
Finding a large hidden clique in a random graph ∗

Noga Alon † Michael Krivelevich ‡ Benny Sudakov §

Abstract

We consider the following probabilistic model of a graph on n labeled vertices. First choose

a random graph G(n, 1/2) and then choose randomly a subset Q of vertices of size k and force

it to be a clique by joining every pair of vertices of Q by an edge. The problem is to give a

polynomial time algorithm for finding this hidden clique almost surely for various values of k.

This question was posed independently, in various variants, by Jerrum and by Kučera. In this

paper we present an efficient algorithm for all k > cn0.5, for any fixed c > 0, thus improving the

trivial case k > cn0.5(log n)0.5. The algorithm is based on the spectral properties of the graph.

1 Introduction

A clique in a graph G is a set of vertices any two of which are connected by an edge. Let w(G)

denote the maximum number of vertices in a clique of G.

The problem of determining or estimating w(G) and that of finding a clique of maximum size in G

are fundamental problems in Theoretical Computer Science. The problem of computing w(G) is well

known to be NP-hard [16]. The best known approximation algorithm for this quantity, designed by

Boppana and Halldórsson [8], has a performance guarantee of O(n/(log n)2), where n is the number

of vertices in the graph. When the graph contains a large clique, there are better algorithms, and the

best one, given in [3], shows that if w(G) exceeds n/k+m, where k is a fixed integer and m > 0, then

one can find a clique of size Ω̃(m3/(k+1)) in polynomial time, where here the notation g(n) = Ω̃(f(n))

means, as usual, that g(n) ≥ Ω(f(n)/(log n)c) for some constant c independent of n.
∗A preliminary version of this paper appeared in Proceedings of the Ninth Annual ACM-SIAM SODA, ACM Press

(1998), 594-598.
†Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Email: noga@math.tau.ac.il. Research supported in part by a USA Israeli BSF grant, by a grant from

the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.
‡Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Email: krivelev@math.tau.ac.il. Research supported in part by a Charles Clore Fellowship.
§Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Email: sudakov@math.tau.ac.il.

1

On the negative side, it is known, by the work of [5] following [9] and [6], that for some b > 0

it is impossible to approximate w(G) in polynomial time for a graph on n vertices within a factor

of nb, assuming P 6= NP. The exponent b has since been improved in various papers and recently it

has been shown by H̊astad [13] that it is in fact larger than (1 − δ) for every positive δ, assuming

NP does not have polynomial time randomized algorithms. Another negative result, proved in [1]

following [20], shows that it is impossible to approximate w(G) for an n vertex graph within a factor

of n/ log7 n by a polynomial size monotone circuit.

These facts suggest that the problem of finding the largest clique in a general graph is intractable.

It is thus natural to study this problem for appropriately randomly generated input graphs. This is of

interest theoretically, and is also motivated by the fact that in real applications the input graphs often

have certain random properties. The study of the performance of algorithms on random input graphs

gained popularity recently, see the survey of Frieze and McDiarmid [10] and its many references.

Let G(n, 1/2) denote the random graph on n labeled vertices obtained by choosing, randomly

and independently, every pair ij of vertices to be an edge with probability 1/2. It is known that

almost surely (that is, with probability that approaches 1 as n tends to infinity), the value of w(G) is

either br(n)c or dr(n)e, for a certain function r(n) = (2 + o(1)) log2 n which can be written explicitly

(cf., e.g., [4]). Several simple polynomial time algorithms (see e.g., [12]) find, almost surely, a clique

of size (1 + o(1)) log2 n in G(n, 1/2), that is, a clique of roughly half the size of the largest one.

However, there is no known polynomial time algorithm that finds, almost surely, a clique of size at

least (1 + ε) log2 n for any fixed ε > 0. The problem of finding such an algorithm was suggested

by Karp [17]. His results, as well as more recent ones of Jerrum [14] implied that several natural

algorithms do not achieve this goal and it seems plausible to conjecture (see [14]) that in fact there

is no polynomial time algorithm that finds, with probability more than a half, say, a clique of size

bigger than (1 + ε) log2 n. This conjecture has certain interesting cryptographic consequences, as

shown in [15].

