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Abstract

We describe a novel randomized method, the method of color-coding for finding simple paths and cycles
of a specified length k, and other small subgraphs, within a given graph G = (V,E). The randomized
algorithms obtained using this method can be derandomized using families of perfect hash functions.
Using the color-coding method we obtain, in particular, the following new results:

• For every fixed k, if a graph G = (V,E) contains a simple cycle of size exactly k, then such a cycle
can be found in either O(V ω) expected time or O(V ω log V ) worst-case time, where ω < 2.376 is
the exponent of matrix multiplication. (Here and in what follows we use V and E instead of |V |
and |E| whenever no confusion may arise.)

• For every fixed k, if a planar graph G = (V,E) contains a simple cycle of size exactly k, then
such a cycle can be found in either O(V ) expected time or O(V log V ) worst-case time. The same
algorithm applies, in fact, not only to planar graphs, but to any minor closed family of graphs
which is not the family of all graphs.

• If a graph G = (V,E) contains a subgraph isomorphic to a bounded tree-width graph H = (VH , EH)
where |VH | = O(log V ), then such a copy of H can be found in polynomial time. This was not
previously known even if H were just a path of length O(log V ).

These results improve upon previous results of many authors. The third result resolves in the affirmative
a conjecture of Papadimitriou and Yannakakis that the LOG PATH problem is in P. We can show that
it is even in NC.

1 Introduction

Though the general subgraph isomorphism problem is NP-complete, various special cases of it are known
to be fixed parameter tractable (see, e.g., [DF92] for a definition), and can be solved in polynomial time.
In this work we introduce the color-coding method. Using this method we are able to solve more subcases
of the subgraph isomorphism problem in polynomial time. We also obtain more efficient solutions to some
subcases that already had polynomial time solutions.
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The color-coding method is a randomized method. The vertices of the graph G = (V,E) in which
a subgraph isomorphic to H = (VH , EH) is sought are randomly colored by k = |VH | colors. If
|VH | = O(log V ), then with a small probability, but only polynomially small (i.e., one over a polynomial),
all the vertices of a subgraph of G which is isomorphic to H, if there is such a subgraph, will be colored
by distinct colors. This, as we shall see, makes the task of finding this ‘color-coded’ subgraph much easier.

The randomized algorithms obtained using the color-coding method are easily derandomized with only a
small loss in efficiency. All that is needed to derandomize them is a family of colorings of G = (V,E) so
that every subset of k vertices of G is assigned distinct colors by at least one of these colorings. What is
required, in other words, is a family of perfect hash functions from {1, 2, . . . , |V |} to {1, 2, . . . , k}.
Perhaps the simplest interesting subcases of the subgraph isomorphism problem are the following: Given
a directed or undirected graph G = (V,E) and a number k, does G contain a simple (directed) path of
length k? Does G contain a simple (directed) cycle of length exactly k?

We show, using color-coding, that a simple directed path of length k, in a directed graph G = (V,E)
that contains such a path, can be found in either 2O(k) ·E expected time or in 2O(k) ·E log V or O(k! ·E)
worst-case times. If the graph G = (V,E) is undirected then E in the above bounds can be replaced
by V . This improves a recent O(2kk! ·V ) worst-case bound of Bodlaender [Bod93] that applies only
to undirected graphs. Note in particular that we can decide in polynomial time whether a directed or
undirected graph G = (V,E) contains a simple (directed) path of length Θ(log V ). This resolves in the
affirmative a conjecture of Papadimitriou and Yannakakis [PY93]. The exponential dependence on k in
the above bounds is probably unavoidable as the problem is NP-complete if k is part of the input.

By another application of the color-coding method, we show that a simple directed or undirected cycle of
size exactly k, in a (directed) graph G = (V,E) that contains such a cycle, can be found in either 2O(k)·V E
or 2O(k)·V ω expected time or in 2O(k)·V E log V or 2O(k)·V ω log V worst-case time. This improves (in many
cases) an O(k!·V E) worst-case bound obtained by Monien [Mon85].

For k ≤ 7 we can count the number of cycles of length k in a graph G = (V,E) in O(V ω) worst-case time.
This uses different techniques and will appear elsewhere. In [YZ94], it is shown that for any even k, cycles
of length k in undirected graphs that contain them can be found in O(V 2) worst-case time.

