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Abstract

A common thread in all the recent results concerning testing dense graphs is the use of Sze-
merédi’s regularity lemma. In this paper we show that in some sense this is not a coincidence.
Our first result is that the property defined by having any given Szemerédi-partition is testable
with a constant number of queries. Our second and main result is a purely combinatorial char-
acterization of the graph properties that are testable with a constant number of queries. This
characterization (roughly) says that a graph property P can be tested with a constant number of
queries if and only if testing P can be reduced to testing the property of satisfying one of finitely
many Szemerédi-partitions. This means that in some sense, testing for Szemerédi-partitions is as
hard as testing any testable graph property. We thus resolve one of the main open problems in
the area of property-testing, which was first raised in the 1996 paper of Goldreich, Goldwasser
and Ron [24] that initiated the study of graph property-testing. This characterization also gives
an intuitive explanation as to what makes a graph property testable.
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1 Background

1.1 Basic definitions

The meta problem in the area of property testing is the following: Given a combinatorial structure
S, distinguish between the case that S satisfies some property P and the case that S is ε-far from
satisfying P. Roughly speaking, a combinatorial structure is said to be ε-far from satisfying some
property P if an ε-fraction of its representation should be modified in order to make S satisfy P.
The main goal is to design randomized algorithms, which look at a very small portion of the input,
and using this information distinguish with high probability between the above two cases. Such
algorithms are called property testers or simply testers for the property P. Preferably, a tester
should look at a portion of the input whose size is a function of ε only. Blum, Luby and Rubinfeld
[10] were the first to formulate a question of this type, and the general notion of property testing
was first formulated by Rubinfeld and Sudan [34], who were interested in studying various algebraic
properties such as linearity of functions.

The main focus of this paper is the testing of properties of graphs. More specifically, we focus on
property testing in the dense graph model as defined in [24]. In this case a graph G is said to be ε-far
from satisfying a property P, if one needs to add/delete at least εn2 edges to G in order to turn it
into a graph satisfying P. A tester for P should distinguish with high probability, say 2/3, between
the case that G satisfies P and the case that G is ε-far from satisfying P. Here we assume that the
tester can query some oracle whether a pair of vertices, i and j, are adjacent in the input graph G.
In what follows we will say that a tester for a graph property P has one-sided error if it accepts any
graph satisfying P with probability 1 (and still rejects those that are ε-far with probability at least
2/3). If the tester may reject graphs satisfying P with non-zero probability then it is said to have
two-sided error. The following notion of efficient testing will be the main focus of this paper:

Definition 1.1 (Testable) A graph property P is testable if there is a randomized algorithm T ,
that can distinguish with probability 2/3 between graphs satisfying P and graphs that are ε-far from
satisfying P, while making a number of edge queries which is bounded by some function q(ε) that is
independent of the size of the input.

The study of the notion of testability for combinatorial structures, and mainly the dense graph
model, was introduced in the seminal paper of Goldreich, Goldwasser and Ron [24]. Graph property
testing has also been studied in the bounded-degree model [26], and the newer general density model
[30]. We note that in these models a property is usually said to be testable if the number of queries
is o(n). Following [24, 10, 34] property testing was studied in various other contexts such as boolean
functions [4, 16, 19, 31], geometric objects [2, 11] and algebraic structures [10, 20, 8]. See the surveys
[14, 33] for additional results and references.

1.2 Background on the characterization project

With this abundance of results on property testing, a natural question is what makes a combinatorial
property testable. In particular, characterizing the testable graph properties was considered one of
the main open problems in the area of property testing, and was raised already in the 1996 paper of
Goldreich, Goldwasser and Ron [24], see also [22], [9] and [25]. In this paper we obtain for the first
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time a characterization of the testable graph properties. We next discuss some results related to this
problem.

A natural strategy toward obtaining a characterization of the testable graphs was to either prove
the testability/non-testability of general families of graph properties or to obtain characterizations
for special cases of testers. The main results of [24] was that a general family of so called “partition-
problems” are all testable. These include the properties of being k-colorable, having a large cut and
having a large clique. [25] gave a characterization of the partition-problems that can be tested with
1-sided error. They also proved that not all graph properties that are closed under edge-removal
are testable. [12] studied property testing via the framework of abstract combinatorial programs and
gave certain characterizations within this framework. [3] tried to obtain a logical characterization of
the testable graph properties. More specifically, it was shown that every first order graph-property
of type ∃∀ (see [3]) is testable, while there are first-order graph properties of type ∀∃ that are not
testable. The main technical result of [3] was that certain abstract colorability properties are all
testable. These results were generalized in [13]. In [6] it was shown that every graph property that
is closed under removal of edges and vertices is testable. This result was extended in [7], were it was
shown that in fact, being closed under vertex removal is already sufficient for being testable (see also
[28]). [7] also contains a characterization of the graph properties that can be tested with one-sided
error by certain restricted testers. Finally, [25] following [3], proved that a tester may be assumed
to be non-adaptive (see Theorem 4.2), and [17] proved that if a graph property is testable then it
is also possible to estimate how far is a given graph from satisfying the property (see Theorem 4).
These last two results are key ingredients in the present paper.

2 The Main Result

2.1 Background on Szemerédi’s regularity lemma

Our main result in this paper gives a purely combinatorial characterization of the testable graph
properties. As we have previously mentioned, the first properties that were shown to be testable in
[24] were certain graph partition properties. As it turns out, our characterization relies on certain
“enhanced” partition properties, whose existence is guaranteed by the celebrated regularity lemma of
Szemerédi [35]. We start by introducing some standard definitions related to the regularity lemma.
For a comprehensive survey about the regularity lemma the reader is referred to [27].

For every two nonempty disjoint vertex sets A and B of a graph G, we define e(A,B) to be
the number of edges of G between A and B. The edge density of the pair is defined by d(A,B) =
e(A,B)/|A||B|.

Definition 2.1 (γ-regular pair) A pair (A,B) is γ-regular, if for any two subsets A′ ⊆ A and
B′ ⊆ B, satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality |d(A′, B′)− d(A,B)| ≤ γ holds.

Throughout the paper it will be useful to observe that in the above definition it is enough to
require that |d(A′, B′)−d(A,B)| ≤ γ for sets A′ ⊆ A and B′ ⊆ B, of sizes |A′| = γ|A| and |B′| = γ|B|.
A partition A = {Vi | 1 ≤ i ≤ k} of the vertex set of a graph is called an equipartition if |Vi| and
|Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so in particular every Vi has one of two possible
sizes). The order of an equipartition denotes the number of partition classes (k above).
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Definition 2.2 (γ-regular equipartition) An equipartition B = {Vi | 1 ≤ i ≤ k} of the vertex set
of a graph is called γ-regular if all but at most γ

(k
2

)
of the pairs (Vi, Vj) are γ-regular.

In what follows an equipartition is said to refine another if every set of the former is contained
in one of the sets of the latter. Szemerédi’s regularity lemma can be formulated as follows.

Lemma 2.3 ([35]) For every m and γ > 0 there exists T = T2.3(m, γ) with the following property:
If G is a graph with n ≥ T vertices, and A is any equipartition of the vertex set of G of order at
most m, then there exists a refinement B of A of order k, where m ≤ k ≤ T and B is γ-regular.
In particular, for every m and γ > 0 there exists T = T2.3(m, γ) such that any graph with n ≥ T
vertices, has a γ-regular equipartition of order k, where m ≤ k ≤ T .

The regularity lemma guarantees that every graph has a γ-regular equipartition of (relatively)
small order. As it turns out in many applications of the regularity lemma, one is usually interested
in the densities of the bipartite graphs connecting the sets Vi of the regular partitions. In fact, one
important consequence of the regularity lemma is that in many cases knowing the densities connecting
the sets Vi (approximately) tells us all we need to know about a graph. Roughly speaking, if a graph
G has a regular partition of order k and we define a weighted graph R(G), of size k, where the weight
of edge (i, j) is d(Vi, Vj), then by considering an appropriate property of R(G) one can infer many
properties of G. As the order of the equipartition is guaranteed to be bounded by a function of γ, this
means that for many applications, any graph has an approximate description of constant-complexity
(we will return to this aspect in a moment). As it turns out, this interpretation of the regularity
lemma is the key to our characterization. We believe that our characterization of the testable graph
properties is an interesting application of this aspect of the regularity lemma.

Given the above discussion it seems natural to define a graph property, which states that a graph
has a given γ-regular partition, that is, an equipartition which is γ-regular and such that the densities
between the sets Vi satisfy some predefined set of densities.

Definition 2.4 (Regularity-Instance) A regularity-instance is given by an error-parameter 0 <
γ ≤ 1, an integer k, a set of

(k
2

)
densities 0 ≤ ηij ≤ 1 indexed by 1 ≤ i < j ≤ k, and a set R of pairs

(i, j) of size at most γ
(k
2

)
. A graph is said to satisfy the regularity-instance if it has an equipartition

{Vi | 1 ≤ i ≤ k} such that for all (i, j) 6∈ R the pair (Vi, Vj) is γ-regular and satisfies d(Vi, Vj) = ηi,j.
The complexity of the regularity-instances is max(k, 1/γ).

Note, that in the above definition the set R corresponds to the set of pairs (i, j) for which (Vi, Vj)
is not necessarily a γ-regular pair (possibly, there are at most γ

(k
2

)
such pairs). Also, note that the

definition of a regularity-instance does not impose any restriction on the graphs spanned by any
single set Vi. By Theorem 2.3, for any 0 < γ ≤ 1 any graph satisfies some regularity instance with
an error parameter γ and with an order bounded by a function γ. The first step needed in order
to obtain our characterization of the testable properties, is that the property of satisfying any given
regularity-instance is testable. This is also the main technical result of this paper.