The situation may become better in a random model in which the biggest clique is larger. Fol-

lowing [14], let G(n, 1/2, k) denote the probability space whose members are generated by choosing

a random graph G(n, 1/2) and then by placing randomly a clique of size k in it. As observed by

Kučera [18], if k is bigger than c
√
n log n for an appropriate constant c, the vertices of the clique

would almost surely be the ones with the largest degrees in G, and hence it is easy to find them

efficiently. Can we design an algorithm that finds the biggest clique almost surely if k is o(
√
n log n) ?

This problem was mentioned in [18]. Here we solve it, by showing that for every ε > 0 there is a

polynomial time algorithm that finds, almost surely, the unique largest clique of size k in G(n, 1/2, k),

provided k ≥ εn1/2. Although this beats the trivial algorithm based on the degrees only by a loga-

rithmic factor, the technique applied here, which is based on the spectral properties of the graph, and

2

resembles the basic approach in [3], is interesting, and may be useful for tackling related problems

as well.

2 The main result

In this section we describe our algorithm and analyze its performance on graphs generated according

to the distribution G(n, 1/2, k). The results can easily be extended to similar models of random

graphs. Since the trivial algorithm based on the degrees solves the clique problem almost surely for

k > c
√
n log n we assume, from now on, that k = O(

√
n log n). We also assume, whenever this is

needed, that n is sufficiently large. To simplify the presentation, we omit all floor and ceiling signs

whenever these are not crucial.

2.1 The basic algorithm

In this subsection we describe the basic algorithm dealing with a hidden clique of size at least 10
√
n.

The algorithm is based on the spectral properties of the adjacency matrix of the graph. After the

analysis of the algorithm in the next subsection we explain, in subsection 2.3, how to modify the

basic algorithm to reduce the constant 10 to any positive constant.

Given a graph G = (V,E) denote by A the adjacency matrix of G, that is, the n by n matrix

(auv)u,v∈V defined by auv = 1 if uv ∈ E and auv = 0 otherwise. It is well known that since A is

symmetric it has real eigenvalues λ1 ≥ . . . ≥ λn and an orthonormal basis of eigenvectors v1, . . . , vn,

such that Avi = λivi. The crucial point of the algorithm is that one can almost surely find a big

portion of the hidden clique from the second eigenvector of A. Since there are several efficient

algorithms to compute the eigenvectors and eigenvalues of symmetric matrices (see, e.g., [19]), we

can certainly calculate v2 in polynomial time. Our first algorithm is very simple and consists of two

stages.

Algorithm A

Input: A graph G = (V,E) from the distribution G(n, 1/2, k) with k ≥ 10
√
n.

1. Find the second eigenvector v2 of the adjacency matrix of G

2. Sort the vertices of V by decreasing order of the absolute values of their coordinates in v2 (where

equalities are broken arbitrarily) and let W be the first k vertices in this order. Let Q ⊂ V be the

set of all vertices of G which have at least 3k/4 neighbors in W .

Output: The subset Q ⊂ V .

This completes the description of the algorithm.

3

2.2 The properties of the second eigenvector

We claim that almost surely the above algorithm finds the (unique) clique of size k in G. To prove

this fact we first need to establish some results about the spectrum of G. For the analysis of the

algorithm we assume that the set of vertices V is {1, . . . , n} and the hidden clique Q in G consists

of the first k vertices of V .

Proposition 2.1 Let G = G(n, 1/2, k), where k = o(n), then almost surely the eigenvalues λ1 ≥
. . . ≥ λn of the adjacency matrix A of G satisfy:

(i) λ1 ≥ (1
2 + o(1))n

(ii) λi ≤ (1 + o(1))
√
n for all i ≥ 3

Proof. By the variational definition of the eigenvalues of A (see e.g. [23], pp. 99–101) we have that

λi = maxdimF=iminx∈F,x 6=0
xtAx

xtx
= mindimF=n−i+1maxx∈F,x 6=0

xtAx

xtx
,

where F ranges over all subspaces of Rn of the appropriate dimension. In particular λ1 is simply the

maximum of xtAx/xtx over all nonzero vectors x. Therefore by taking x to be the all 1 vector we

obtain the well known result that λ1 is at least the average degree of G. By the known estimates for

the Binomial distribution, the average degree of G is (1/2 + o(1))n almost surely. This proves (i).

