the chair, it is easy to achieve a prefect outcome.

Proposition 3. If p > 1/2 and either n or m tend to
infinity, then Qp(n,m) goes to 1.

Proof. It is easy to see that with high probability
(w.h.p.) a single bundle of all issues will work. In-
deed, every row has a majority of ones w.p. tp, where

1−tp = Prz∼Bin(m,p)[z < m/2] < e−2m(p−1/2)2 ≤ e−Ω(m).

Thus w.p. tp (which goes to 1 with m tending to
infinity) a single voter has a majority of ones, and will
therefore approve the full bundle.

For any fixed value ofm, tp is some fixed value strictly
greater than 1/2. Thus we can do the same calculation
again (replacing p for tp and m for n) to show that a
majority of voters will vote ’1’ almost always.

Low Agreement (p < 1/2)
When there are very few voters and many issues (say,
n = o(lnm)), then even if p < 1/2 there will be some
column (w.h.p.) that is approved by a majority of vot-
ers. However unless the number of voters is extremely
low w.r.t. the number of issues, there will be no such
column – and not even a single bundle – that can cause
judges to approve any issue.

Proposition 4. If p < 0.5, n tends to infinity and
n� lnm, then Rp(n,m) goes to 0.

Proof sketch. We consider separately “small” and
”large” bundles (size threshold depends on p). For each
size, we bound the probability of every single bundle to
succeed using the Chernoff bound twice (once for the
columns of a single voter, and once for the rows). Then
we use the union bound to bound the total probability
of all bundles.

Uniform distribution (p = 1/2)
Our main theorem for the stochastic setting shows that
for p = 1/2, we can almost always find a perfect bundling
attack. Note that under the uniform distribution, se-
lecting 1 to be the goal of the chair is w.l.o.g. Thus
our result implies that for any goal of the chair, there
is almost always a partition that achieves this goal.

Theorem 5. For p = 1/2, Qp(n,m) goes to 1 when m
tends to infinity. Moreover, a successful bundling attack
can be found efficiently w.h.p.

Our algorithm works as follows. First, we take
columns whose density (of ’ones’) is slightly less than
1/2 (see exact selection criterion in the proof), then ar-
bitrarily partition those columns to bundles of size 3.

Although each such bundle has a low probability to
get a positive decision, w.h.p. some of the bundles will
be positive. Then, we bundle together all the remaining
columns, including those bundles who failed, and the
density of this large bundle will be slightly above 1/2.



Finally, we apply the second moment method to show
that the large bundle also succeeds w.h.p., which results
in a perfect partition.

We will need the following combinatorial lemma.

Lemma 6. Let A∗ be a n×m matrix with integer values
bounded by a∗ ∈ N, and let A = (aji)ji be a random
matrix that is obtained by taking a random permutation
of every column in A∗. Denote by Zj =

∑m
i=1 aji the

sum of the j’th row, and µ = 1
nm

∑
ji a
∗
ji. then

1. Cov[Zj , Zj′ ] = − 1
n−1V ar[Zj ] < 0, for all j 6= j′.

2. In the limit m→∞, 1/mZj ∼ N(µ,Θ(1/m)).

Intuitively, the first part holds since when the sum
of a particular row is high, this is an indication that in
many columns low entries appear in other rows. The
second part follows directly from the central limit the-
orem.

Proof of Theorem 5. Given an input matrix A, we de-
scribe a partition as follows. Let R be the set of columns
whose number of ones is n/2 − δ, where

√
n/4 ≤ δ ≤√

n/2 I.e., between half and one standard deviations
(STDs) from the mean. With probability that goes to
1, R contains a constant fraction α (about 15%) of the
columns. Let 1/2 − µR be the average density of a col-
umn x in R (i.e. |x|/n), then the expected density of a
column in S = I \R is 1/2 + α

1−αµR.

We divide R to triplets (e.g., by lexicographic order).
For every triplet we generate a random permutation of
the rows. For every column x, we apply the respec-
tive permutation, and then randomly sample exactly
n/2−

√
n/2 ‘ones’. Let x′ be the column obtained from

x after applying the permutation and reduction. For
every x,y, the intersection of x and y is the subset of
rows where both have ones. We now say that a triplet
x1,x2,x3 is successful, if the following occur:

• The intersection size of pair x′1,x
′
2 is between the

mean n/4− 1
2

√
n, and n/4 (the mean plus one STD).

• The intersection size of pair x′3,y
′ is strictly over

n/4 + 1
2

√
n, where y′ = x′1 ⊕ x′2 (bit-wise xor).

