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Abstract

The choice number of a graph G is the minimum integer k such that for every assignment

of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to

each vertex v a color from S(v). Applying probabilistic methods it is shown that there are two

positive constants c1 and c2 such that for all m ≥ 2 and r ≥ 2 the choice number of the complete

r-partite graph with m vertices in each vertex class is between c1r logm and c2r logm. This

supplies the solutions of two problems of Erdős, Rubin and Taylor, as it implies that the choice

number of almost all the graphs on n vertices is o(n) and that there is an n vertex graph G such

that the sum of the choice number of G with that of its complement is at most O(n1/2(log n)1/2).
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1 Introduction

All graphs considered here are finite, undirected and simple (i.e., have no loops and no parallel

edges). A graph G = (V,E) is k-choosable if for every family of sets {S(v) : v ∈ V }, where

|S(v)| = k for all v ∈ V , there is a proper vertex-coloring of G assigning to each vertex v ∈ V a

color in S(v). The choice number of G, denoted by ch(G), is the minimum integer k so that G is

k-choosable. Obviously, this number is at least the chromatic number χ(G) of G.

The study of choice numbers of graphs was initiated by Vizing in [8] and by Erdős, Rubin and

Taylor in [7], and has been studied in various papers (see, e.g., [6], [3] and their references). In

the present short paper we apply probabilistic arguments and solve two of the problems raised in

1979 in the original paper [7]. Our main result supplies a sharp estimate to the choice numbers

of complete multipartite graphs with equal color classes. For two positive integers m and r let

Km∗r denote the complete r-partite graph with m vertices in each vertex class. For r = 1, Km∗r

has no edges and hence, obviously, ch(Km∗1) = 1 for all m. Another trivial observation is the fact

that ch(K1∗r) = r for all r. In [7] it is shown that ch(K2∗r) = r for all r. The following theorem

determines, up to a constant factor, the choice number of Km∗r for all the remaining cases.

Theorem 1.1 There exist two positive constants c1 and c2 such that for every m ≥ 2 and for every

r ≥ 2

c1r logm ≤ ch(Km∗r) ≤ c2r logm.

Two applications of this theorem are the following.

Corollary 1.2 There exists a positive constant b so that for every n there is an n-vertex graph G

so that

ch(G) + ch(Gc) ≤ bn1/2(log n)1/2,

where Gc is the complement of G.

The second corollary deals with the choice numbers of random graphs. It is convenient to consider

the common model Gn,1/2 (see, e.g., [5]), in which the graph is obtained by taking each pair of the

n labelled vertices 1, 2, . . . , n to be an edge, randomly and independently, with probability 1/2. (It

is not too difficult to obtain similar results for other models of random graphs as well).
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Corollary 1.3 There exists a positive constant c so that for the random graph Gn,1/2 on n vertices,

the probability that ch(Gn,1/2) ≤ cn log logn
logn tends to 1 as n tends to infinity.

The last corollary shows that for almost all the graphs G on n vertices, ch(G) = o(n) as n

tends to infinity. This solves a problem raised in [7]. Corollary 1.2 settles another problem raised

in [7], where the authors ask if there exists a constant ε > 0 so that for every n-vertex graph G,

ch(G) + ch(Gc) > n1/2+ε.

The rest of the paper is organized as follows. In sections 2 and 3 we prove the main result-

Theorem 1.1. Section 2 contains the proof of the required upper bound for ch(Km∗r), and section

3 includes the lower bound. The proof relies heavily on probabilistic arguments and employs a

splitting technique similar to the one used in [1], together with some additional ideas. In section 4

we derive the two corollaries mentioned above.

2 The upper bound

In this section we prove the following proposition, which establishes the upper bound for ch(Km∗r),

asserted in Theorem 1.1. Here and in the rest of the paper we omit all the floor and ceiling signs

whenever these are not crucial, to simplify the notation. All the logarithms are in the natural base

e, unless otherwise specified.

Proposition 2.1 There exists a positive constant c so that for all positive integers m ≥ 2 and r,

ch(Km∗r) ≤ cr logm.