To prove (ii) we need the following result about the spectrum of the random graph, proved by

Füredi and Komlós [11].

Lemma 2.2 Let λ1 ≥ . . . ≥ λm be the eigenvalues of the adjacency matrix of the random graph

G(m, 1/2), then almost surely

maxi≥2|λi| ≤
√
m+O(m1/3 logm).

In order to bound the eigenvalues of the matrix A we represent the graph G as an edge disjoint

union of two random graphs. Let G2 = G(k, 1/2) be the random graph on the set of vertices of the

clique Q. Denote by A2 the adjacency matrix of the graph, which is the union of G2 together with

the remaining n − k isolated vertices. Remove all the edges of G2 from G and denote by A1 the

adjacency matrix of the remaining graph G1. It is easy to see that G1 is obtained according to the

distribution G(n, 1/2). By definition A = A1 +A2. Denote by ui the eigenvector of Ai corresponding

to the largest eigenvalue of Ai, for i = 1, 2 respectively. Let F be the subspace of all vectors which

are orthogonal to both u1 and u2. By the definition of F together with Lemma 2.2 we have that

4

almost surely for any vector x ∈ F, x 6= 0, xtA1x/x
tx ≤ (1+o(1))

√
n and xtA2x/x

tx ≤ (1+o(1))
√
k.

Therefore
xtAx

xtx
=
xtA1x

xtx
+
xtA2x

xtx
≤ (1 + o(1))

√
n

for all x ∈ F, x 6= 0 where here we used the fact that k = o(n). Since dimF ≥ n−2, by the variational

definition of the eigenvalues of the matrix A we conclude that λi ≤ (1 + o(1))
√
n for all i ≥ 3. This

completes the proof of (ii). 2

The crucial observation for the analysis of the algorithm is that the eigenvector v2 has most of its

weight on the clique. To show this we exhibit a vector z whose first k coordinates are considerably

larger then the rest of the coordinates and prove that it is close to the second eigenvector of A. Let

z = (zi, 1 ≤ i ≤ n) be the vector defined by zi = n − k if i ≤ k and zi = −k otherwise. We denote

by ‖ x ‖ the l2-norm of a vector x.

Proposition 2.3 In the above notation almost surely there exists a vector δ = (δi, 1 ≤ i ≤ n),

satisfying ‖ δ ‖2 ≤ 1
60‖ z ‖

2 so that z − δ is collinear with the second eigenvector v2 of A.

Proof. We use the following lemma.

Lemma 2.4 Almost surely ‖ (A− k
2I)z ‖2 ≤ (1

4 + o(1))n3k.

Before proving the lemma, we apply it to deduce the existence of δ as above. Let z = c1v1 +

. . . + cnvn be the representation of z as a linear combination of the eigenvectors vi. We show that

the coefficients c1, c3, . . . , cn are small compared to ‖ z ‖. Indeed, (A− k
2I)z =

∑n
i=1ci(λi− k

2)vi and

thus

‖ (A− k

2
I)z ‖

2

=
∑n

i=1
ci

2(λi −
k

2
)2 (1)

≥ (1 + o(1))(
k

2
−
√
n)2
∑

i6=2
ci

2,

where the last inequality follows from Proposition 2.1, whose assertion holds, as k = o(n). Define

δ = c1v1 + c3v3 + . . .+ cnvn. By (1) and Lemma 2.4 it follows that

‖ δ ‖2 =
∑

i6=2
ci

2 ≤ (1 + o(1))
n3k

(k − 2
√
n)2

<
1
60
kn(n− k) =

1
60
‖ z ‖2,

where here we used the fact that k ≥ 10
√
n. On the other hand z − δ = c2v2 is collinear with v2.

2

Note that the above discussion supplies an estimate of the second eigenvalue of A. Indeed,

‖ z ‖2 − ‖ δ ‖2 = c2
2 ≥ (59/60)‖ z ‖2. By substituting this inequality into (1) we obtain, using

Lemma 2.4, that

(
1
4

+ o(1))n3k ≥ c2
2(λ2 −

k

2
)2 ≥ 59

60
kn(n− k)(λ2 −

k

2
)2 ≥ 2

3
kn2(λ2 −

k

2
)2.