Theorem 1 For any regularity-instance R, the property of satisfying R is testable.
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2.2 The characterization

Many of the recent results on testing graph properties in the dense graph model relied on Lemma
2.3. Our main result in this paper shows that this is not a coincidence. Each of the papers which
applied the regularity lemma to test a graph property used different aspects of what can be inferred
from certain properties of a regular partition of a graph. These results however, use the properties
of the regularity partition in an implicit way. For example, the main observation needed in order to
infer the triangle-freeness is testable, is that if the regularity partition has three sets Vi, Vj , Vk, which
are connected by regular and dense bipartite graphs then the graph is far from being triangle-free.
However, to test triangle freeness we do not need to know the regular partition, we just need to find a
triangle in the graph. As Theorem 1 allows us to test for having a certain regular partition, it seems
possible to try and test properties by explicitly checking for properties of the regularity partition
of the input. Returning to the previous discussion on viewing the regularity lemma as constant
complexity description of a graph, being able to explicitly test for having a given regular partition,
should allow us to test more complex properties as we can obtain all the information of the regular
partition and not just consequences of having some regular partition. The next definition tries to
capture the graph properties P, such that P can be tested via testing a certain set of regularity
instances.

Definition 2.5 (Regular-Reducible) A graph property P is regular-reducible if for any δ > 0
there exists an r = r(δ) such that for any n there is a family R of at most r regularity-instances each
of complexity at most r, such that the following holds for every n-vertex graph G:

1. If G satisfies P then for some R ∈ R, G is δ-close to satisfying R.

2. If G is ε-far from satisfying P, then for any R ∈ R, G is (ε− δ)-far from satisfying R.

The reader may want to observe that in the above definition the value of δ may be arbitrarily
close to 0. If we think of δ = 0 then we get that a graph satisfies P if and only if it satisfies one
of the regularity instances of R. With this interpretation in mind, in order to test P one can test
the property of satisfying any one of the instances of R. Therefore, in some sense we “reduce” the
testing of property P to the testing of regularity-instances. As the main result of this paper states,
the testable graph properties are precisely those for which testing them can be carried out by testing
for some property of their regular partitions.

Theorem 2 (Main Result) A graph property is testable if and only if it is regular-reducible.

If we have to summarize the moral of our characterization in one simple sentence, then it says
that a graph property P is testable if and only if P is such that knowing a regular partition of a
graph G is sufficient for telling whether G is ε-far or ε-close to satisfying P. In other words, there is
a short “proof” that G is either ε-close or ε-far from satisfying P. Thus, in a more“computational
complexity” jargon, we could say that a graph property is testable if and only if it has the following
“interactive proof”: A prover gives a verifier the description of a regularity-instance R, which the
input G is (supposedly) close to satisfying. The verifier, using Theorem 1, then verifies if G is indeed
close to satisfying R. The way to turn this interactive proof into a testing algorithm is to apply
the constant-complexity properties of the regularity lemma that we have previously discussed; as
the order of the regular partition is bounded by a function of ε, then there are only finitely many

4



regularity-instances that the prover may potentially send to the verifier. Therefore, the verifier does
not need to get an alleged regular-instances, it can simply try them all! Theorem 2 thus states that
in some sense testing regularity-instances is the “hardest” property to test, because by Theorem 2
any testing algorithm can be turned into a testing algorithm for regularity-instances. However, we
stress that this is true only on the qualitative level, because using Theorem 2 in order to turn a
tester into an equivalent tester, which tests for regularity-instances, may significantly increase its
query complexity. The main reason is that the proofs of Theorems 1 and 2 apply Lemma 2.3 and
thus only give week upper bounds. Having said that, it should also be clear that one cannot prove
general results on testing graph properties which guarantee good upper bounds (say, poly(1/ε)) on
the query complexity as it was proved in [6] that there are graph properties (even monotone ones)
that are testable and yet may require arbitrarily large query complexity. We also note that the
terminology of regular-reducible is not far from being a standard reduction because in order to prove
one of the directions of Theorem 2 we indeed test a property P, which is regular-reducible to a set
R, by testing the regularity-instances of R. Theorem 2 also gives further convincing evidence as to
the “combinatorial” nature of property testing in the dense graph model as was recently advocated
by Goldreich [23].

As is evident from Definition 2.5, the characterization given in Theorem 2 is not a “quick recipe”
for inferring whether a given property is testable. Still, we can use Theorem 2 in order to obtain
unified proofs for several previous results. As we have alluded to before, these results can be inferred
by showing that it is possible (or imposable) to test if a graph satisfies certain regularity-instances.
We believe that these proofs give some (non-explicit) structural explanation as to what makes a
graph property testable. See Section 7 for more details. It is thus natural to ask if one can come up
with more “handy” characterizations. We doubt that such a characterization exists, mainly because
it should (obviously) be equivalent to Theorem 2. Of course, we cannot formally prove that no
simpler sufficient condition exists. However, as we discuss in the next subsection we can at least
disprove a possible simpler sufficient condition of testability.

2.3 Disproving a simpler sufficient condition

Observing previous results in property testing (not necessarily of graphs) reveals that essentially all
the properties that were shown to be testable had the following downsacling property: If an object
is close to satisfying a property then a sample from the object will not be very far from satisfying it.
This is true, for example, for properties studied in the context of functions [16, 19], graphs [24, 7, 13],
geometric objects [2, 11], algebraic structures [10, 20, 8] and languages [4, 31]. Therefore, a natural
question is whether being downscaling is enough for being testable. To formally state this feature
for graphs we introduce the following definition:

Definition 2.6 (Downscaling) A graph property P is downscaling if for every δ > 0 there is a
q = q(δ) with the following property: suppose that an n-vertex graph is ε-close to satisfying P. Then,
for every m such that q ≤ m ≤ n the graph induced by a randomly chosen set of vertices of size m
is (ε + δ)-close to satisfying P with probability at least 2/3.

We note that essentially the same definition as above applies to other combinatorial structures.
The reader may want to note, that the family of hereditary properties, which were shown to be
testable in [7] (see also [28]), are all downscaling. Also, all the partition properties, which were
shown to be testable in [24], are downscaling. If downscaling was indeed sufficient for being testable,
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this would immediately give simple and uniform proofs for many testability results. As it turns out
however, this is not the case.

Theorem 3 There is a downscaling non-testable graph property.

2.4 Organization and overview of the paper

The first main technical step of the proof of Theorem 2 is taken in Section 3. In this section we prove
that if the densities of pairs of subsets of vertices of a bipartite graph are close to the density of the
bipartite graph itself, then the bipartite graph can be turned into a regular-pair using relatively few
edge modifications. Rephrasing this gives that we can increase the regularity measure of a bipartite
pair by making relatively few edge modifications. The second main step is taken in Section 5. In
this section we show that sampling a constant number of vertices, guarantees that the sample and
the graph will have (roughly) the same set of regular partitions. We believe that this result may
be of independent interest. By applying the results of Sections 3 and 5 we prove Theorem 1 in
Section 6. In this section we also prove one of the directions of Theorem 2, asserting that if a graph
property is regular-reducible then it is testable. Along with Theorem 1, a second tool that we need
in order to prove this direction is the main result of [17]. We apply this result in order to infer that
for any regularity-instance R, one cannot only test for the property of satisfying R, but can also
estimate how far is a given graph from satisfying R. This estimation of the distance to satisfying
regularity-instances is key to testing a property via a regularity-reduction. The proof of the second
direction of Theorem 2 appears in Section 4. To prove this direction we first show that knowing
that a graph G satisfies a regularity instance enables us to estimate the number of copies of certain
graphs in G. We then apply the main result of [25] about canonical testers along with the main
result of Section 3 in order to “pick” those regularity-instances that can constitute the family R in
Definition 2.5. In Section 7 we use Theorem 2 in order to reprove some previously known results in
property-testing. The main interest of these proofs is that they apply Theorem 2 in order to prove
in a unified manner results that had distinct proofs. Due to space limitations the proof of Theorem
3 will appear in the full version of the paper. We briefly mention that in order to prove this theorem
we use a subtle variation of the graph isomorphism problem, which was known to be non-testable but
is far from being downscaling. Section 8 contains some concluding remarks. Due to space limitations
most proofs appear in the appendix of this extended abstract.

3 Enhancing Regularity with Few Edge Modifications

The definition of γ-regular pair of density η requires a pair of sets of vertices to satisfy several density
requirements. Our main goal in this section is to show that if a pair of vertex sets are close (in an
appropriate sense) to satisfying these requirements, then it is indeed close to a γ-regular pair of
density η. For example, consider the property of being a 0.1-regular pair with edge density 0.5.
Intuitively, it seems that if the edge density of a bipartite graph G on vertex sets A and B of size m
each, is close to 0.5 and the density of any pair A′ ⊆ A and B′ ⊆ B of sizes 0.1m is close to 0.5±0.1,
then G should be close to satisfying the property. However, note that in this case it may be the case
that there are pairs (A′, B′) whose density is smaller than 0.4 and other pairs, whose density is larger
than 0.6. Thus, only removing or only adding edges (even randomly) will most likely not turn G into
a 0.1-regular pair of density 0.5. In order to show that G is indeed close to satisfying the property,
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we take a convex combination of G with a random graph, whose density is 1/2. The intuition is that
the random graph will not change the density of G much, but, because a random graph is highly
regular, this will increase the regularity of G. The main result of this section is formalized in the
following lemma, which is an important ingredient in the proofs of both directions of Theorem 2.

