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Abstract

Szemerédi’s regularity lemma is one instance in a family of regularity lemmas,

replacing the definition of density of a graph by a more general coefficient. Recently,

Fan Chung proved another instance, a regularity lemma for clustering graphs, and

asked whether good upper bounds could be derived for the quantitative estimates it

supplies. We answer this question in the negative, for every generalized regularity

lemma.

1 Introduction

Szemerédi’s regularity lemma [7] is a cornerstone of extremal combinatorics, with applications

in graph theory, number theory, computer science and more. Underlying the lemma is the

notion of density of a graph, which is the number of edges divided by the total number

of vertex pairs. The lemma says, roughly, that any graph of density bounded away from

zero can be approximated by a union of a constant number of bipartite graphs Gi that are

regular, meaning that all induced subgraphs of a Gi with sufficiently many vertices have

approximately the same density.

Recently, Chung [1] proved a variant of Szemerédi’s regularity lemma that is tailor made

for clustering graphs, which are graph with a clustering coefficient bounded away from zero.

The clustering coefficient of a graph G is the number of triangles in G divided by the

number of two-edge paths in G. It plays a key role in the definition of the “small world

phenomenon”, as clustering graphs come up often in real-world settings, such as social and

neural networks ([5, 8]). Chung’s regularity lemma says, roughly, that every graph G with

a clustering coefficient bounded away from zero can be approximated by a union of a con-

stant number of induced tripartite subgraphs Gi, such that all induced subgraphs of a Gi
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with sufficiently many two-edge paths have approximately the same clustering coefficient.

Importantly, this regularity lemma is meaningful even if the graph G does not have constant

density, unlike Szemerédi’s regularity lemma, as long as the clustering coefficient of G is

constant.

More generally, for any fixed graph H and subgraph F of H on the same vertex set, one

may consider the analogous (H,F )-coefficient, namely, the number of copies of H divided by

the number of copies of F . It turns out that an “(H,F )-regularity lemma” holds in general

(see [1]).

Since clustering graphs often appear “in nature”, it is perhaps reasonable to suspect

that they have an efficient regularity lemma, meaning one where the number of parts in the

partition is a slow-growing function of the regularity parameter 1/ε. Indeed, the existence of

an efficient regularity lemma was the first open question raised in Chung’s paper [1], which

adds that “It is of both theoretical and practical interest to see if the clustering property

could be helpful for reducing the size of the partition”. More generally, one might ask

whether there is an efficient (H,F )-regularity lemma for some pairs (H,F ). Here we prove

that the answer to all these questions is negative.

1.1 Generalized regularity

Denote by nH(G), for a k-vertex graph H and a k-partite graph G, the number of unlabeled

copies1 of H in G where distinct vertices are mapped into distinct vertex classes. For a

subgraph F ⊆ H, also on k vertices, the (H,F )-coefficient of a k-partite graph G is

cH,F (G) =
nH(G)

nF (G)
.

Note that the density d(G) of a bipartite graph G is a special case of a cH,F (G); specifically,

if the vertex classes of G are (V1, V2) then cK2,K2
(G) = |G|/|V1||V2| = d(G). More generally,

cH,Kk
(G) is the “H-density” (that is, normalized H count) of G. Moreover, cK3,P2(G) is the

clustering coefficient of G, where P2 denotes the 2-edge path graph.2

Let us formally define (H,F )-regularity. We use the notation x ± ε for a number lying

in the interval [x− ε, x+ ε].