Proof Since rm is a trivial upper bound for ch(Km∗r) and since for, say, c ≥ 4, rm ≤ cr logm

for all m satisfying m ≤ c we may asume that m > c (where c ≥ 4 will be chosen later). Let

V1, V2, . . . Vr be the vertex classes of K = Km∗r, where |Vi| = m for all i, and let V = V1 ∪ . . . ∪ Vr

be the set of all vertices of K. For each v ∈ V , let S(v) be a set of at least cr logm distinct colors.

We must show that there is a proper coloring of K assigning to each vertex v a color from S(v).

Since ch(Km∗r) is a non-decreasing function of r we may and will assume that r is a power of 2.

We consider two possible cases.

Case 1: r ≤ m.

Let S = ∪v∈V S(v) be the set of all colors. Put R = {1, 2, . . . , r} and let f : S 7→ R be a random

function, obtained by choosing, for each color c ∈ S, randomly and independently, the value of f(c)
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according to a uniform distribution on R. The colors c for which f(c) = i will be the ones to be

used for coloring the vertices in Vi. To complete the proof for this case it thus suffices to show that

with positive probability for every i, 1 ≤ i ≤ r, and for every vertex v ∈ Vi there is at least one

color c ∈ S(v) so that f(c) = i.

Fix an i and a vertex v ∈ Vi. The probability that there is no color c ∈ S(v) so that f(c) = i is

clearly

(1− 1
r

)|S(v)| ≤ (1− 1
r

)cr logm

≤ e−c logm ≤ 1
mc

<
1
rm

,

where the last inequality follows from the fact that r ≤ m and c ≥ 4 > 2. There are rm possible

choices of i, 1 ≤ i ≤ r and v ∈ Vi, and hence, the probability that for some i and some v ∈ Vi there

is no c ∈ S(v) so that f(c) = i is smaller than 1, completing the proof in this case.

Case 2: r > m.

This case is more difficult, and requires a splitting trick similar to the one used in [1]. As before,

define R = {1, 2, . . . , r} and let S = ∪v∈V S(v) be the set of all colors. Put R1 = {1, 2, . . . , r/2}

and R2 = {r/2 + 1, . . . , r}. Let f : S 7→ {1, 2} be a random function obtained by choosing, for each

c ∈ S randomly and independently, f(c) ∈ {1, 2} according to a uniform distribution. The colors c

for which f(c) = 1 will be used for coloring the vertices in ∪i∈R1Vi, whereas the colors c for which

f(c) = 2 will be used for coloring the vertices in ∪i∈R2Vi.

For every vertex v ∈ V , put S0(v) = S(v), and define S1(v) = S0(v) ∩ f−1(1) if v belongs to

∪i∈R1Vi, and S1(v) = S0(v) ∩ f−1(2) if v belongs to ∪i∈R2Vi. Observe that in this manner the

problem of finding a proper coloring of K in which the color of each vertex v is in S(v) = S0(v)

has been decomposed into two independent problems. These are the problems of finding proper

colorings of the two complete r/2-partite graphs on the vertex classes ∪i∈R1Vi and ∪i∈R2Vi, by

assigning to each vertex v a color from S1(v). Let s0 = cr logm be the number of colors in each

original list of colors assigned to a vertex. We claim that for all sufficiently large c, with high

probability,

|S1(v)| ≥ 1
2
s0 −

1
2
s

2/3
0 (1)
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for all v ∈ V . This is because for every fixed vertex v, |S1(v)| is a Binomial random variable, and

by the standard known tail estimates for such variables (cf., e.g., [2]), for every fixed v

Pr(|S1(v)| < 1
2
s0 −

1
2
s

2/3
0 ) ≤ e−

1
2
c1/3r1/3(logm)1/3

.

The total number of vertices is rm < r2. Since r > m > c and c can be chosen to be a sufficiently

large constant (independent of r and m), one can easily check that for all r > m > c:

r2 · e−
1
2
c1/3r1/3(logm)1/3

<< 1.

Therefore, with high probability (1) holds for all v ∈ V , as claimed. Let s1 denote the minimum

cardinality of a set S1(v), for v ∈ V . As shown above we can make sure that

s1 ≥
1
2
s0 −

1
2
s

2/3
0 .

We have thus reduced the problem of showing that the choice number of Km∗r is at most s0 to

that of showing that the choice number of Km∗(r/2) is at most s1.