5

This implies that (λ2 − k/2)2 ≤ n/2, thus proving the following corollary.

Corollary 2.5 The second eigenvalue of the matrix A almost surely satisfies the following inequality:

k

2
−
√
n

2
≤ λ2 ≤

k

2
+
√
n

2
.

In particular when k ≥ 10
√
n, λ2 is much bigger than λi for all i ≥ 3. 2

Proof of Lemma 2.4 Let (A− k
2I)z = (t1, t2, . . . , tn). Denote by B(m, p) the binomial distribution

with parameters m and p. By the definition of the matrix A we have that the random variable ti is

given by

ti =

 (k2 − 1)(n− k)− kYi, 1 ≤ i ≤ k
k2

2 + (n− k)Xi − kYi, k + 1 ≤ i ≤ n

where Xi is a binomially distributed random variable B(k, 1/2), and Yi is a binomially distributed

random variable B(n − k, 1/2) for i ≤ k, and B(n − k − 1, 1/2) for i > k. Using the standard

estimates for Binomial distributions (see, e.g., [4], Appendix A) we get that almost surely Yi =

(n − k)/2 + O(
√
n log n) for all 1 ≤ i ≤ k. Therefore almost surely ti = −(n − k) + O(k

√
n log n)

for all i ≤ k. Thus
∑k
i=1ti

2 = O(k(k
√
n log n)2) = O(k3n log n) = o(n3k). In order to bound the

remaining
∑n
i=k+1ti

2 we first modify the expression for ti in the following way,

ti = (n− k)(Xi −
k

2
)− k(Yi −

n− k − 1
2

− k + 1
2

).

Then
∑n
i=k+1ti

2 can be written as S1 + S2 + S3, where

S1 = (n− k)2∑n
i=k+1(Xi − k

2)2,

S2 = k2∑n
i=k+1(Yi − n−k−1

2 − k+1
2)2

S3 = −2k(n− k)
∑n
i=k+1(Xi − k

2)(Yi − n−k−1
2 − k+1

2).

Applying again the standard estimates for Binomial distributions we get that almost surely Xi =

k/2 + O(
√
k log k) and Yi = (n − k − 1)/2 + O(

√
n log n) for i ≥ k + 1. This implies that S2 =

O(k2(n− k)n log n) = o(n3k) and S3 = O(k(n− k)(n− k)
√
k log k

√
n log n) = o(n3k).

It remains to bound S1. By the definition of Xi, Xi − k/2 for i > k can be viewed as the

sum of k independent random variables each taking values 1/2 and −1/2 with equal probability.

This implies that the expected value of (Xi − k/2)2 is k/4 and the expected value of (Xi − k/2)4

is O(k2). Note that Xi and Xj are independent random variables for i 6= j, since they correspond

to the edges going from two different vertices of G to the clique. Thus the expected value µ of∑n
i=k+1(Xi − k/2)2 is µ = (n − k)k/4 and its variance is equal to the sum of the variances, which

is O(k2(n − k)) = o(µ2). Therefore by Chebyshev’s Inequality we obtain that almost surely S1 =

(1 + o(1))(n− k)2µ = (1/4 + o(1))n3k. This completes the proof of Lemma 2.4. 2

6

Let the normalized second eigenvector of A be v2 = (ai, 1 ≤ i ≤ n). Note that by Corollary 2.5

it is unique almost surely. Recall that in the algorithm, W is the set of indices which correspond

to the k largest values of |ai|, 1 ≤ i ≤ n. We use Proposition 2.3 to show that almost surely

|W ∩{1, . . . , k}| ≥ 5k/6, thus proving that at least 5/6 of the k largest (in absolute value) coordinates

of the second eigenvector correspond to the vertices of the clique. Note that one gets the same set of

indices W for every αv2, α 6= 0. Consider c2v2 = z−δ from Proposition 2.3, where ‖ δ ‖2 ≤ (1/60)kn2.

The number of coordinates of δ which are greater in absolute value than n/3 is at most k/6. Since

the coordinates of c2v2 are zi − δi and z1 = . . . = zk = n − k, zk+1 = . . . = zn = −k we conclude

that at least k− k1 of the first k coordinates of c2v2 are greater than n− k−n/3 > n/2 and at least

n−k−k2 of the last n−k coordinates are at most k+n/3 < n/2, where k1 +k2 ≤ k/6. This implies

that |W ∩ {1, . . . , k}| ≥ 5k/6.