Definition 1 ((H,F )-regular graph). Let F ⊆ H be graphs on k vertices. A k-partite graph

G is ε-(H,F )-regular if for every induced k-partite subgraph G′ with nF (G′) ≥ εnF (G), we

have cH,F (G′) = cH,F (G)± ε.
1That is, subgraphs of G that are isomorphic to H. Alternatively, we may consider labeled copies (injective

mappings V (H)→ V (G) that map edges of H to edges G) with no real changes in our results.
2We note that [1] has, for technical reasons, two definitions of the clustering coefficient, depending on

whether the graph is guaranteed to be tripartite or not, and in the former case the denominator is the

number of two-edge paths with some fixed orientation. We opted to use a single definition.
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Definition 2 ((H,F )-regular partition). Let F ⊆ H be graphs on k vertices. A vertex

partition P of a graph G is ε-(H,F )-regular if all but at most εnH(G) copies of H in G lie

in induced k-partite subgraphs G[X1, . . . , Xk], with X1, . . . , Xk ∈ P, that are ε-(H,F )-regular.

Our result shows that in any proof of an (H,F )-regularity lemma, the order of the

partition (that is, its number of parts) can in general be as large as a tower function, similarly

to the case for Szemerédi’s regularity lemma—as originally shown by Gowers [4]. In fact, the

graphs we construct use Gowers’ construction (or any other construction witnessing tower-

type bounds) as a black box. Our proof proceeds by showing that for certain special graphs,

as defined in Section 2, having an (H,F )-regular partition can be used to derive a similarly

regular partition.

We are now ready to state our result. Formally, the tower function is defined recursively

by twr(n) = 2twr(n−1) for n ≥ 1 and twr(0) = 1. To simplify the presentation, we omit all

floor and ceiling signs whenever these are not crucial.

Theorem 1. Let F ( H be graphs on k vertices. There is a graph whose every ε-(H,F )-

regular partition is of order at least twr(1/ poly(εkk)).

2 Lower Bound Proof

2.1 Semi-blowups

The central definition in our proof is that of a semi-blowup. A blowup of a graph H is any

graph obtained by replacing every vertex i of H by a (non-empty) independent set Vi of

new vertices, each edge {i, j} of H by a complete bipartite graph between Vi and Vj, and

each non-edge {i, j} of H by an empty bipartite graph between Vi and Vj. A semi-blowup

of H is any graph obtained from a blowup of H by replacing the bipartite graph between

Vi and Vj—for only one choice of {i, j}—by any bipartite graph. We write H �eG0 for a

semi-blowup of H in which G0 replaces the bipartite graph corresponding to e = {i, j}.
We write N = {0, 1, 2, . . .} for the set of nonnegative integers, and [k] = {1, . . . , k}.

Notation. In everything that follows, we fix:

an integer k ≥ 2, graphs F ( H on the vertex set [k],

and an edge e = {1, 2} ∈ E(H) \ E(F ).

Henceforth, in the semi-blowup H �eG0, the first vertex class of G0 is embedded as V1
and the second as V2. We will repeatedly use the following easy properties of semi-blowups.

The first property shows that an induced subgraph of a semi-blowup of H is again a semi-

blowup of H.

Observation 1. For all U1 ⊆ V1, . . . , Uk ⊆ Vk, the induced subgraph (H �eG0)[U1, . . . , Uk]

is of the form H �eG0[U1, U2].
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The second property shows that the “H-density” of a semi-blowup of H is exactly the

(edge-) density of the replacement bipartite graph.

Observation 2. nH(H �eG0) = d(G0)|V1| · · · |Vk|.

Proof. Since e = {1, 2} ∈ E(H), a choice of a vertex from each vertex class, v1 ∈ V1, . . . , vk ∈
Vk, spans a copy of H if and only if {v1, v2} ∈ E(G0). Moreover, such a copy is necessarily

an induced copy of H, and thus the only copy of H on this set of vertices. We conclude

nH(H �eG0) = |G0| · |V3| · · · |Vk| = d(G0)|V1| · · · |Vk|.

Our choice of F and e has the following implication, which will be central to our proofs.