Repeating the above decomposition technique (which we can repeat as long as r/2i > m) we

obtain, after j iterations, a sequence si, where s0 = cr logm and

si+1 ≥ si/2− s2/3
i /2 for 1 ≤ i < j. (2)

In order to show that the choice number of K = Km∗r is at most s0, it suffices to show that for

some i the choice number of Km∗(r/2i) is at most si.

Let the number of iterations j be chosen so that j is the minimum integer satisfying r/2j ≤ m.

Clearly, in this case, r/2j > m/2 ≥ c/2. We claim that

sj ≥
s0

2j+1

provided c is sufficiently large. To see this, define zi = s
1/3
i and observe that by equation (2)

z3
i+1 ≥

z3
i − z2

i

2
≥ (zi − 1)3

2
,

implying that

zi+1 ≥
zi − 1
21/3

, (1 ≤ i < j).
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Define ti = zi + x, where x is chosen so that x = 1+x
21/3 . Then 0 < x = 1

21/3−1
< 4 and

ti+1 − x ≥
ti − x− 1

21/3
,

i.e.,

ti+1 ≥
ti

21/3
.

Therefore,

tj ≥
t0

2j/3
=
z0 + x

2j/3
≥ z0

2j/3
= (

s0

2j
)1/3.

Hence

sj = z3
j = (tj − x)3 ≥ (tj − 4)3 ≥ ((

s0

2j
)1/3 − 4)3 =

s0

2j
−O((

s0

2j
)2/3). (3)

However, since r/2j ≥ m/2 ≥ c/2 and c ≥ 4 it follows that

s0

2j
=
cr logm

2j
≥ c2 logm

2
> c

and thus if c is sufficiently large then the right hand side of (3) is at least s0/2j+1, as claimed.

To complete the proof of the proposition observe, now, that it suffices to show that the choice

number of Km∗(r/2j) is at most sj . However, r/2j ≤ m and

sj ≥ s0/2j+1 ≥ c

2
r

2j
logm.

For a sufficiently large c the result thus follows from Case 1. This completes the proof. 2

3 The lower bound

In this section we complete the proof of Theorem 1.1 by proving the following result.

Proposition 3.1 There exists a positive constant d so that for all integers m and r ≥ 2, ch(Km∗r) >

dr logm.

We note that the above result for the special case r = 2 is derived in [7] from the known estimates

on the minimum possible number of edges in m-uniform hypergraphs which do not have property

B. Our basic approach here is similar, but certain additional ideas are needed.

The main part of the proof is the following lemma.
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Lemma 3.2 There exists a positive constant c so that for all integers m and r ≥ 2 there is a set

S of cardinality |S| = cr logm and a family F of m subsets of S, each of size at least 1
20 |S|, so

that there is no X ⊂ S of size |X| ≤ c logm that intersects each member of F . Moreover, in case

m ≥ r there exists such a family F in which the size of each member f ∈ F is at least 1
10 |S|.

Proof Suppose, first, that m ≥ r. Let S be a set of size cr logm, where c ≤ 1 will be chosen later,

and let F = {F1, . . . , Fm} be a random family of m subsets of S obtained by choosing each Fi

randomly and independently among the subsets of cardinality 1
10 |S| of S, according to a uniform

distribution.

Let X be a fixed subset of cardinality at most c logm. For each i, 1 ≤ i ≤ m, the probability

that X does not intersect Fi is ( |S\X|
1
10
cr logm

)
( |S|

1
10
cr logm

) ≥
(cr logm(1− 1

r
)

1
10
cr logm

)
( cr logm

1
10
cr logm

)
≥ (

0.9cr logm− c logm
0.9cr logm

)0.1cr logm ≥ (1− 10
9r

)0.1cr logm

≥ ((1− 10
18

)2)0.1c logm ≥ 1
m1/2

,

where here we used the fact that c ≤ 1.

Since the m members of F have been chosen independently, the probability that X intersects

all of them is at most

(1− 1
m1/2

)m ≤ e−m1/2
.

The number of possible subsets X of cardinality at most c logm of S is at most

(cr logm+ 1)c logm ≤ (m2 + 1)c logm ≤ e3c(logm)2
.

Therefore, the probability that there exists a subset X of size at most c logm of S that intersects

each member of F does not exceed

e3c(logm)2
e−m

1/2

which is smaller than 1 provided c is sufficiently small. This completes the proof for the case m ≥ r.