To finish the proof of the correctness of the algorithm we show that every vertex outside the

clique is almost surely adjacent to less than 3k/4 vertices of W . Indeed, every edge outside the

clique appears in G(n, 1/2, k) randomly and independently with probability 1/2. Thus all vertices

outside the clique are adjacent, almost surely, to at most (1 + o(1))k/2 vertices of the clique. Since

W has at most k − 5k/6 = k/6 vertices not in the clique, it follows that, almost surely, each vertex

not in the clique has at most (1 + o(1))k/2 + k/6 < 3k/4 neighbors in W . This guarantees that

in stage two of the algorithm we choose only vertices of the clique, and choose all of them because

every vertex of the planted clique is adjacent to at least 5k/6 vertices of W , as shown above.

2.3 Reducing the constant

The main idea in improving the performance of Algorithm A is to consider the subgraph of G induced

on the set V1 ⊂ V of all common neighbors of some fixed number of vertices in the clique Q. Doing

this we achieve two goals simultaneously. First, G[V1] still contains a clique of almost the same size

k, second, since our graph is random, V1 is much smaller than V . Thus we improve the ratio between

the clique and the size of the graph and can now use the algorithm A. For any subset S ⊂ V we

define N∗(S) = {v ∈ V \ S : vu ∈ E(G) for all u ∈ S}.

Algorithm B

Input: A graph G = (V,E) from the distribution G(n, 1/2, k) with k = c
√
n.

1. Define s = 2[log2(10/c)] + 2.

2. For all subsets S ⊂ V, |S| = s do

begin

3. Run the Algorithm A on the induced subgraph G[N∗(S)] and denote by QS the resulting set.

4. If QS ∪ S is a clique of size k, then Q = QS ∪ S and go to 6.

7

end

5. Take Q to be an arbitrary k-subset of V .

6. Output: The subset Q ⊂ V .

We claim that for any fixed c Algorithm B almost surely produces the hidden clique. To prove

this let us first observe that for any fixed subset S ⊂ V of size |S| = s the cardinality of N∗(S)

in the random graph G(n, 1/2) is a binomially distributed random variable with parameters n − s
and 1/2s. Thus almost surely |N∗(S)| = (1 + o(1))n/2s for all subsets of vertices of size s in

G(n, 1/2). The addition of a clique of size k can increase |N∗(S)| only by at most k − s. Therefore

|N∗(S)| = (1 + o(1))n/2s almost surely also in G(n, 1/2, k).

Since Algorithm B checks all the subsets of V of size s, in some step it will reach a subset

S, |S| = s, which belongs to the clique Q. At this iteration we almost surely get the hidden clique.

Indeed, for a fixed subset S of the clique, |S| = s, and a fixed N∗(S), the induced subgraph G[N∗(S)]

can be treated as a truly random graph G(|N∗(S)|, 1/2, k − s). This is because one can generate

G[N∗(S)] as follows: first choose a clique Q and fix a subset S of size s in it, then expose the

edges from S to V \ S thus fixing N∗(S), and then expose all the edges inside N∗(S). We have

|N∗(S)| = (1+o(1))n/2s and G[N∗(S)] contains a clique of size k−s = (1+o(1))k. By our choice of

s, the size of the hidden clique satisfies k − s ≥ 10
√
|N∗(S)|. This guarantees that at this iteration

the algorithm A will find the clique Q \ S and proves the correctness of Algorithm B.

3 Concluding remarks

We described a polynomial time algorithm that finds, almost surely, the unique clique of size k in

G(n, 1/2, k) for k ≥ Ω(
√
n). The obvious challenge that remains open is to design efficient algorithms

that work, almost surely, for smaller values of k. If k = n1/2−ε for some fixed ε > 0, even the problem

of finding a clique of size at least (1 + ε) log2 n in G(n, 1/2, k), suggested in [14], is open and seems

to require new ideas.