A short calculation shows that a constant fraction (over
0.5%) of the triplets in R are successful. Note that since
we use x′ and not x to determine success, the follow-
ing properties apply. First, if x,y belong to different
triplets then xj , yj are independent, even conditioned
on success/failure (due to the independent random per-
mutations). Second, the success/failure probability is
independent of the actual size of x (due to the reduc-
tion to subsets of the same size). We bundle together
every successful triplet, and add all other columns (in-
cluding failed triplets) to a single large bundle L. We
next show that w.h.p. all bundles are approved.

First, in each successful triplet, there are at least
n/4−

√
n/2 rows (voters) that agree with issues x′1,x

′
2

(and thus also with x1,x2 that contain them), and
therefore vote 1. There are also over n/4+

√
n/2 voters

that agree with issue x3 and exactly one other issue. In

total, over n/2 voters vote 1, and all small bundles are
approved w.p. 1.

As for the large bundle, note that it contains
all columns, except a small constant fraction (about
1/1000) of columns that are a subset of R. The columns
of L either arrive from failed triplets (denote these
columns by R′) or from singletons S, thus L = S ∪R′.
Note that the expected density of a column in R′

equals to the density in R, which is 1/2− µR, and that
|R′| < 0.995|R| = 0.995αm.

We next show that most rows in L have a majority
of ones with probability that tends to 1 as m tends
to infinity. Consider first the columns of S. Since all
columns are independent, the expected density of each
column in S is 1/2 + α

1−αµR.

The expected density of a column in R′ is 1/2 − µR.
Thus, the expected total density of every row j over the
large bundle L is

µL =
|R′|
|L|

(1/2− µR) +
|S|
|L|

(1/2 +
α

1− α
µR)

>
0.995α(1/2− µR)

0.995α+ 1− α
+

(1− α)(1/2 + α
1−αµR)

0.995α+ 1− α

= 1/2 +
0.005α

1− 0.005α
µR ≥ 1/2 + Ω(1/

√
n).

For each 1 ≤ j ≤ n let Xj be an indicator random
variable whose value is 1 iff maj(aj |L) = 1 (i.e. voter i
approves L) , and let X =

∑n
j=1Xj . We want to show

that w.h.p. X > n/2.
We replace every three entries in each row that be-

longs to a failing triplet (i, i′, i′′) with a single random
variable yj = aj,i + aj,i′ + aj,i′′ . Thus yj ∈ {0, 1, 2, 3},
and E[y] = 3(1/2−µR). Denote the set of merged (non-

binary) columns by R̃. Clearly |R′| = 3|R̃|
Let r′ = |R′|, r̃ = |R̃|, s = |S|, and z = r′ + s. Every

row has r̃ + s independent variables, whose values are
bounded by 3. Note that since we know only the sum
of every column, our n× (r̃+ s) matrix is equivalent to
a fixed matrix with independent random permutation
on every column. Denote the sum of the j’th row by Zj
(note that merging columns does not change the value
of Zj). Then by Lemma 6, Zj is distributed according
to a normal distribution. We know that the expected
density of each row is µL ≥ 1/2+Ω(1/

√
n) by the above

calculation, thus Z ′j = Zj/z ∼ N(1/2 + c/
√
n, c
′
/z) for

some constants c, c′. By the definition of Xj , Pr[Xj=0]
equals to

PrZ′j∼N( 1
2 + c√

n
, c
′
z )[Z

′
j<

1

2
] = PrZ′′j ∼N(0,1)[Z

′′
j <−

c′′
√
z√
n

].

Suppose that z/n = o(1), which is the hardest case.
This means that E[X] is just slightly above n/2. In
what follows, we will show that w.h.p. X is sufficiently
close to E[X] so that it is still above n/2. For row j,

E[Xj ] = Pr[Xj = 1] = 1−PrZ′′j ∼N(0,1)[Z
′′
j <−c′′

√
z/n].

This term equals to 1/2 + Ω(
√
z/n), since c′′

√
z/n is

close to 0, and the cumulative distribution function of
the normal distribution is roughly linear around 0.



By Lemma 6, Zj , Zj′ are negatively correlated Nor-
mal random variables, and therefore Xj , Xj′ are also
negatively correlated. We next bound the variance
of X. Xj is binary and thus V ar[Xj ] ≤ 1/4, and
V ar[X] ≤ n/4 +

∑
j 6=j′ Cov[Xj , Xj′ ] ≤ n/4.