In this lemma, as well as throughout the rest of the paper, when we write x = a ± b we mean
a− b ≤ x ≤ a + b.

Lemma 3.1 The following holds for any 0 < δ ≤ γ ≤ 1: Suppose that (A,B) is a (γ + δ)-regular
pair with density η ± δ, where |A| = |B| = m ≥ m3.1(η, δ). Then, it is possible to make at most
50 δ

γ2 m2 edge modifications and turn (A,B) into a γ-regular pair with density precisely η.

The proof of Lemma 3.1 has two main steps, which are captured in Lemmas 3.2 and 3.3 below.
The proofs appear in Appendix 9. The first step is given in the following lemma that enables us to
make relatively few edge modifications and thus make sure that the density of a pair is exactly what
it should be, while at the same time not decreasing its regularity by much.

Lemma 3.2 Suppose that (A,B) is a (γ + δ)-regular pair satisfying d(A,B) = η ± δ, where |A| =
|B| = m ≥ m3.2(η, δ). Then, it is possible to make at most 2δm2 modifications, and thus turn (A,B)
into a (γ + 2δ)-regular pair with density precisely η.

The second and main step, which implements the main idea presented at the beginning of this
section, takes a bipartite graph, whose density is precisely η, and returns a bipartite graph, whose
density is still η but with a better regularity measure.

Lemma 3.3 The following holds for any 0 < δ ≤ γ ≤ 1. Let A and B be two vertex sets of size
m ≥ m3.3(δ, γ), satisfying d(A,B) = η. Suppose further that for any pair of subsets A′ ⊆ A and
B′ ⊆ B of size γm we have d(A′, B′) = η ± (γ + δ). Then, it is possible to make at most 3δ

γ m2 edge
modifications and thus turn (A,B) into a γ-regular pair with density precisely η.

4 Any Testable Property is Regular-Reducible

In this section we prove the first direction of Theorem 2, namely,

Lemma 4.1 If a graph property is testable then it is regular-reducible.

Our starting point in the proof of Lemma 4.1 is the following result of [25] (extending a result of
[3]) about canonical testers:

Lemma 4.2 ([25],[3]) If graph property P can be tested on n-vertex graphs with q = q(ε, n) edge
queries, then it can also be tested by a tester, which makes its queries by uniformly and randomly
choosing a set of 2q vertices, querying all their pairs and then accepting or rejecting (deterministically)
according to the graph induced by the sample, the value of ε and the value of n.

Restating the above, by (at most) squaring the query complexity, we can assume without loss
of generality that a property-tester works by sampling a set of vertices of size q(ε, n) and accepting
or rejecting according to some graph property of the sample. As noted in [25] the graph property
that the algorithm may search for in the sample, may be different from the property, which is tested.
In fact, the property the algorithm checks for in the sample may depend on ε and on the size of
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the input graph. Our main usage of Theorem 4.2 is that it allows to pick the graphs of size q
that cause a tester for P to accept. The first technical step we take toward proving Lemma 4.1 is
proving some technical results about induced copies of graphs spanned by graphs satisfying a given
regularity-instance. These results enable us to deduce from the fact that a graph satisfies some
regularity-instance the probability that a given tester accepts the graph. We then use these results
along with Theorem 4.2 and some additional arguments in order to prove that any testable property
is regular reducible. The full details appear in Appendix 10.

5 Sampling Regular Partitions

The main result of this section (roughly) asserts that for every fixed γ, if we sample a constant
number of vertices from a graph G then with high probability, the graph induced by the sample
and the graph G will have the same set of γ-regular partitions. The proofs of this section appear in
Appendix 11. To formally state this result we introduce the following definition:

Definition 5.1 (δ-similar regular-partition) An equipartition U = {Ui | 1 ≤ i ≤ k} is δ-similar
to a γ-regular equipartition V = {Vi | 1 ≤ i ≤ k}, of the same order k (where 0 < γ ≤ 1), if: (1)
d(Ui, Uj) = d(Vi, Vj)± δ for all i < j. (2) Whenever (Vi, Vj) is γ-regular, (Ui, Uj) is (γ + δ)-regular.

Observe, that in the above definition the two equipartitions V and U may be equipartitions of
different graphs. In what follows, if G = (V,E) is a graph and Q ⊆ V (G), then G[Q] denotes the
graph induced by G on Q. Our main result in this section is the following:

Lemma 5.2 For every k, δ there is q = q5.2(k, δ) such that a sample Q, of q vertices from a graph
G, satisfies the following with probability at least 2/3: If G (resp. G[Q]) has a γ-regular equipartition
V of order at most k, then G[Q] (resp. G) has an equipartition U , which is δ-similar to V.

The proof of Lemma 5.2 has two main stages. For the first we need a weaker result, which says
that a sample of vertices has a regular partition, but with a weaker regularity measure.

Lemma 5.3 ([13]) For every k and γ there is q = q5.3(k, γ) such that if a graph G has a γ-regular
equipartition V = {V1, . . . , Vk} or order k, then with probability at least 2/3, a sample of q vertices
will have an equipartition U = {U1, . . . , Uk} satisfying: (1) d(Ui, Uj) = d(Vi, Vj)± δ for all i < j. (2)
Whenever (Vi, Vj) is γ-regular (Ui, Uj) is 50γ1/5-regular.

For our purposes however, we can not allow a weaker regularity as in the above lemma. Our
main tool in the proof of Lemma 5.2 is Lemma 5.5 below, which establishes that if two graphs share
one γ-regular equipartition, then they share all the γ′-regular-partitions where γ′ is slightly larger
then γ. This will allow us to strengthen Lemma 5.3 and thus obtain Lemma 5.2. For the statement
of this lemma we need the following definition:

Definition 5.4 ((δ, γ)-similar regular-partitions) Two equipartitions V = {Vi | 1 ≤ i ≤ k} and
U = {Ui | 1 ≤ i ≤ k} of the same order k, are said to be (δ, γ)-similar if: (1) d(Ui, Uj) = d(Vi, Vj)±δ

for all i < j. (2) For all but at most γ
(k
2

)
of the pairs i < j, both (Vi, Vj) and (Ui, Uj) are γ-regular.

Lemma 5.5 For every k and δ there is ζ = ζ5.5(k, δ) with the following property: suppose two
graphs G = (V,E) and G = (V ,E) have (ζ, ζ)-similar regular-equipartitions V = {V1, . . . , V`} and
V = {V 1, . . . , V `} with ` ≥ 1/ζ. Then, if G has a γ-regular equipartition A = {A1, . . . , Ak} then G
has an equipartition A = {A1, . . . , Ak}, which is δ-similar to A.
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6 Testing Regular Partitions and Proof of the Main Result

In this section we apply the results of Sections 3 and 5 in order to prove Theorem 2. In Appendix 12
we prove Theorem 1, thus establishing that any regularity instance is testable. Having established
the testability of any given regularity-instance we can prove Theorem 2. The last tool we need for
the proof is the main result of [17] about estimating graph properties.

Theorem 4 ([17]) Suppose graph property P is testable. Then for every 0 ≤ ε1 < ε2 ≤ 1 there is
a randomized algorithm for distinguishing between graphs that are ε1-close to satisfying P and those
that are ε2-far from satisfying it. Furthermore, the query complexity of the algorithm can be upper
bounded by a function of ε2 − ε1.

Proof (of Theorem 2): The first direction is given in Lemma 4.1. For the other direction, suppose
that a graph property P satisfies Definition 2.5. Let us fix n and ε. Put r = r(1

4ε) and let R be the
corresponding set of regularity instances for δ = 1

4ε as in Definition 2.5. Recall that Definition 2.5
guarantees that the number and the complexity of the regularity-instances of R are bounded by a
function of δ = 1

4ε. By Theorem 1 for any regularity-instance R ∈ R, the property of satisfying R is
testable. Thus, by Theorem 4 for any such R, we can distinguish between graphs that are 1

4ε-close to
satisfying R from those that are 3

4ε-far from satisfying it, while making a number of queries, which
is upper bounded by a function of ε. In particular, by repeating the algorithm of Theorem 4 an
appropriate number of times (that depends only on r), and taking majority, we get an algorithm for
distinguishing between the above two cases, whose query complexity is a function of ε and r, which
succeeds with probability at least 1 − 1

3r . As r itself is bounded by a function of ε, the number of
queries of this algorithm can be bounded by a function of ε only.

We are now ready to describe our tester for P: Given a graph G of size n and ε > 0 the algorithm
uses, for every R ∈ R, the version of Theorem 4 described in the previous paragraph, which succeeds
with probability at least 1 − 1

3r in deciding, whether G is 1
4ε-close to satisfying R or 3

4ε-far from
satisfying it. If it finds that G is 1

4ε-close to satisfying some R, the algorithm accepts, otherwise it
rejects. Observe, that as there are at most r regularity-instances in R, we get by the union-bound,
that with probability at least 2/3 the subroutine for estimating how far is G from satisfying some
R ∈ R never errs. Let’s prove that the above algorithm is indeed a tester for P. Suppose first that
G satisfies P. As we set δ = 1

4ε and P is regular-reducible to R, the graph G must be 1
4ε-close to

satisfying some regularity-instance R′ ∈ R. Suppose now that G is ε-far from satisfying P. Again,
as we assume that P is regular-reducible to R, we conclude that G must be 3

4ε-far from satisfying all
of the regularity-instances R ∈ R. As with probability at least 2/3 the algorithm correctly decides
for any R ∈ R if G is 1

4ε-close to satisfying R or 3
4ε-far from satisfying it, we get that if G satisfies

P then with probability at least 2/3 it will find that G is 1
4ε-close to satisfying some R ∈ R, while

if G is ε-far from satisfying P it will find that G is 3
4ε-far from all R ∈ R. By the definition of the

algorithm, we get that with probability at least 2/3 it distinguishes between graphs satisfying P from
those that are ε-far from satisfying it. This means that the algorithm is indeed a tester for P.