In case r > m we just modify the construction given above for r = m by replacing each element

of the ground set by a set of size roughly r/m. Here are the details. By the validity of the result for

r = m, there is a set T of size t = cm logm and a family G = {G1, . . . , Gm} of m subsets of T of size
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1
10 |T | each, so that there is no subset of cardinality at most c logm of T that intersects each member

of G. Let S1, . . . , St be pairwise disjoint sets, where
∑t
i=1 |Si| = cr logm and br/mc ≤ |Si| ≤ dr/me

for all 1 ≤ i ≤ t. Define S = ∪ti=1Si, and let F = {F1, . . . , Fm} be the family of m subsets of

S defined by Fi = ∪j∈GiSj for 1 ≤ i ≤ m. Observe that |Fi| ≥ 1
10 tbr/mc ≥

1
20cr logm for all i.

Moreover, there is no subset X of size at most c logm of S that intersects each member of F , since

if there is such a set the subset Y of T defined by Y = {j : X ∩ Sj 6= ∅} is of size at most c logm

and it intersects each member of G, contradicting the choice of G. This completes the proof of the

lemma. 2

Proof of Proposition 3.1 We prove the assertion with d = 1
20c, where c is the constant in

Lemma 3.2. Let S be a set of size cr logm; this will be our set of colors. Let F = {F1, F2, . . . , Fm}

be a family of subsets of S satisfying the assertion of Lemma 3.2. Denote the set of vertices of

K = Km∗r by V = V1∪V2∪ . . .∪Vr, where Vi = {v1
i , v

2
i , . . . , v

m
i } is the ith vertex class. Define, now,

S(vji ) = Fj . We claim that there is no proper vertex-coloring of K which assigns to each vertex v

of K a color from S(v). Since |Fj | ≥ 1
20 |S| = dr logm, this will show that ch(Km∗r) > dr logm,

and hence complete the proof.

Suppose the claim is false and let f : V 7→ S be a proper coloring of K in which f(v) ∈ S(v)

for all v ∈ V . For each i, 1 ≤ i ≤ r, define Xi = {c ∈ S : f(v) = c for some v ∈ Vi}. Since f

is a proper vertex coloring and K is a complete r-partite graph, the sets Xi are pairswise disjoint.

It follows that there exists an index i so that |Xi| ≤ |S|/r = c logm. By the choice of the family

F this implies that there is a member Fj of F that does not intersect Xi. But S(vji ) = Fj and

hence the color f(vji ) of vji must be a member of Fj that belongs to Xi. This contradiction shows

that the assumption that there is a proper coloring as above is false, and completes the proof of

the proposition and hence that of Theorem 1.1 as well. 2

4 Applications

Corollaries 1.2 and 1.3 are simple consequences of Theorem 1.1.

Proof of Corollary 1.2 Define m =
√
n
√

log n and r = n/m =
√
n√

logn
and let G be the graph

Km∗r. The complement Gc of G is a disjoint union of r cliques of size m each, and thus ch(Gc) =
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m = O(
√
n
√

log n). By Theorem 1.1, ch(G) = O(r logm) = O(
√
n
√

log n). Therefore

ch(G) + ch(Gc) = O(
√
n
√

log n),

as needed. 2

Proof of Corollary 1.3 As proved by Bollobás in [4], almost surely (i.e., with probability that

tends to 1 as n tends to infinity), the random graph G = Gn,1/2 has chromatic number

(1 + o(1))n/2 log2 n.

It is also known (and easy, cf., e.g., [5], [2]) that almost surely G contains no independent set of

size greater than 2 log2 n. Therefore, for , say r = n/ log2 n and m = 2 log2 n, almost surely G has

a proper coloring with r colors in which no color appears more than m times. It follows that G is

almost surely a subgraph of Km∗r and hence, by Theorem 1.1, almost surely

ch(G) ≤ ch(Km∗r) = O(r logm) = O(n
log log n

log n
),

completing then proof. 2

Note that the tight result of [4] for the chromatic number of the random graph is not needed here

and the well known O(n/ log n) estimate (cf., e.g., [5], [2]) suffices for the last proof. It will be

interesting to decide if the right order of magnitude of ch(Gn,1/2) is closer, almost surely, to its

chromatic number Θ(n/ log n) (which is an obvious lower bound for it) or to the upper bound given

in the last corollary.
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