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Abstract

The clique chromatic number of a graph G = (V,E) is the minimum number of

colors in a vertex coloring so that no maximal (with respect to containment) clique is

monochromatic. We prove that the clique chromatic number of the binomial random

graph G = G(n, 1/2) is, with high probability, Ω(log n). This settles a problem of

McDiarmid, Mitsche and Pra lat who proved that it is O(log n) with high probability.

1 The main result

A clique in an undirected graph G = (V,E) is maximal if it is not properly contained in a

larger clique. A clique coloring of G is a vertex coloring so that no maximal clique (with

at least two vertices) is monochromatic. Let χc(G) denote the minimum possible number

of colors in a clique coloring of G. This invariant is called the clique chromatic number of

G and has been studied in a considerable number of papers, see [3, 4, 5, 6, 7, 8, 10, 11,

12, 13, 14, 15]. McDiarmid, Mitsche and Pra lat [13] initiated the study of χc(G) for the

random binomial graph G = G(n, p). While for sparse random graphs their upper and

lower bounds for the typical behavior of χc(G(n, p)) are rather close to each other, for the

dense case they do not have any nontrivial upper bound. In particular, for the random

graph G = G(n, 1/2) they proved that with high probability (whp, for short), that is, with

probability tending to 1 as n tends to infinity, χc(G) ≤ (1/2 + o(1)) log2 n and raised the

problem of proving any nontrivial lower bound. In this note we show that the logarithmic

estimate is tight, up to a constant factor.

Theorem 1.1. There exists an absolute positive constant c so that whp the random graph

G = G(n, 1/2) satisfies χc(G) ≥ c log2 n. Therefore, whp χc(G) = Θ(log n).
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The proof appears in the next two sections. Throughout the proof we assume, whenever

this is needed, that n is sufficiently large. All logarithms are in base 2, unless otherwise

specified. To simplify the presentation, we omit all floor and ceiling signs whenever these

are not crucial, and make no attempt to optimize the absolute constants in our estimates.

2 Preliminaries

This section includes the main technical part of the proof. It introduces several typical

properties of the random graph G(n, 1/2), established in the following three lemmas. The

proof of the first two is straightforward, while that of the third one requires some work.

Lemma 2.1. Let G = G(n, 1/2) = (V,E). Then whp for every set S of at most 1
2000 log n

vertices of G there are more than n0.999 log n vertices in V − S that are are not connected

to any vertex of S.

Lemma 2.2. The following holds for the random graph G = G(n, 1/2) whp. For every

set Y of |Y | = y ≥ n0.999 vertices of G, the number of vertices in V − Y that have less

than 0.41y non-neighbors in Y is smaller than 1
4 log n.

The third lemma is a bit more technical. It is convenient to define first the following

property of a set of vertices Y .

Definition 2.1. Let Y ( V be a set of vertices of an n-vertex graph G = (V,E). Call Y

significant if it satisfies the following two conditions:

• Every vertex v ∈ V − Y has at least n0.999 non-neighbors in Y ;

• The number of vertices v ∈ V − Y that have at most 0.41y non-neighbors in Y is at

most 1
4 log n.

Lemma 2.3. Let G = G(n, 1/2) = (V,E). Then whp every significant set Y in G contains

a clique K of size k = 1.9 log n so that every vertex v ∈ V −Y has at least one non-neighbor

is K.

We proceed with the proofs of the three lemmas above. The proofs of the first two are

very easy.

Proof of Lemma 2.1: Fix a set S of s ≤ 1
2000 log n vertices. The number of vertices

in V − S that are not connected to any member of S is a binomial random variable with

parameters n − s and 1/2s whose expectation is (n − s)2−s ≥ (1 − o(1))n0.9995. By the
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standard estimates for binomial distributions (c.f., e.g., [2], Theorem A.1.13) the proba-

bility that this number is smaller than n0.999 log n, which is less than half its expectation,

is smaller than e−n
0.9995/8. As the number of possible sets S is less than nlogn the desired

result follows by the union bound. �

Proof of Lemma 2.2: If G contains a set Y of size |Y | = y ≥ n0.999 violating the

lemma’s claim, then there is a subset X ⊂ V \ Y of size |X| = x = 1
4 log n such that

every vertex x ∈ X sends more than 0.59y edges to Y . This implies that G has more

than 0.59xy edges crossing between X and Y . For two given sets X,Y as above, the

number of edges e(X,Y ) between X and Y in G(n, 1/2) is distributed binomially with

parameters xy and 1/2. Using, again, the known estimates for binomial distributions (c.f.