7 Applications of the Main Result

In this section we show that Theorem 2 can be used in order to derive some positive and negative
results on testing graph properties. Due to space limitations the proofs of the results appear in
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Appendix 13. We would like to stress that all these proofs implicitly apply the main intuition behind
our characterization, which was explained after the statement of Theorem 2, that a graph property
is testable iff knowing the regularity partition of the graph is sufficient for inferring if a graph is far
from satisfying the property. Our first application of Theorem 2 concerns testing for H-freeness; A
graph is said to be H-free if it contains no (not necessarily induced) copy of H. It was implicitly
proved in [1] that for any H, the property of being H-free is testable. The main idea of the proof
in [1] is that if G is ε-far from being H-free then a large enough sample of vertices will contain a
copy of H with high probability. Here we derive this result from Theorem 2 by giving an alternative
proof, which checks if the input satisfies some regularity-instance. For simplicity, we only consider
testing triangle-freeness. We briefly mention that an argument similar to the one we use in order to
test triangle-freeness can be used to test any monotone graph property. However, to carry out the
proof one needs one additional non-trivial argument, which was proved in [6], thus we refrain from
including the proof.

Our second applications of Theorem 2 is concerned with testing k-colorability. This property was
first implicitly proved to be testable in [32]. Much better upper bounds were obtained in [24], and
further improved by [5]. As in the case of H-freeness the main ideas of the proofs in [32, 24, 5] is
that if G is ε-far from being k-colorable then a large enough sample of vertices will not be k-colorable
with high probability. Here we derive this result by applying Theorem 2. Though we derive here
only the testability of k-colorability, simple variants of the argument can be used to show that all
the partition-problems studied in [24] are testable1.

The above mentioned apply Theorem 2 in order to obtain positive results. Our third application
of 2 derives negative results. The main focus of [15] is testing for isomorphism to a given fixed graph.
It shows that the query complexity of testing for isomorphism grows with a certain parameter, which
measures the “complexity” of the graph. Without going into too much detail we just mention that
under this measure random graphs are complex. Here we prove that testing for being isomorphic to
a graph generated by G(n, 0.5) requires a super-constant number of queries.

8 Concluding Remarks and Open Problems

The main result of this paper gives a combinatorial characterization of the graph properties, which
can be tested with a constant number of edge queries in the dense graph model, possibly with two
sided error. Together with the (near) characterization of [7] of the graph properties that can be tested
with one-sided error, and the result of [17] showing that any testable property is also estimable, we
thus get a more or less complete answer to all the qualitative questions on testing graph properties
in the dense model. While property testing in the dense model is relatively well understood, there
are no general positive/negative results on testing graph properties in the bounded-degree model
[26] or the general density model [30]. In these models the query complexity of the tester usually
depends on the size of the input. It seems interesting and challenging to obtain general results in
these models. One interesting problem is which of the partition problems, which were studied in [24]
can be tested using a sublinear number of queries. It will also be very interesting to give general
positive and negative results concerning testing of boolean functions.

1An alert reader may note that our proof of Theorem 2 applies the result of [17], which relies on the result of [24].
Thus, in the strict sense it is wrong to say that we infer the result of [24] from ours. However, it is not difficult to see
that the result of [24] also follows from our (self-contained) proof of Lemma 5.2.
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9 Proofs from Section 3

For the proofs of this section we need the following large deviation inequality.

Lemma 9.1 Suppose X1, . . . , Xn are n independent Boolean random variables, where Prob[Xi =
1] = pi. Let E =

∑n
i=1 pi. Then, Prob[|

∑n
i=1 Xi − E| ≥ δn] ≤ 2e−2δ2n.

Proof (of Lemma 3.2): Suppose that d(A,B) = η + p, where |p| ≤ δ, and assume for now that
p ≥ 0. Suppose first that p ≤ δ(γ + 2δ)2. In this case we just remove any pm2(≤ δm2) edges and
thus make sure that d(A,B) = η. Furthermore, as for any pair (A′, B′) of size (γ + 2δ)m we initially
had d(A′, B′) = η + p± (γ + δ), it is easy to see that because we remove pm2 ≤ δ(γ + 2δ)2m2 edges,
we now have η − γ − 2δ ≤ d(A′, B′) ≤ η + γ + δ, which satisfies d(A′, B′) = η ± (γ + 2δ). Thus, in
this case we turned (A,B) into a (γ + 2δ)-regular pair of density η.

Suppose now that p ≥ δ(γ + 2δ)2. Our way for turning (A,B) into a (γ + 2δ)-regular pair with
density η will consist of two stages. In the first we will randomly remove some of the edges connecting
A and B. We will then deterministically make some additional modifications. To get that after these
two stages (A,B) has the required properties we show that with probability 3/4 the pair (A,B) is
(γ + 2δ)-regular and with the same probability d(A,B) = η. By the union bound we will get that
with probability at least 1/2 the pair (A,B) has the required two properties.

In the first (random) step, we remove each of the edges connecting A and B randomly and inde-
pendently with probability p

η+p . Then, the expected number of edges removed is p
η+p(η + p)|A||B| =

p|A||B| ≤ δ|A||B|, and the expected value of d(A,B) is η. As we assumed that p ≥ δ(γ + 2δ)2

we have d(A,B) ≥ δ(γ + 2δ)2. Therefore, the number of edges we may randomly remove is at least
δ(γ+2δ)2m2. Therefore, by Lemma 9.1, for large enough m ≥ m3.2(δ, γ), the probability that d(A,B)
deviates from η by more than m−0.5 is at most 3/4. In particular, the number of edge modifications
made is at most 3

2δm2 with probability at least 3/4. Now (this is the second, deterministic step) we
can add or remove at most m1.5 edges arbitrarily and thus make sure that d(A,B) = η. The total
number of edge modifications is also at most 3

2δm2 + m1.5 ≤ 2δm2, for large enough m ≥ m3.2(δ, γ).
Note that we have thus established that with probability at least 3/4 after the above two stages
d(A,B) = η.

As (A,B) was assumed to be (γ + δ)-regular, we initially had d(A′, B′) = η + p± (γ + δ) for any
pair of subsets A′ ⊆ A and B′ ⊆ B of size (γ + 2δ). As in the first step we removed each edge with
probability p

η+p , the expected value of d(A′B′) after the first step is between

(η + p + γ + δ)(1− p

η + p
) ≤ η + γ + δ

and
(η + p− γ − δ)(1− p

η + p
) ≥ η − γ − δ.

Recall that we have already established that with probability at least 3/4 we have d(A,B) = η and
that for any pair (A′, B′) of size (γ + 2δ)m the expected value of d(A′, B′) is η ± (γ + δ). Hence,
to show that after the two steps (A,B) is a (γ + 2δ)-regular pair with probability at least 1/2, it
suffices to show that with probability at least 3/4, the densities of all pairs (A′, B′) do not deviate
from their expectation by more than δ.
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Suppose first that d(A′, B′) was originally at most 1
2δ. This means that when we randomly remove

edges from (A,B) we can change d(A′, B′) by at most 1
2δ. Thus in this case d(A′, B′) can deviate from

its expectation by at most 1
2δ. Also, when adding or removing m1.5 edges to (A,B) in the second

step we can change d(A′, B′) by at most m−0.5/(γ + 2δ)2 ≤ 1
2δ for large enough m ≥ m3.2(δ, γ).

Thus, for such pairs we are guaranteed that d(A′, B′) = η ± (γ + 2δ).
Suppose now that d(A′, B′) was at least 1

2δ. Thus the number of edges, which were considered for
removal between A′ and B′ in the first step was at least 1

2δ(γ+2δ)2m2. Hence, by Lemma 9.1 the prob-
ability that d(A′, B′) deviates from its expectation by more than 1

2δ is at most 2e−2( 1
2
δ)2 1

2
δ(γ+2δ)2m2

.
Thus, as there are at most 22m pairs of such sets (A′, B′), we conclude by the union-bound that for
large enough m ≥ m3.2(δ, γ), with probability at least 3/4 all sets (A′, B′) of size (γ + 2δ)m satisfy
d(A′, B′) = η± (γ + 3

2δ). As in the previous paragraph, adding or removing m1.5 edges in the second
step can change d(A′, B′) by at most 1

2δ, so in this case we also have d(A′, B′) = η ± (γ + 3
2δ).

Finally, in the case that p above is negative we can use essentially the same argument. The only
modification is that we add edges instead of remove them.

Proof (of Lemma 3.3): For any vertex a ∈ A and b ∈ B we do the following: we flip a coin with
bias 2δ

(δ+γ) . If the coin comes up heads we make no modification between the vertices a and b. If the
coin comes up tails then we disregard the adjacency relation between a and b and do the following:
we flip another coin with bias η. If the coin comes up heads then we connect a and b, and otherwise
we leave them disconnected. In what follows we call the coins flipped in the first step the first coins,
and those flipped in the second step the second coins.

Claim: With probability at least 3/4, we make at most 3δ
γ m2 edge modifications.