Lemma 2.1. There are integers a, b ∈ N, with a ≥ 1 and a + b ≤ k!, such that for every

bipartite graph G0 of density d,

nF (H �eG0) = (a+ bd)|V1| · · · |Vk|. (1)

This has the following corollaries:

nF (H �eG0) ≥ |V1| · · · |Vk|, (2)

and, by Observation 2,

cH,F (H �eG0) =
d

a+ bd
. (3)

Proof. Put H− = (V (H), E(H) \ {e}). For every choice of vertices v1 ∈ V1, . . . , vk ∈ Vk,
the copy of H they induce in G contains nF (H) copies of F if {v1, v2} ∈ G0, and otherwise

only nF (H−) copies of F . It follows that

nF (G) = nF (H−)|V1| · · · |Vk|+ (nF (H)− nF (H−))|G0||V3| · · · |Vk|.

Put a = nF (H−) and b = nF (H)− a, so that nF (G) = (a+ bd)|V1| · · · |Vk|. We clearly have

a + b = nF (H) ≤ k!. Moreover, and crucially, we have a ≥ 1, since F has at least one copy

in H that does not contain e, namely, F—as e /∈ E(F ). This completes the proof.

2.2 Regularity of semi-blowups

We use Lemma 2.1 to show that a semi-blowup can be used to reduce (H,F )-regularity to

Szemerédi’s regularity. Recall that a bipartite graph G on (V1, V2) is said to be ε-regular

if for all induced bipartite subgraphs G[S1, S2] with |S1| ≥ ε|V1| and |S2| ≥ ε|V2| we have

d(G[S1, S2]) = d(G)± ε.

Claim 2.2. For every bipartite graph G0, if H �eG0 is ε-(H,F )-regular then G0 is
√
ε · k2k-

regular.
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Proof. Put G = H �eG0 and ε′ =
√
ε · k2k. Let S1 ⊆ V1 and S2 ⊆ V2 be subsets with

|S1| ≥ ε′|V1| and |S2| ≥ ε′|V2|, and put d∗ = d(G[S1, S2]), d = d(G[V1, V2]). We will prove

that d∗ = d± ε′, which would complete the proof as it would imply that G0 is ε′-regular.

By Observation 1, the induced k-partite graph G[S1, S2, V3 . . . , Vk] is a semi-blowup of H

of the form H �eG[S1, S2]. It follows from (3) that there are integers a, b ∈ N, with a ≥ 1

and a+ b ≤ k!, such that

cH,F (G) = f(d) and cH,F (G[S1, S2, V3, . . . , Vk]) = f(d∗) (4)

where

f(x) =
x

a+ bx
, f : [0, 1]→ R.

Note that f ′(x) = a/(a+ bx)2 ≥ 0, so f is monotone increasing and f(x) ≤ f(1) = 1/(a+ b).

Let

g(x) =
ax

1− bx
, g : [0, 1/b)→ R.

Observe that g and g ◦f are well defined and, for every x ∈ [0, 1], we have g(f(x)) = x. Note

that g′(x) = a/(1 − bx)2 for every x ∈ [0, 1/b), and so is monotone increasing; this implies

the bound

g′
(
f(x) + ε

)
≤ g′

( b+ a/2

b(a+ b)

)
= a
(a+ b

a/2

)2
≤ k2k,

where the first inequality assumes ε ≤ 1
k2k

(otherwise there is nothing to prove), so ε ≤ a/2
b(a+b)

.

Using (2) we deduce the bound

nF (G[S1, S2, V3, . . . , Vk]) ≥ |S1||S2||V3| · · · |Vk| ≥ ε′
2|V1| · · · |Vk| ≥ (ε′

2
/k!)nF (G) ≥ ε · nF (G).

Thus, since G is ε-H/F -regular, cH,F (G[S1, S2, V3 . . . , Vk]) = cH,F (G) ± ε, that is, f(d∗) =

f(d)± ε by (4). We deduce, using the properties of f and g above, that

d∗ = g(f(d∗)) = g(f(d))± ε · max
x=f(d)±ε

g′(x) = d± ε · k2k,

where the second step applies the mean value theorem on g in the interval between f(d∗)

and f(d). Since ε · k2k ≤ ε′, this completes the proof.

2.3 Regular partitions—auxiliary claims

The following claim gives an approximate restriction of a partition onto a subset.