[2], Theorem A.1.1), we obtain that the probability that e(X,Y ) ≥ 0.59xy is at most

e−2·0.092xy < e−0.016xy. Summing over all possible choices of X and Y , it follows that the

probability of the existence of a set Y violating the lemma’s claim is at most∑
y≥n0.999

(
n

y

)(
n− y
x

)
e−0.016xy ≤

∑
y≥n0.999

(
en

y

)y
nxe−0.016xy

≤
∑

y≥n0.999

nx ·
(
en0.001 · e−

0.016 logn
4

)y
≤

∑
y≥n0.999

nx · n−0.015·n0.999
= o(1) ,

completing the proof of the lemma. �

Proof of Lemma 2.3: Fix a set Y of y ≥ n0.999 vertices of G = G(n, 1/2) = (V,E) and

expose all edges of G between Y and V − Y . If Y is not significant then there is nothing

to prove, we thus assume that Y is significant. Put r = 1
4 log n and s = k− r = 1.65 log n.

Let B be a set of r vertices in V − Y containing all vertices in V − Y that have less than

0.41y non-neighbors in Y . Put m = n0.99 and choose, for each v ∈ B, a subset of Y of

size m consisting of non-neighbors of v, where all these subsets are pairwise disjoint. (It

is easy to choose these sets sequentially, as each v ∈ B has at least n0.999 non-neighbors

in Y .) This defines r subsets which we denote by Z1, Z2, . . . Zr. Put Y ′ = Y − ∪ri=1Zi,

|Y ′| = y′, and note that each vertex v ∈ V − (Y ∪B) has at least 0.41y− rn0.99 > 0.405y′

non-neighbors in Y ′.

Claim: There are s pairwise disjoint subsets Zr+1, Zr+2, . . . , Zk of Y ′, each of size

exactly m, so that every vertex v ∈ V − (Y ∪B) has at least 0.4m non-neighbors in each

of the subsets Zj , r + 1 ≤ j ≤ k.

Proof of claim: Choose the sets randomly and apply the standard estimates for hyper-

geometric distributions (c.f. [9], Theorem 2.10). �

3



Let F be the family of all subsets of size k of Y that contain exactly one element in

each set Zi and contain at least one non-neighbor of each vertex v ∈ V − Y . Note

that by the definition of the first sets Z1, . . . Zr, each set that contains an element from

each Zi has at least one non-neighbor of each vertex v ∈ B. On the other hand, for

each fixed v ∈ V − (Y ∪ B), when we choose randomly one member from each Zj for

r + 1 ≤ j ≤ k, the probability that we do not choose any non-neighbor of v is at most

0.6s = 0.61.65 logn < 1
n1.1 . Therefore, by the union bound, almost all these choices do

include at least one non-neighbor of each such v and hence

|F| ≥ (1− o(1))mk = (1− o(1))n0.99·1.9 logn.

We now expose the edges in the induced subgraph of G on ∪jZj and show that the

probability that none of the members of F is a clique is much smaller than 2−n. This

can be proved in several ways, either by using martingales (see [1], Section 4.1 for a

similar argument), or by using Talagrand’s Inequality, or by using the extended Janson’s

Inequality (c.f., [2], Theorem 8.1.2). The last alternative seems to be the shortest, and we

proceed with its detailed description.

For each member K of F , let xK denote the indicator random variable whose value is

1 iff K is a clique in G and let X =
∑

K∈F XK . Our objective is to show that X > 0 with

probability that is close enough to 1 to enable applying the union bound over all relevant

sets Y . The expectation of each XK is clearly

E(XK) = 2−(k2).

Thus, by linearity of expectation,

E(X) = |F|2−(k2) = (1− o(1))mk2−(k2) = (1− o(1))(m2−(k−1)/2)k > n0.03k > n10

with (a lot of) room to spare.

Put µ = E(X), and define ∆ =
∑

K,K′ Prob[XK = XK′ = 1] where the summation is

over all (ordered) pairs K,K ′ of members of F that satisfy 2 ≤ |K ∩K ′| ≤ k − 1. By the

extended Janson Inequality the probability that X = 0 is at most e−µ
2/2∆.

Note that ∆ =
∑k−1

i=2 ∆i where ∆i is the contribution of pairs K,K ′ with K,K ′ ∈ F ,

|K ∩K ′| = i. Thus

∆i ≤ |F|2−(k2)
(
k

i

)
(m− 1)k−i2−(k2)+(i

2) ≤ mk2−2(k2)+(i
2)
(
k

i

)
mk−i.