Proof. Note that the number of edge modifications is at most the number of first coins that came
up heads. The distribution of these m2 coins is given by the Binomial distribution B(m2, 2δ

(δ+γ)),

whose expectation is 2δ
(δ+γ)m

2, and by Lemma 9.1 the probability of deviating by more that 1
2δm2

from this expectation is at most 2e−2(δ/2)2m2
. For large enough m ≥ m3.3(δ, γ) we get that with

probability at least 3/4 we make at most 2δ
(δ+γ)m

2 + 1
2δm2 ≤ 2.5δ

γ m2 modifications.

The following observation will be useful for the next two claims: Fix a pair of connected vertices
a ∈ A and b ∈ B. For them to become disconnected both coins must come up tails, thus the
probability of them staying connected is (1− 2δ

(δ+γ) + 2ηδ
(δ+γ)). Now, fix a pair of disconnected vertices

a ∈ A and b ∈ B. For them to become connected the first coin must come up tails and the second
must come up heads, so the probability of them becoming connected is 2ηδ

(δ+γ) .

Claim: With probability at least 3/4, we have d(A,B) = η ±m−0.5.
Proof. Recall that by assumption the number of connected vertices was ηm2. Thus, by the above
observation the expected number of connected vertices is

ηm2(1− 2δ

(δ + γ)
+

2ηδ

(δ + γ)
) + (1− η)m2 2ηδ

(δ + γ)
= ηm2.

By Lemma 9.1 we get that for large enough m ≥ m3.3(δ, γ) the probability of deviating from this
expectation by more than m−0.5 is at most 1/4.
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Claim: With probability at least 3/4, all sets A′ ⊆ A and B′ ⊆ B of size γm satisfy d(A′, B′) =
η ± (γ − 1

2δ).
Proof. Fix any pair of such sets. Let e denote the number of edges originally spanned by these sets.
As in the previous claim we get that the expected number of edges spanned by (A′, B′) is

e(1− 2δ

(δ + γ)
+

2ηδ

(δ + γ)
) + (|A′||B′| − e)

2ηδ

(δ + γ)
= e(1− 2δ

(δ + γ)
) + |A′||B′| 2ηδ

(δ + γ)
.

Recall that by assumption e = |A′||B′|(η ± (γ + δ)). Thus, the expected number of edges spanned
by (A′, B′) is at most

|A′||B′|(η + γ + δ)(1− 2δ

(δ + γ)
) + |A′||B′| 2ηδ

(δ + γ)
= |A′||B′|(η + γ + δ − 2δγ

δ + γ
− 2δ2

δ + γ
) =

|A′||B′|(η + γ − δ),

Similarly, we infer that the expected number of edges spanned by (A′, B′) is at least

|A′||B′|(η − γ − δ)(1− 2δ

(δ + γ)
) + |A′||B′| 2ηδ

(δ + γ)
= |A′||B′|(η − γ − δ +

2δγ

δ + γ
+

2δ2

δ + γ
) =

|A′||B′|(η − γ + δ) .

By Lemma 9.1 the probability that the number of edges between A′ and B′ will deviate from its
expectation by more than 1

2δ|A′||B′| is at most 2e−2(δ/2)2|A′||B′| = 2e−2(δ/2)2(γm)2 . As the number
of pairs (A′, B′) is at most 22m we get by the union bound, provided that m ≥ m3.3(δ, γ) is large
enough, that with probability at least 3/4 all the pairs (A′, B′) of size γm satisfy this property. Thus
for all pairs (A′, B′) of size γm we have d(A′, B′) = η ± (γ − 1

2δ).

Combining the above three claims we get that with constant probability we make at most 2.5δ
γ m2

modifications and thus make sure that d(A,B) = η±m−0.5 and furthermore that for any pair of sets
(A′, B′) of size γm we have d(A′, B′) = η± (γ − 1

2δ). Now we can add or remove at most m1.5 edges
to make sure that d(A,B) = η. For any pair of sets (A′, B′) of size γm this will change d(A′, B′)
by at most m−0.5/γ2 ≤ 1

2δ for large enough m. This means that we will have d(A′, B′) = η ± γ,
implying that (A,B) is γ-regular with density η, completing the proof of the lemma.

Proof (of Lemma 3.1): By Lemma 3.2 we can make at most 2δm2 edge modifications and thus
turn (A,B) into a (γ + 2δ)-regular pair with density η. Thus, every pair of subsets A′′ ⊆ A and
B′′ ⊆ B of size γm has density at most

(η + γ + 2δ)(γ + 2δ)2m2/γ2m2 ≤ (η + γ + 2δ)(1 + 8δ/γ) ≤ η + γ + 14δ/γ.

Similarly, the density of such a pair is at least η − γ − 14δ/γ. We thus conclude that (A,B)
has density precisely η, and every pair of subsets (A′′, B′′) of size γm has density η ± (γ + 14δ/γ).
Now we can use Lemma 3.3 to make at most 314δ/γ

γ m2 = 42 δ
γ2 m2 additional edge modifications and

thus turn (A′, B′) into γ-regular pair with density precisely η. The total number of modifications is
42 δ

γ2 m2 + 2δm2 ≤ 50 δ
γ2 m2 as needed.

The following application of Lemma 3.1 will be useful later in the paper.
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Lemma 9.2 Let R be a regularity-instance of order k, error-parameter γ,
(k
2

)
edge densities ηi,j and

set of non-regular pairs R. If a graph G has an equipartition V = {V1, . . . , Vk} of order k such that

1. d(Vi, Vj) = ηi,j ± γ2ε
50 for all i < j.

2. Whenever (i, j) 6∈ R, the pair (Vi, Vj) is (γ + γ2ε
50 )-regular.

Then G is ε-close to satisfying R.

Proof (of Lemma 9.2): For any (i, j) 6∈ R we can use Lemma 3.1 and make at most 50γ2ε/50
γ2 (n/k)2 ≤

εn2/k2 edge modifications to turn (Vi, Vj) into a γ-regular pair with density ηi,j . As there are at
most

(k
2

)
pairs this is a total of at most εn2 modifications. We have thus turned G into a graph

satisfying R by making at most εn2 edge modifications, as needed.

10 Proofs from Section 4

Definition 10.1 Let H be a graph on h vertices, let W be a weighted complete graph on h vertices,
where the weight of edge (i, j) is ηi,j. For a permutation σ : [h] → [h] define

IC(H,W, σ) =
∏

(i,j)∈E(H)

ησ(i),σ(j)

∏
(i,j) 6∈E(H)

(1− ησ(i),σ(j))

Suppose V1, . . . , Vk are k vertex sets, each of size m, and suppose the bipartite graph spanned
by Vi and Vj is a bipartite random graph with edge density ηi,j . Let H be a graph of size k,
and let σ : [k] → [k] be some permutation. What is the expected number of k-tuples of vertices
v1 ∈ V1, . . . , vk ∈ Vk, which span an induced copy of H with vi playing the role of σ(i)? It is easy
to see that the answer is IC(H,W, σ)mk, where W is the weighted complete graph with weights
ηi,j . The following claim shows that this is approximately the case when instead of random bipartite
graphs we take regular enough bipartite graphs. The proof is a standard application of the definition
of a regular pair and is thus omitted from this extended abstract. See Lemma 4.2 in [15] for a version
of the proof.

Claim 10.2 For any δ and h, there exists a γ = γ10.2(δ, h) such that the following holds: Suppose
V1, . . . , Vh are h sets of vertices of size m each, and that all the pairs (Vi, Vj) are γ-regular. Define
W to be the weighted complete graph on h vertices, whose weights are ηi,j = d(Vi, Vj). Then, for any
graph H on h vertices and for any σ : [k] → [k], the number of h-tuples v1 ∈ V1, . . . , vh ∈ Vh, which
span an induced copy of H with vi playing the role of vertex σ(i) is

(IC(H,W, σ)± δ)mh

We would now want to consider the total number of induced copies of some graph.

Definition 10.3 Let H be a graph on h vertices, let W be a weighted complete graph on h vertices,
where the weight of edge (i, j) is ηi,j. Let Aut(H) denote the number of automorphisms of H. Define

IC(H,W ) =
1

Aut(H)

∑
σ

IC(H,W, σ).
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Continuing the discussion before Claim 10.2, it is easy to see that in this case the expected
number of induced copies of H having one vertex in each of the sets Vi is IC(H,W ). Again, we can
show that the same is approximately true when we replace random bipartite graphs with regular
enough bipartite graphs.

Claim 10.4 For any δ and k, there exists a γ = γ10.4(δ, k) such that the following holds: Suppose
that V1, . . . , Vk are sets of vertices of size m each, and that all the pairs (Vi, Vj) are γ-regular. Define
K to be the weighted complete graph on k vertices, whose weights are ηi,j = d(Vi, Vj). Then, for any
graph H of size k, the number of induced copies of H, which have precisely one vertex in each of the
sets V1, . . . , Vk is

(IC(H,W )± δ)mk

Proof. Set γ10.4(δ, k) = γ10.2(δ/k!, k). Suppose V1, . . . , Vk are as in the statement of the claim
and let H by any graph on k vertices. By Claim 10.2 for every permutation σ : [k] → [k], the
number of induced copies of H which have precisely one vertex vi in each set Vi such that vi plays
the role of vertex σ(i) is IC(H,W, σ) ± δmk/k!. If we sum over all permutations σ : [k] → [k] we
get

∑
σ(IC(H,W, σ)± δ/k!)mk. This summation, however, counts copies of H several times. More

precisely, each copy is thus counted Aut(H) times. Thus, dividing by Aut(H) gives that the number
of such induced copies is

1
Aut(H)

(
∑
σ

(IC(H,W, σ)± δ/k!)mk) = (
1

Aut(H)

∑
σ

IC(H,W, σ)± δ)mk = (IC(H,W )± δ)mk.