Claim 2.3 (Approximate restriction). Let P be a partition of U and let V ⊆ U be a subset.

For P ′ =
{
X ∈ P

∣∣ |X ∩ V | ≥ δ|X|
}

with δ = α|V |/|U | we have∑
X∈P ′

|X ∩ V | ≥ (1− α)|V |.
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Proof. We have ∑
X∈P\P ′

|X ∩ V | ≤
∑

X∈P\P ′
δ|X| ≤

∑
X∈P

δ|X| = δ|U | = α|V |.

Therefore, ∑
X∈P ′

|X ∩ V | =
∑
X∈P

|X ∩ V | −
∑

X∈P\P ′
|X ∩ V | ≥ (1− α)|V |.

The slicing lemma for regular graphs shows that a sufficiently large induced subgraph of a

regular bipartite graph is regular. We will need the following analogue for (H,F )-regularity.

Claim 2.4 (Slicing). Let T be a k-partite graph on (X1, . . . , Xk), and let Y1 ⊆ X1, . . . , Yk ⊆
Xk with |Yi| ≥ δi|Xi| be such that G := T [Y1, . . . , Yk] is a semi-blowup of H. If T is ε-(H,F )-

regular then G is ε′-(H,F )-regular with ε′ = ε · k!/(δ1 · · · δk).

Proof. Put ∆ = δ1 · · · δk. Since, by assumption, G is a semi-blowup of H, we have, using (2),

nF (G) ≥ |Y1| · · · |Yk| ≥ ∆|X1| · · · |Xk| ≥
∆

k!
nF (T ) =

ε

ε′
nF (T ).

Let S1 ⊆ Y1, . . . , Sk ⊆ Yk be subsets with nF (G[S1, . . . , Sk]) ≥ ε′ ·nF (G). Then, by the above

inequality, nF (G[S1, . . . , Sk]) ≥ ε · nF (T ). Since T is ε-(H,F )-regular, we thus have

cH,F (G[S1, . . . , Sk]) = cH,F (T )± ε.

A special case of the above, obtained by taking Si = Yi, is

cH,F (G) = cH,F (T )± ε.

Combining the last two estimates, we get cH,F (G[S1, . . . , Sk]) = cH,F (G)± 2ε. Since 2ε ≤ ε′

we deduce that G is ε′-(H,F )-regular, as needed.

We will also need the following standard fact.

Fact 2.5. If G is a bipartite graph of density at most ε3 then G is ε-regular.

To see why Fact 2.5 is true, note that all subsets S and T , each of size at least an

ε-fraction of its vertex class, satisfy d(S, T ) ≤ d(G)/ε2 ≤ ε.
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2.4 Putting everything together

We are now ready to prove Theorem 1. Recall that a vertex partition P of a graph G on n

vertices is said to be ε-regular if
∑

X,X′ |X||X ′| ≤ εn2 where the sum is over all cluster pairs

X,X ′ ∈ P such that G[X,X ′] is not ε-regular. We use the following standard terminology:

a (semi-) blowup is said to be balanced if all vertex classes have the same size. The common

refinement of partitions P and V is the partition {X ∩ V |X ∈ P , V ∈ V , X ∩ V 6= ∅}.
Our main result towards the proof of Theorem 1 is the following, which in some sense

lifts Claim 2.2 to a statement about partitions. Note that in the construction here we need

the blowup to be balanced, or at least not too “unbalanced”, since a relatively small vertex

class could be completely covered by small fragments of clusters from the regular partition,

thereby making our slicing lemma in Claim 2.4 unusable.

Theorem 2. If P is an ε-(H,F )-regular partition of a balanced semi-blowup H �eG0 then

the common refinement of P and {V1, V2} is an ε1/4k2k-regular partition of G0.