Recall that E[X] = nE[Xj ] = n(1/2 + Ω(
√
z/n)).

Thus, by Chebyshev,

Pr[X≤n/2] ≤ V ar[X]

(E[X]− n/2)2
≤ n/4

Ω(n
√
z/n)2

= O(1/z),

which tends to 0 as m (and thus z) grows to infinity.
It remains to prove for values of z above n. However

by increasing z/n we only increase E[Xj ] and thereby
decrease Pr[X < n/2]. Thus our result still holds.

Average case complexity
The above results imply that while the Perfect-
Bundling problem is NP-hard for some instances, it
is easy on average given a distribution Dp(n,m). In-
deed, if we know the parameters then we can answer in
O(1) whether a given matrix sampled from this distri-
bution has a perfect bundling attack (i.e. without even
looking at the matrix), by answering ‘yes’ iff p ≥ 1/2.
This answer will be true w.h.p. whenever p is fixed,
n goes to infinity, and n � lnm. In the special case
where n = O(lnm) bounding the error probability may
require a more careful analysis of the relations between
p, n, and m.

Moreover, given an IJA instance A ∼ Dp(n,m) where
p ≥ 1/2, we can return a successful bundling attack in
polynomial time. If p > 1/2 then just return the bundle
[m]. For p = 1/2 we can run the procedure described
in the proof of Theorem 5: Columns of R can be easily
selected just by counting the number of 1’s. Checking
if each triplet is a successful one is also easy. Then, we
know that the remaining large bundle succeeds w.h.p.
We note that the randomization steps are only required
to facilitate the proof, and that our algorithm can be
easily derandomized.

Discussion
We studied the problem of bundling in judgment ag-
gregation. We showed that even under the simplifying
assumption that opinions over issues are independent,
computing whether an optimal bundling attack exists is
hard. While the hardness of this combinatorial problem
is not very surprising, it reveals an interesting connec-
tion with the related problem of optimal lobbying where
the roles of voters and issues are reversed.

We also studied the probability that a bundling at-
tack exists in the average case, under various parame-
ters, and demonstrated a sharp threshold phenomenon.
In particular, under the uniform distribution, for any
goal vector t of the chair, it is almost always possible
to construct a perfect bundling attack (we just need to
relabel each aij to ‘1‘ if tj = 1 and to ‘0‘ otherwise).

Moreover, such a perfect partition can be found in
polynomial time, in contrast to the worst case behavior.

The dual problem. Proposition 1 shows that the k-
Bundling and the OptimalLobbying problems are
“dual” to one another, in the sense that issues and vot-
ers play reversed roles.

It turns out that the partitioning problem also has
a dual interpretation, where voters and issues change
roles. Consider a population of voters in some state
that are participating in a referendum about multiple
political issues included in a new proposed legislation.
In each issue, they can either support or object the
policy of the state government, and each district can
either adopt the legislation or forgo it entirely, accord-
ing to whether the majority of issues are supported by
its population. This formulation is equivalent to voting
over bundles of issues, only we mapped voters, issues
and bundles of the original IJA instance, to issues, vot-
ers and districts (respectively) of the referendum. More
specifically, a single issue supported in a district corre-
sponds to a single voter approving a bundle. A district
approving the entire legislation now corresponds to an
approved bundle in the original problem. The number
of citizens for which the legislation will take effect thus
depends not only on their opinions, but also on how
they are divided between districts in the state.

The paradoxes above show that it is possible in prin-
ciple that while every voter objects most issues (and
thus objects the new legislation), most issues will be
supported by the majority of voters in a given parti-
tion, and thus the legislation will be approved by all
districts. As a result, governors, who can change the
segmentation of their states to districts, have substan-
tial power in their hands. This is closely related to the
concept of Gerrymandering.4 We believe that further
research can uncover deeper links between studies on
Gerreymandering (Lublin 1999; Tasnádi 2011) and the
bundling problem studied in this work.

Future work. An important challenge is to better
understand the power of bundling in settings where is-
sues are interrelated, for example in the models of En-
driss et al. (2010b) or Conitzer et al. (2009). Naturally,
computational complexity can only increase when mov-
ing to a more general model.

Another venue is to explore bundling attacks when
the set of allowed partitions is itself restricted, for ex-
ample due to constraints on the number of bundles,
their size, or relevance of bundled issues.
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4From Wikipedia: “In the process of setting electoral
districts, gerrymandering is a practice that attempts to es-
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by manipulating geographic boundaries to create partisan or
incumbent-protected districts.” (our emphasis)
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