We would now want to consider the number of induced copies of a graph H, when the number
of sets Vi is larger that the size of H.

Definition 10.5 Let H be a graph on h vertices, let R be a weighted complete graph of size at least
h where the weight of edge (i, j) is ηi,j, and let W denote all the subsets of V (W ) of size h. Define

IC(H,R) =
∑

W∈W
IC(H,W ).

The following lemma shows that knowing that a graph satisfies some regularity-instance R,
enables us to estimate the number of induced copies spanned by any graph, which satisfies R.

Lemma 10.6 For any δ and q, there are k = k10.6(δ, q) and γ = γ10.6(δ, q) with the following
properties: For any regularity-instance R of order at least k and with error parameter at most γ, and
for every graph H of size h ≤ q, the number of induced copies of H in any n-vertex graph satisfying
R is

(IC(H,R)± δ)

(
n

h

)

Proof. Put k = k10.6(δ, q) = δ
10q2 and γ = γ10.6(δ, q) = min{ δ

3q2 , γ10.4(1
3δ, q)}. Let R be any

regularity instance as in the statement, let G be any graph satisfying R, and let H be any graph of
size h ≤ q. Let V1, . . . , V` be an equipartition of G satisfying R. For the proof of the lemma it will
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be simpler to consider an equivalent statement of the lemma, stating that if one samples an h-tuple
of vertices from G, then the probability that it spans an induced copy of H is IC(H,R)± δ.

First, note that by our choice of k we get from a simple birthday-paradox argument, that the
probability that the h-tuple of vertices has more than one vertex in one of the sets Vi is at most 1

3δ.
Second, observe that as the equipartition of R is γ-regular and γ ≤ δ we get that the probability
that the h-tuple of vertices contains a pair vi ∈ Vi and vj ∈ Vj such that (Vi, Vj) is not γ-regular
is at most

(h
2

)
γ ≤

(q
2

)
γ ≤ 1

3δ. Thus, it is enough to show that conditioning on the events: (i) the h
vertices v1, . . . , vh belong to distinct sets Vi, (ii) if vi ∈ Vi and vj ∈ Vj then (Vi, Vj) is γ-regular, then
the probability that they span an induced copy of H is IC(H,R)± 1

3δ. Assuming events (i) and (ii)
hold let us compute the probability that the h-tuple of vertices spans an induced copy of H, while
conditioning on the h sets from V1, . . . , V` which contain the h vertices. For every possible set W of
h sets Vi we get from the choice of γ via Claim 10.4 that the probability that they span an induced
copy of H is IC(H,W ) ± 1

3δ. This means that the probability that the h-tuple of vertices span an
induced copy of H is IC(H,R)± 1

3δ, as needed.

Proof (of Lemma 4.1): Suppose P is testable by a tester T , and assume without loss of generality
that T is canonical. This assumption is possible by Lemma 4.2. Let q(ε) be the upper bound
guarantee for the query complexity of T . Fix any n and δ and assume that δ < 1/12 (otherwise,
replace δ with 1/13). Let q = q(δ, n) ≤ q(δ) be the query complexity, which is sufficient for T to
distinguish between n-vertex graphs satisfying P from those that are δ-far from satisfying it, with
success probability at least 2/3. As T is canonical, if it samples a set of vertices and gets a graph of
size q, it either rejects or accepts deterministically. Hence, we can define a set A, of all the graphs
Q of size q, such that if the sample of vertices spans a graph isomorphic to Q, then T accepts the
input. We finally put k = k10.6(δ/2(q

2), q), γ = γ10.6(δ/2(q
2), q) and T = T2.3(k, γ). For any k ≤ t ≤ T

consider all the (finitely many) regularity-instances of order t, where for the edge densities ηi,j we
choose a real from the set {0, δγ2

50q2 , 2 δγ2

50q2 , 3 δγ2

50q2 , . . . , 1}. Let I be the union of all these regularity-
instances. Note, that all the above constants, as well as the size of I and the complexity of the
regularity-instances in I are determined as a function of δ only (and the property P).

We claim that we can take R in Definition 2.5 to be

R = {R ∈ I :
∑

H∈A
IC(R,H) ≥ 1/2} .

To see this, first note that the expression
∑

H∈A IC(R,H) is an estimation of the fraction of induced
copies of graphs from A in a graph satisfying R. Combining the facts that the graphs in A all
have size q and we use Lemma 10.6 with δ/2(q

2) we infer that the expression
∑

H∈A IC(R,H) is an
estimate of the number of induced copies of graphs from A in a graph satisfying R, up to an additive
error of at most δ

(n
q

)
.

Suppose a graph G satisfies P. This means that T accepts G with probability at least 2/3. In
other words, this means that at least 2

3

(n
q

)
of the subsets of q vertices of G span a graph isomorphic

to one of the members of A. By Lemma 2.3 G has some γ-regular partition of size at least k and at
most T . As the densities in the regularity-instances in A differ by δγ2

50q2 we get that the densities of

the regular partition of G differ by at most δγ2

50q2 from the densities of one of the regularity-instances
R ∈ I. Lemma 9.2 implies that G is δ/q2-close to satisfying one of the regularity-instances of I.
Note that adding-removing an edge can decrease the number of induced copies of members of A in G
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by at most
(n−2
q−2

)
. Thus adding/removing δn2/q2 edges can decrease the number of induced copies of

members of A in G by at most δ n2

q2

(n−2
q−2

)
≤ δ

(n
q

)
. Thus, after these at most δn2/q2 edge modifications

we get a graph that satisfies one of the regularity-instances R ∈ I and at least (2
3−δ)

(n
q

)
> (1

2 +δ)
(n
q

)
of the subsets of q vertices of the new graph span a member of A (here we use the assumption that
δ < 1/12). As explained in the previous paragraph, by our choice of k and γ via Lemma 10.6, this
means that

∑
H∈A IC(R, H) ≥ 1/2. By definition of R this means that R ∈ R, thus G is indeed

δ-close to satisfying one of the regularity-instances of R.
Suppose now that a graph G is ε-far from satisfying P. If δ ≥ ε then there is nothing to prove, so

assume that δ < ε. If G is (ε− δ)-close to satisfying a regularity-instance R ∈ R, then by definition
of R and our choice of k and γ via Lemma 10.6 it is (ε − δ)-close to a graph G′, such that at least
(1
2 − δ)

(n
q

)
> (1

3 + δ)
(n
q

)
of the subsets of q vertices of G′ span an induced copy of a graph from A.

In other words, this means that T accepts G′ with probability at least 1
3 + δ. This means that G′

cannot be δ-far from satisfying P as we assume that q is enough for T to reject with probability at
least 2/3 graphs that are δ-far from satisfying P. However, as G is ε-far from satisfying P any graph
that is (ε− δ)-close to G must be δ-far from satisfying P.

11 Proofs from Section 5

Proof (of Lemma 5.5): Let A1, . . . , Ak be any equipartition of G. Recall that ` denotes the
order of the equipartition V, which is also the order of V. For every 1 ≤ p ≤ ` and 1 ≤ q ≤ k set
AV p,q = V p ∩ Aq and αp,q = |AV p,q|/|V p|. For every 1 ≤ p ≤ ` and 1 ≤ q ≤ k let AVp,q be any
subset of Vp of size αp,q|Vp|. Finally for every 1 ≤ q ≤ k define Aq =

⋃`
p=1 AVp,q. Instead of stating

what ζ5.5(k, δ) should be, we state along the way different upper bound on ζ5.5(k, δ) that will depend
only on k and δ. One can then take the minimum of all these values as ζ5.5(k, δ)

Claim 1: If (Aq, Aq′) is γ-regular then (Aq, Aq′) is (γ + δ)-regular.

Proof. To simplify the notation we assume that (A1, A2) is γ-regular and prove that (A1, A2) is
(γ + 2δ)-regular. Set η = d(A1, A2). As Claim 2 below asserts d(A1, A2) = η ± δ. Thus we need to
show that d(A′

1, A
′
2) = η± (γ +δ) for every A′

1 ⊆ A1 and A′
2 ⊆ A2 of sizes (γ +δ)|A1| and (γ +δ)|A2|,

respectively. For simplicity we show that d(A′
1, A

′
2) ≤ η+γ+δ, as showing that d(A′

1, A
′
2) ≥ η−γ−δ

is similar. Recall that each set Aq is the union of ` sets AV1,q, . . . , AV`,q. For every 1 ≤ i, j ≤ ` put
AV ′

i,1 = AVi,1 ∩ A′
1 and AV ′

j,2 = AVj,2 ∩ A′
2. We can rephrase our goal in terms of the number of

edges as follows∑
1≤i,j≤`

e(AV ′
i,1, AV ′

j,2) ≤ (η + γ + δ)|A′
1||A′

2| = (η + γ + δ)(γ + δ)2|A1||A2|. (1)

Let n denote the number of vertices of G. To prove (1) we turn to bound the contribution to the
LHS (= Left Hand Side) of (1) of three types of pairs of (i, j):

• Pairs (i, j) for which i = j: Observe that the maximum possible number of edges connecting
all pairs (AVi,1, AVj,2) for which i = j is given by

∑
i αi,1αi,2|A1||A2|. Furthermore, for any

1 ≤ i ≤ ` we have 0 ≤ αi,1, αi,2 ≤ k/` (this is because |V1| = . . . = |V`| = n/` and |A1| = . . . =
|Ak| = n/k). By Claim 11.1 we get that

∑
i αi,1αi,2|A1||A2| ≤ k

` |A1||A2| and if we choose a
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ζ satisfying ` ≥ 1/ζ ≥ 6k/δ3 ≥ 6k/δ(γ + δ)2 we can infer that the contribution of the pairs
(i, i) to the LHS of (1) is at most 1

6δ(γ + δ)2|A1||A2| (note that ` ≥ 1/ζ is guaranteed by the
statement of the lemma).