We next prove that

∆ =

k−1∑
i=2

∆i ≤ (1 + o(1))
k2

m2
µ2. (1)
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To do so, consider the following cases.

Case 1: i = 2. In this case

∆2

µ2
≤ (1 + o(1))

(
k
2

)
· 2

m2
≤ (1 + o(1))

k2

m2
.

Case 2: 3 ≤ i < 100. Here

∆i

µ2
≤ (1 + o(1))

(
k
i

)
2(i

2)

mi
< (1 + o(1))

(
k2i/2

m

)i
≤
(
k250

m

)3

=
1

m3−o(1)
.

Case 3: 100 ≤ i ≤ k − 2. In this case

∆i

µ2
≤ (1 + o(1))

(
k
i

)
2(i

2)

mi
< (1 + o(1))

(
k2i/2

m

)i
≤
(

1

n0.04−o(1)

)100

=
1

n4−o(1)
.

Summing the contributions for all i, 2 ≤ i ≤ k − 1 (< log n), the inequality (1) follows.

By the extended Janson Inequality this implies that the probability that X = 0 is at

most

e−µ
2/2∆ ≤ e−(1+o(1))m2/2k2 < e−n

1.98−o(1)
.

As the number of possible significant sets Y is smaller than 2n, the assertion of the lemma

follows, by the union bound. �

3 Completing the proof

In this section we prove Theorem 1.1. By the results in the previous section it suffices to

prove the following deterministic statement.

Proposition 3.1. Let G = (V,E) be a graph on n vertices satisfying the assertions of

Lemma 2.1, Lemma 2.2 and Lemma 2.3. Then χc(G) > 1
2000 log n.

Proof: Assume this is false, and let Y1, Y2, . . . , Ys be a partition of the vertex set V

into disjoint non-empty sets, each containing no maximal clique of G, where s ≤ 1
2000 log n.

It is easy to verify that the conclusions of Lemmas 2.1,2.2 guarantee in particular that G

contains at least one edge, and thus s > 1. For each i, 1 ≤ i ≤ s, let vi ∈ V −Yi be a vertex

with the minimum number of non-neighbors in Yi among all vertices in V − Yi, and let ti

denote the number of these non-neighbors. Therefore, the number of vertices of G which
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are not connected to any vertex of S = {v1, v2, . . . , vs} is at most
∑s

i=1 ti, and since G

satisfies the assertion of Lemma 2.1 this number exceeds n0.999 log n. By averaging there

exists an index i so that ti ≥ n0.999. Fix such an i and note that Y = Yi is a significant

set. Indeed, by the definition of ti each v ∈ V − Yi has at least ti ≥ n0.999 non-neighbors

in Yi, and as G satisfies the conclusion of Lemma 2.2 the number of vertices v ∈ V − Yi
that have at most 0.41|Yi| non-neighbors in Yi is at most 1

4 log n.

Since G satisfies the conclusion of Lemma 2.3, the set Y := Yi contains a clique K of

size 1.9 log n which contains at least one non-neighbor of each vertex v ∈ V − Yi. This

clique is contained in a maximal clique of G, call it K ′. However, K ′ is contained in Yi, as

K has a non-neighbor of each vertex v ∈ V − Yi. Thus K ′ is a maximal clique of G which

is contained in Yi, contradiction. This completes the proof of the proposition and hence

of Theorem 1.1. �

4 Concluding remarks and open problems

We have shown that the clique chromatic number χc(G) of the random graph G =

G(n, 1/2) is, whp, Θ(log n). The same proof applies to binomial random graphs with

any constant edge probability bounded away from 0 and 1. Together with the upper

bound proved in [13] we conclude that for any fixed p, 0 < p < 1, the random graph

G = G(n, p) satisfies, whp, χc(G) = Θp(log n).

We have made no attempt to optimize the absolute constants in our estimates. The

constant 1
2000 can certainly be improved, but it seems that the method as it is does not

suffice to determine the tight constant here. It seems plausible that

χc(G(n, 1/2)) = (1/2 + o(1)) log n

whp.
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cliques of graphs, SIAM Journal on Discrete Mathematics 17, 2004, 361–376.

[5] C.N. Campos, S. Dantas and C.P. de Mello, Colouring clique-hypergraphs of circulant

graphs, Electron. Notes Discret. Math. 30, 2008, 189–194.

[6] M.R. Cerioli and A.L. Korenchendler, Clique-coloring circular-arc graphs, Electron.

Notes Discret. Math. 35, 2009, 287–292.
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