Proof. Put ε′ = ε1/4k2k. Let G = H�eG0 be a semi-blowup of H with n = |V1| = · · · = |Vk|,
and let P be an ε-(H,F )-regular partition ofG. For i ∈ {1, 2}, denote the common refinement

of P and {Vi} by Qi = {X ∩ Vi |X ∈ P , X ∩ Vi 6= ∅}. We need to prove that∑
(Y1,Y2)∈Q1×Q2

not ε′-regular

|Y1||Y2| ≤ ε′n2. (5)

Let Pi =
{
X ∈ P

∣∣ |X ∩ Vi| ≥ δi|X|
}

where we set, with hindsight,

δi =

{
1
2
ε′ if i ∈ {1, 2}
1
2k

if i ∈ {3, . . . , k} .

Moreover, let P∗i =
{
X ∩ Vi

∣∣X ∈ Pi}. Using Claim 2.3 and the fact that G is balanced,

∑
Y3,...,Yk :
∀i Yi∈P∗i

k∏
i=3

|Yi| =
k∏
i=3

∑
Yi∈P∗i

|Yi| ≥
(1

2
n
)k−2

. (6)

On the way to proving (5), our first goal will be to prove an analogous bound for P∗1 × P∗2 ,

rather than for Q1 ×Q2, as follows;∑
(Y1,Y2)∈P∗1×P∗2
not ε′-regular

|G0[Y1, Y2]| ≤ ε2k · |G0| . (7)

Put ∆ = δ1 · · · δk (≥ ε′2/(2k)k). We claim that if the k-partite graph G[X1, . . . , Xk] with

X1 ∈ P1, . . . , Xk ∈ Pk is ε-(H,F )-regular then the bipartite graph G[X1 ∩ V1, X2 ∩ V2]
is ε′-regular. To see this, put Yi = Xi ∩ Vi and note that G[Y1, . . . , Yk] is of the form
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H �e G[Y1, Y2], by Observation 1, and since |Yi| ≥ δi|Xi| for every 1 ≤ i ≤ k, it is εk!∆−1-

(H,F )-regular by Claim 2.4. Next, Claim 2.2 implies that G[Y1, Y2] is
√
εk!∆−1k2k-regular.

Since
√
εk!∆−1k2k ≤ (

√
ε/ε′)k3k ≤ ε′, our claim follows. Now, to simplify the discussion, let

us introduce two pieces of notation:

RP =
{

(X1, . . . , Xk) ∈ P1 × · · · × Pk
∣∣G[X1, . . . , Xk] is not ε-(H,F )-regular

}
,

R∗P =
{

(X1, . . . , Xk) ∈ P1 × · · · × Pk
∣∣G[X1 ∩ V1, X2 ∩ V2] is not ε′-regular

}
.

Then the claim above, in contrapositive, says R∗P ⊆ RP . We deduce that∑
(X1,...,Xk)∈RP

nH(G[X1, . . . , Xk]) ≥
∑

(X1,...,Xk)∈R∗P

nH(G[X1, . . . , Xk])

≥
∑

(X1,...,Xk)∈R∗P

nH(G[X1 ∩ V1, . . . , Xk ∩ Vk])

=
∑

Y3,...,Yk :
∀i Yi∈P∗i

∑
(Y1,Y2)∈P∗1×P∗2
not ε′-regular

nH(G[Y1, . . . , Yk])

=
∑

Y3,...,Yk :
∀i Yi∈P∗i

∑
(Y1,Y2)∈P∗1×P∗2
not ε′-regular

|G[Y1, Y2]| · |Y3| · · · |Yk|

≥
(1

2
n
)k−2 ∑

(Y1,Y2)∈P∗1×P∗2
not ε′-regular

|G[Y1, Y2]| ,

where the last equality uses Observation 1 and Observation 2, and the last inequality uses (6).

On the other hand, as P is an ε-(H,F )-regular partition of G,∑
(X1,...,Xk)∈RP

nH(G[X1, . . . , Xk]) ≤ ε · nH(G) = ε · |G0|nk−2,

where the last equality uses Observation 2. Combining the above two inequalities implies (7).