• Pairs (i, j) for which either |AV ′
i,1| < ζ|Vi| or |AV ′

j,2| < ζ|Vj |: Consider the 1 ≤ i ≤ `
in (1) for which |AV ′

i,1| < ζ|Vi| = ζn/`. The total number of vertices of G that belong to
such sets is clearly at most ζn, therefore the total number of such vertices in A1 is at most
kζ|A1|. Similarly, the total number of vertices of A2 which belong to sets |AV ′

j,2| for which
|AV ′

j,2| < ζ|Vj | is at most kζ|A2|. Therefore the contribution of pairs (i, j) to the LHS of (1)
for which either |AV ′

i,1| < ζ|Vi| or |AV ′
j,2| < ζ|Vj | is at most 2kζ|A1||A2|. If we choose ζ so that

it satisfies ζ ≤ δ3

12k ≤
δ(γ+δ)2

12k , such pairs (i, j) can contribute to the LHS of (1) a total of at
most 1

6δ(γ + δ)2|A1||A2|.
For a later step of the proof it will be important to note that by the above reasoning, the
number of vertices of A′

1 that belong to sets AV ′
i,1 of size smaller than ζ|Vi| is at most δ|A1|.

Similarly the number of vertices of A′
2 that belong to sets AV ′

j,2 of size smaller than ζ|Vj | is at
most δ|A2|.

• Pairs (i, j) for which (Vi, Vj) is not ζ-regular: Recall, that V is a ζ-regular equipartition
therefore at most ζn2 edges of G connect pairs of clusters (Vi, Vj) that are not ζ-regular. As
|A1| = |A2| = n/k this means that the number of edges connecting A1 and A2 that belong to
pairs (Vi, Vj) that are not ζ-regular is at most k2ζ(n/k)2 = k2ζ|A1||A2|. If we choose ζ so that
ζ ≤ 1

6δ3/k2 ≤ 1
6δ(γ + δ)2/k2, such pairs can contribute at most 1

6δ(γ + δ)2|A1||A2| to the sum
in (1).

We have thus accounted for all pairs (i, j) in (1) for which either i = j, (Vi, Vj) is not ζ-regular,
|AV ′

i,1| < ζ|Vi| or |AV ′
j,2| < ζ|Vj |. Specifically, we have shown that they can contribute at most

1
2δ(γ + δ)2|A1||A2| = 1

2δ|A′
1||A′

2| to the LHS of (1). Therefore, we can now reduce proving (1) to
showing that∑

i∈I,j∈J,i 6=j

e(AV ′
i,1, AV ′

j,2) =
∑

i∈I,j∈J,i 6=j

d(AV ′
i,1, AV ′

j,2)|AV ′
i,1||AV ′

j,2| ≤ (η + γ +
1
2
δ)|A′

1||A′
2|, (2)

while assuming that all i ∈ I and j ∈ J in the above sum satisfy |AV ′
i,1| ≥ ζ|Vi| and |AV ′

j,2| ≥ ζ|Vj |.
Note, that the lemma assumes that if (Vi, Vj) is ζ-regular then so is (V i, V j). Therefore we can
assume that for any i ∈ I, j ∈ J , i 6= j

d(AV ′
i,1, AV ′

j,2) = d(Vi, Vj)± ζ. (3)

and
d(AV ′

i,1, AV ′
j,2) = d(V i, V j)± ζ. (4)

The reason is that if i < j is such that (Vi, Vj) and (V i, V j) are ζ-regular and furthermore |AV ′
i,1| ≥

ζ|Vi| and |AV ′
j,2| ≥ ζ|Vj | then the above follows from the definition of a ζ-regular pair. If one of these

conditions does not hold then we will possibly recount some of the edges, which we have already
accounted for before. If we choose ζ so that ζ ≤ 1

6δ we can use (3) to reduce (2) to showing∑
i∈I,j∈J,i 6=j

d(Vi, Vj)|AV ′
i,1||AV ′

j,2| ≤ (η + γ +
2
3
δ)|A′

1||A′
2| (5)
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As we assume that V and V are (ζ, ζ)-similar we have d(Vi, Vj) = d(V i, V j) ± ζ for every i < j. If
we choose ζ so that ζ ≤ 1

6δ, we can reduce (5) to showing that

∑
i∈I,j∈J,i 6=j

d(Vi, Vj)|AV ′
i,1||AV ′

j,2| ≤ (η + γ +
1
3
δ)|A′

1||A′
2| (6)

By (4) we can reduce (6) to showing that∑
i∈I,j∈J,i 6=j

d(AV ′
i,1, AV ′

j,2)|AV ′
i,1||AV ′

j,2| ≤ (η + γ)|A′
1||A′

2|. (7)

Let A′′
1 =

⋃
i∈I AV ′

i,1 and A′′
2 =

⋃
j∈J AV ′

j,2. Clearly |A′′
1| ≤ |A′

1| and |A′′
2| ≤ |A′

2|, thus we can prove
(7) by deriving the following stronger assertion:∑

i∈I,j∈J,i 6=j

d(AV ′
i,1, AV ′

j,2)|AV ′
i,1||AV ′

j,2| ≤ (η + γ)|A′′
1||A′′

2|. (8)

Note, that as we have already mentioned, by our choice of ζ at most δ|A1| vertices of A′
1 belong

to sets AV ′
i,1 for which AV ′

i,1 < ζ|V1|. Therefore, we have |A′′
1| ≥ |A′

1| − δ|A1| ≥ γ|A1|. Similarly,
|A′′

2| ≥ γ|A2|. Put βi,1 = |AV ′
i,1|/|A′′

1| and βj,2 = |AV ′
j,2|/|A′′

2|. For every i ∈ I let AV
′
i,1 be any

subset of AV i,1 of size βi,1|AV i,1|. Similarly, for every j ∈ J let AV
′
j,2 be any subset of AV j,2 of

size βj,2|AV j,2|. Put A
′′
1 =

⋃
i∈I AV i,1 and A

′′
2 =

⋃
j∈J AV j,2 and note that just as |A′′

1| ≥ γ|A1| and
|A′′

2| ≥ γ|A2| we also have |A′′
1| ≥ γ|A1| and |A′′

2| ≥ γ|A2|. Dividing by |A′′
1||A′′

2| we can restate (8) as∑
i∈I,j∈J,i 6=j

d(AV ′
i,1, AV ′

j,2)βi,1βj,2 ≤ η + γ.

Finally, note that the above holds because∑
i∈I,j∈J,i 6=j

d(AVi,1, AVj,2)βi,1βj,2 ≤
∑

1≤i,j≤`

d(AVi,1, AVj,2)βi,1βj,2 = d(A′′
1, A′′

2) ≤ η + γ

due to the fact that (A1, A2) is by assumption γ-regular, d(A1, A2) = η, |A′′
1| ≥ γ|A1| and |A′′

2| ≥
γ|A2|. This completes the proof of the claim.

Claim 2: For all q < q′ d(Aq, Aq′) = d(Aq, Aq′)± δ

Proof. The proof is identical to the above proof.

The proof of the lemma follows from the above two claims.

Claim 11.1 Let a1, . . . , a` and b1, . . . , b` satisfy
∑

1≤i≤` ai =
∑

1≤i≤` bi = 1 and 0 ≤ ai, bi ≤ k/`,
where k ≤ `. Then

∑
1≤i≤` aibi ≤ k/`.

22



Proof. Observe that
∑

1≤i≤` aibi ≤ max1≤i≤`{ai}
∑

1≤i≤` bi ≤ k/`.

Proof (of Lemma 5.2): Set ζ = (ζ5.5(k, δ)/50)5 and ζ ′ = 50ζ1/5 and note that ζ, ζ ′ ≤ ζ5.5(k, δ).
Let V = {V1, . . . , V`} be a ζ-regular partition of G of order at least 1/ζ. Such an equipartition of
order at most T2.3(1/ζ, ζ) exists by Lemma 2.3. By Lemma 5.3 we get that if we sample a set Q of at
least q5.3(`, ζ ′) vertices from G then with probability at least 2/3 the graph induced on Q, which we
denote by G[Q] will have an equipartition U = {U1, . . . , U`}, such that d(Vi, Vj) = d(Ui, Uj)± ζ ′ and
such that if (Vi, Vj) is ζ-regular then (Ui, Uj) is ζ ′-regular. This means that with probability at least
2/3, the graph G[Q] is such that G and G[Q] have equipartitions, which are (ζ5.5(k, δ), ζ5.5(k, δ))-
similar. As these equipartition we can take V and U , because as ζ ′ ≤ ζ5.5(k, δ) then d(Vi, Vj) =
d(Ui, Uj) ± ζ5.5(k, δ). Also, as ζ ≤ ζ ′ ≤ ζ5.5(k, δ)), then for all but at most ζ5.5(k, δ)

(k
2

)
of the pairs

i < j, both (Vi, Vj) and (Ui, Uj) are ζ5.5(k, δ)-regular. Thus, Lemma 5.5 implies that for any γ-regular
partition in G (respectively G[Q]) G[Q] (respectively G) has an equipartition that is δ-similar to it.
We can thus take q5.2(k, δ) = q5.3(`, ζ ′) in the statement of the lemma because ` and ζ ′ depend on k
and δ.