Another interesting version of this problem was suggested by Saks [21]. Suppose G is a graph

on n vertices which has been generated either according to the distribution G(n, 1/2) or according

to the distribution G(n, 1/2, k) for, say, k = n0.49. It is then obvious that an all powerful prover

can convince a polynomial time verifier deterministically that, almost surely, G has been generated

according to the distribution G(n, 1/2, k) (if indeed that was the case). To do so, he simply presents

the clique to the verifier. However, suppose G has been generated according to the distribution

G(n, 1/2). Can the prover convince the verifier (without using randomness, of course) that this is

the case, almost surely ? At the moment we cannot design such a protocol if k = o(
√
n) (while for

8

k ≥ Ω(
√
n) the verifier can clearly convince himself, using Algorithm B.)

The spectral properties of a graph encode some detailed structural information on it. The ability

to compute the eigenvectors and eigenvalues of a graph in polynomial time provides a powerful

algorithmic tool, which has already found several applications (see, e.g., [7], [2], [22]). The spectral

approach, and the techniques developed here, may well have additional algorithmic applications in

the future too.

References

[1] N. Alon and R. B. Boppana, The monotone circuit complexity of Boolean functions, Combina-

torica 7 (1987), 1–22.

[2] N. Alon and N. Kahale, A spectral technique for coloring random 3-colorable graphs, Proc. of the

26th ACM STOC, ACM Press (1994), 346–355. Also: SIAM J. Comput. 26 (1997), 1733–1748.

[3] N. Alon and N. Kahale, Approximating the independence number via the θ-function, Math.

Programming 80 (1998), 253-264.

[4] N. Alon and J. Spencer, The Probabilistic Method, Wiley, New York, 1992.

[5] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and intractability

of approximation problems, Proc. of the 33rd IEEE FOCS, IEEE (1992), 14–23.

[6] S. Arora and S. Safra, Probabilistic checking of proofs; a new characterization of NP, Proc. of

the 33rd IEEE FOCS, IEEE (1992), 2–13.

[7] R. Boppana, Eigenvalues and graph bisection: An average case analysis, Proc. of the 28th IEEE

FOCS, IEEE (1987), 280–285.

[8] R. Boppana and M. M. Halldórsson, Approximating maximum independent sets by excluding

subgraphs, BIT, 32 (1992),180–196.

[9] U. Feige, S. Goldwasser, L. Lovász, S. Safra and M. Szegedy, Approximating Clique is almost

NP-complete, Proc. of the 32nd IEEE FOCS, IEEE (1991), 2–12.

[10] A. Frieze and C. McDiarmid, Algorithmic theory of random graphs, Random Structures and

Algorithms 10 (1997), 5–42.

[11] Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1

(1981), 233–241.

9

[12] G. Grimmett and C. McDiarmid, On colouring random graphs, Math. Proc. Cam. Phil. Soc. 77

(1975), 313–324.

[13] J. H̊astad, Clique is hard to approximate within n1−ε, Proc. of the 37th IEEE FOCS, IEEE

(1996), 627–636.

[14] M. Jerrum, Large cliques elude the metropolis process, Random Structures and Algorithms 3

(1992), 347–359.

[15] A. Juels and M. Peinado, Hiding cliques for cryptographic security, Proc. of the Ninth Annual

ACM-SIAM SODA, ACM Press (1998), 678–684.

[16] R. M. Karp, Reducibility among combinatorial problems, In: Complexity of computer compu-

tations, R. E. Miller and J. W. Thatcher (eds.), Plenum Press, New York, 1972, pp. 85–103.

[17] R. M. Karp, Probabilistic analysis of some combinatorial search problems, In: Algorithms and

Complexity: New Directions and Recent Results, J. F. Traub, ed., Academic Press, New York,

1976, pp. 1–19.

[18] L. Kučera, Expected complexity of graph partitioning problems, Discrete Applied Math. 57 (1995),

193–212.

[19] A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, 1985, Section 10.4.

[20] A. A. Razborov, Lower bounds for the monotone complexity of some Boolean functions, Dokl.

Ak. Nauk. SSSR 281 (1985), 798–801 (in Russian). English translation in: Sov. Math. Dokl. 31

(1985), 354–357.

[21] M. Saks, Private communication.

[22] D. A. Spielman and S.-H. Teng, Spectral partitioning works: planar graphs and finite element

meshes, Proc. 37th IEEE FOCS, IEEE (1996), 96–105.

[23] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, 1965.

10