To deduce from (7) that Q1∪Q2 is indeed an ε′-regular partition of G0, we will need two

more observations. First, using Fact 2.5,∑
(Y1,Y2)∈P∗1×P∗2
not ε′-regular

|Y1||Y2| ≤
∑

(Y1,Y2)∈P∗1×P∗2
not ε′-regular

ε′
−3|G0[Y1, Y2]| ≤ ε′

−3
ε2k|G0| ≤

1

2
ε′|G0| ≤

1

2
ε′n2,

where the second inequality follows from (7), and the penultimate inequality uses the choice

of ε′. Second, we claim that every cluster pair (Y1, Y2) ∈ (Q1 × Q2) \ (P∗1 × P∗2 ) satisfies

|Y1||Y2| ≤ δ1|X1||X2|, where Xi ∈ P is uniquely defined by Yi = Xi ∩ Vi. Indeed, without

loss of generality Y1 /∈ P∗1 , meaning |Y1| ≤ δ1|X1|, so |Y1||Y2| ≤ δ1|X1||X2|. It follows that∑
(Y1,Y2)∈Q1×Q2 :
(Y1,Y2)/∈P∗1×P∗2

|Y1||Y2| ≤
∑

X,X′∈P

δ1|X∩V1||X ′∩V2| = δ1

(∑
X∈P

|X∩V1|
)(∑

X∈P

|X∩V2|
)

= δ1n
2.
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Combining the last two inequalities, and using our choice of δ1 = 1
2
ε′, we obtain (5) and thus

complete the proof.

To deduce Theorem 1 from Theorem 2, we use the celebrated tower-type lower bound

for Szemerédi’s regularity lemma, originally proved by Gowers [4]. (See also [6] for a simpler

proof.) For our application we need the bound to hold without assuming the partition is

equitable.3 As was shown by Fox, Lovász and Zhao (see Theorem 2.2 in [3], or Theorem 1.2

in [2]), this can be assumed without significant loss.

Theorem 3 ([3, 4]). There is a bipartite graph whose every ε-regular partition is of order at

least twr(1/ poly(ε)).

Proof of Theorem 1. Let G0 be the bipartite graph given by Theorem 3. Consider a

balanced semi-blowup G = H �e G0 (where, implicitly, the blowup has sufficiently many

vertices for the semi-blowup G to be well defined). Let P be an ε-(H,F )-regular partition

of G, and let Q be the common refinement of P and {V1, V2}, where V1, V2 are the vertex

classes of G0. Apply Theorem 2 to deduce that Q is a poly(εkk)-regular partition of G0. By

Theorem 3, the order of Q is at least twr(1/ poly(εkk)), and we are done.

3 Concluding Remarks

We have shown that tower-type lower bounds hold for every generalized regularity lemma.

One may raise the objection that, since a generalized regularity lemma can be meaningful

also for sparse graphs (that is, of density tending to 0 with the number of vertices), it is

not as satisfactory if our lower bound construction is dense. Indeed, the construction in

Theorem 1, being a semi-blowup of H, is—for any H with at least two edges—of density at

least 1/k. However, it turns out that one can easily get arbitrarily sparse graph with the

same lower bound, provided F is connected. For example, one may add any desired number

of isolated vertices to the graph from Theorem 1 so as to reduce the density as needed,

yet still maintain the property that any (H,F )-regular partition is large. Indeed, this is a

consequence of the following observation.

Observation 3. Suppose F is connected. Let a k-partite graph G be obtained from a k-partite

graph G0 by adding isolated vertices. If G is ε-(H,F )-regular then G0 is also ε-(H,F )-regular.

Proof. As F and H are connected, nF (G) = nF (G0) and nH(G) = nH(G0). Let G′ be a

k-partite induced subgraph of G0 with nF (G′) ≥ εnF (G0). Then nF (G′) ≥ εnF (G), and as G

is ε-(H,F )-regular, cH,F (G′) = cH,F (G)± ε, that is, cH,F (G′) = cH,F (G0)± ε, as needed.

3In an equitable partition, all parts have the same size give or take 1.
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