12 Proofs from Section 6

Proof (of Theorem 1): Suppose the regularity-instance R has error parameter γ,
(k
2

)
edge densities

ηi,j , and a set of non-regular pairs R. Given G = (V,E) the algorithm for testing the property of
having R, samples a set of vertices Q, of size q, where q will be chosen later, and accepts G if and
only if the graph spanned by Q is γ4ε

200k2 -close to satisfying R. In what follows we denote by G[Q] the
graph spanned by Q.

Claim 1: If G satisfies R, and q ≥ q1(ε, k, γ) then G[Q] is γ4ε
200k2 -close to satisfying R with probability

at least 2/3.

Proof. If G = (V,E) satisfies R, then V has an equipartition into V1, . . . , Vk such that for all
(i, j) 6∈ R the pair (Vi, Vj) is γ-regular. If we take q2(ε, k, γ) = q5.2(k, γ6ε

10000k2 ), then by Lemma 5.2,
with probability at least 2/3 the graph G[Q] will have an equipartition into k sets A1, . . . , Ak, such
that d(Ai, Aj) = ηi,j ± γ6ε

10000k2 for all i < j, and if (Vi, Vj) is γ-regular then (Ai, Aj) is (γ + γ6ε
10000k2 )-

regular. By Lemma 9.2, this means that G[Q] is γ4ε
200k2 -close to satisfying R.

Claim 2: If G is ε-far from satisfying R, and q ≥ q2(ε, k, γ) then G[Q] is γ4ε
200k2 -far from satisfying R

with probability at least 2/3.

Proof. We take q2(ε, k, δ) = q5.2(k, γ4ε
200k2 ). By Lemma 5.2 we get that with probability at least 2/3

the graph G[Q] is such that if it has a γ′-regular equipartition of order k, then G has an equipartition
which is γ4ε

200k2 -similar to it. We claim that if this event occurs then G[Q] is γ4ε
200k2 -far from satisfying

R, which is what we want to show. Suppose G[Q] satisfies the above property and assume that
none the less it is γ4ε

200k2 -close to satisfying R. Consider the γ4ε
200k2 q2 edge modifications that make

G[Q] satisfy R and consider an equipartition U = {U1, . . . , Uk} of G[Q], which satisfies R after
performing these modifications. As we made at most γ4ε

200k2 q2 edge modifications, we initially had
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d(Ui, Uj) = ηi,j ± γ4ε
200 . Consider now any (i, j) 6∈ R. After these modifications (Ui, Uj) must be γ-

regular with density ηi,j . Therefore, after these modifications every pair U ′
i ⊆ Ui, U

′
j ⊆ Uj satisfying

|U ′
i | ≥ γ|Ui| and |U ′

j | ≥ γ|Uj | satisfies d(U ′
i , U

′
j) = ηi,j±γ. Hence, before the modifications every such

pair satisfied d(U ′
i , U

′
j) = ηi,j ± (γ + γ2ε

200). Note that this means that every such pair was originally

(γ + γ2ε
100)-regular. By our assumption on G[Q] this means that G has an equipartition in V1, . . . , Vk

such that d(Vi, Vj) = ηi,j ± γ2ε
50 holds for all i < j and for all (i, j) 6∈ R the pair (Vi, Vj) is (ε + γ2ε

50 )-
regular. By Lemma 9.2, this means that G is ε-close to satisfying R contradicting our assumption.

Combining the above two claims we infer that if q ≥ max(q1(ε, k, γ), q2(ε, k, γ)) then with prob-
ability at least 2/3 the algorithm distinguishes between the required two cases. Furthermore, the
number of queries performed by the algorithm depends only on ε, k and γ, and is thus upper bounded
by a function of ε and r. This completes the proof of the theorem.

13 Proofs from Section 7

Corollary 13.1 Triangle-freeness is testable.

Proof (of Corollary 13.1): By Theorem 2 it is enough to show that triangle-freeness is regular-
reducible. Fix any δ > 0 and set γ′ = γ10.4(δ, 3). Define γ = min{γ′, δ}. We define R to be all the
regularity-instances R satisfying the following: (i) They have regularity parameter γ (ii) They have
order at least 1/γ and at most T2.3(1/γ, γ) (iii) Their densities ηi,j are taken from {0, γ, 2γ, . . . , 1}.
(iv) They do not contain three clusters Vi, Vj , Vk such that ηi,j , ηj,k, ηi,k are all positive.

To show that this in a valid reduction, assume first that G is is ε-far from being triangle-free.
Assume G is (ε− δ)-close to satisfying a regularity instance R ∈ R. We can thus make (ε− δ)n2 edge
modifications and get a graph satisfying R. We also remove all edges inside the sets Vi. As by item
(ii) each set has size at most γn ≤ δn we remove less than δn2 edges. The total number of edges
removed is thus less than εn2. By property (iv) of the regularity instances of R this means that the
new graph is triangle-free, which is impossible because we made less than εn2 edge modifications and
G was assumed to ε-far from being triangle-free. Assume now that G is triangle-free. By Lemma 2.3
G has a γ-regular equipartition V1, . . . , Vk of order 1/γ ≤ k ≤ T2.3(1/γ, γ). Note that by our choice
of γ′ via Claim 10.4, and because γ ≤ γ′, there are no i, j, k such that (Vi, Vj), (Vj , Vk), (Vi, Vk) are
γ-regular and d(Vi, Vj), d(Vj , Vk), d(Vi, Vk) ≥ δ because such sets span at least one triangle (in fact,
many). As by item (iii) the densities of the instances in R are taken from {0, γ, 2γ, . . . , 1} we can
make at most γn2 ≤ δn2 and thus “round down” the densities between the sets into a multiple of
γ, while maintaining the regularity of the regular-pairs. This means that the new graph satisfies a
regularity-instance R ∈ R, which means that G was δ-close to satisfying R.

Corollary 13.2 k-colorability is testable.

Proof (of Corollary 13.2): By Theorem 2 it is enough to show that k-colorability is regular-
reducible. Fix any δ > 0 and define R to be all the regularity-instances R satisfying the following:
(i) They have regularity measure δ (ii) They have order at least 1/δ and at most T2.3(2/δ, δ) (iii)
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Their densities ηi,j are taken from {0, δ, 2δ, . . . , 1}. (iv) The following graph T = T (R) is k-colorable:
if R has order t then T has t vertices, and (i, j) ∈ E(T ) iff ηi,j > 0.

To show that this is a valid reduction, assume first that G is is ε-far from being k-colorable.
Assume G is (ε− δ)-close to satisfying a regularity instance R ∈ R. We can thus make (ε− δ)n2 edge
modifications and get a graph satisfying R. We also remove all edges inside the sets Vi. As by item
(ii) each set has size at most δn we remove less than δn2 edges. The total number of edges removed
is thus less than εn2. By property (iv) of the regularity instances of R this means that the new
graph is k-colorable, which is impossible because we made less than εn2 edge modifications and G
was assumed to be ε-far from being k-colorable. Assume now that G is k-colorable and let V1, . . . , Vk

be the partition of V (G), which is determined by a legal k-coloring of G. Break every set Vi into
sets Ui,1, . . . , Ui,2/δk of size 1

2δn. Put all the leftovers from each set in another set L of size 1
2δn.

By Lemma 2.3, starting from this equipartition we can get a δ-regular equipartition of G of order
at most T2.3(2/δ, δ). Note that disregarding the refinement of L the new equipartition must satisfy
item (v) in the definition of R. As by item (iii) the densities of the instances in R are taken from
{0, δ, 2δ, . . . , 1} we can make at most δn2 edge modifications and thus “round down” the densities
between the sets into a multiple of δ, while maintaining the regularity of the regular-pairs. This
means that the new graph satisfies a regularity-instance R ∈ R, which means that G was δ-close to
satisfying R.

Corollary 13.3 Let I be a graph generated by G(n, 0.5). Then, with probability 1−o(1) the property
of being isomorphic to I is not testable.

Proof (of Corollary 13.3): By Theorem 2 it is enough to show that with probability 1− o(1) the
property of being isomorphic to I is not regular-reducible. Note, that now there is only one value
of n to consider in Definition 2.5 because the property we consider is a property of n-vertex graphs.
Consider a graph generated by G(n, 0.5). Clearly, by Lemma 9.1 the bipartite graph on any pair of
sets of vertices of size

√
n has density ≈ 0.5. We claim that if I satisfies this property then it is not

regular-reducible. Suppose it is regular-reducible and consider a small δ, say δ = 0.01. Let R be the
set of regularity-instances, which corresponds to this value of δ. Let G be a graph isomorphic to I.
By Definition 2.5 it must be the case that G is δ-close to satisfying some R ∈ R. By the properties
of I this means that most densities of R must be close to 0.5. Let k denote the order of R and let
ηi,j denote its densities. Consider a random k-partite graph on sets of vertices V1, . . . , Vk each of size
n/k, where the bipartite graph connecting Vi and Vj is a random bipartite graph with edge density
ηi,j . Clearly this graph is δ-close to satisfying R. On the other hand, it is not difficult to see that
as most of the densities ηi,j should be close to 0.5, then with high probability such a graph must
be α-far from being isomorphic to I, for some fixed α > 0, say α = 0.03. This means that we have
a graph that is 0.03-far from satisfying the property and is yet 0.01-close to satisfying one of the
regularity-instances of R. As we chose δ = 0.01, this violates the second condition of Definition 2.5.
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