When applied to planar graphs, or to any non-trivial minor-closed family of graphs, the color-coding
method yields optimal (in the expected case) or almost optimal (in the worst-case) algorithms for finding
simple cycles of a given length. These algorithms use the fact that graphs from a non-trivial minor-closed
family of graphs are of bounded degeneracy (see Section 5 for definition). We remind the reader that a
minor of a graph G is any graph that can be obtained from G by removing and contracting edges. A family
C of graphs is minor-closed if a minor of a member of C is also a member of C. A family C is non-trivial
if it does not include all the graphs. The family of planar graphs is easily seen to be such a non-trivial
minor-closed family. Given a directed or undirected planar graph G = (V,E) (or a graph from a non-trivial
minor-closed family C) that contains a simple (directed) cycle of size k, such a (directed) cycle can be found
in O(V ) expected time or O(V log V ) worst-case time and even in O(V ) worst-case time if k ≤ 5. This
improves and extends an O(V log V ) worst-case bound, for k = 5, 6, obtained by Richards [Ric86] using
planar separators and an O(V ) worst-case bound, for k = 3, 4, obtained by Chiba and Nishizeki [CN85].
Algorithms for finding triangles in planar graphs in O(V ) time were also obtained by Papadimitriou and
Yannakakis [PY81] and Itai and Rodeh [IR78].

Our initial goal was to obtain efficient algorithms for finding simple paths and cycles in graphs. The
algorithms we developed using the color-coding method turned out however to have a much wider range of
applicability. The linear time (i.e., 2O(k)·E for directed graphs and 2O(k)·V for undirected graphs) bounds
quoted above for simple paths apply in fact to any forest on k vertices. The 2O(k) ·V ω bound quoted
for simple cycles applies in fact to any series-parallel graph on k vertices. More generally, if G = (V,E)
contains a subgraph isomorphic to a graph H = (VH , EH) whose tree-width is at most t, then such a
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subgraph can be found in 2O(k) ·V t+1 expected time, where k = |VH |. Note that forests have tree-width 1
while series-parallel graphs have tree-width 2. Our algorithm improves an algorithm of Plehn and Voigt
[PV90] that has a running time of kO(k)·V t+1. Our result gives, as far as we know, the most general subcase
of the subgraph isomorphism problem known to be solvable in polynomial time.

The concept of tree-width was introduced by Robertson and Seymour (see e.g., [RS86a]) in their series of
works on graph minors. Robertson and Seymour use this concept, together with other ingredients, some
of them non-constructive, to show that the subgraph homomorphism problem (given a graph G = (V,E)
and a graph H = (VH , EH), does G have a subgraph homomorphic to H?) and the minor containment
problem (given a graph G = (V,E) and a graph H = (VH , EH), does G have H as a minor?) can be solved
in O(V 3) time for every fixed H and even in O(V ) time if H is a path (see [Joh87] for a survey of these
results). A graph contains a simple path of length k, as a subgraph, if and only if it contains such a path
as a minor. This gives therefore an alternative O(V ) time algorithm for deciding whether an undirected
graph contains a simple path of length k. The obtained algorithm has however a worse dependence on k.

Fürer and Raghavachari [FR92] and Karger et al. [KMR93] give algorithms for finding, in polynomial
time, a simple path of length log2 V in Hamiltonian or weakly undirected Hamiltonian graphs. Our results
significantly extend this result as we can find, in polynomial time, a simple path of length c log2 V , for any
fixed c > 0, in any directed or undirected graph that contains such a path.

In the next section we describe a simplified version of the color-coding method called the method of
random orientations. The basic color-coding method is described in Section 3. In Section 4 we show
how to derandomize the algorithms obtained using these methods. More sophisticated applications of the
color-coding method are described in Sections 5 and 6.

2 Random Orientations

Let G = (V,E) be an undirected graph. Suppose we want to find pairs of vertices connected by simple
paths of length exactly k. By raising the adjacency matrix A = AG of G = (V,E) to the k-th power, or
by using other methods, we can easily find all pairs of vertices connected by paths of length k. Most of
these paths, however, would not be simple. How can we weed out the non-simple paths? An easy way of
doing this is by choosing a random acyclic orientation of the graph G. Such an orientation is obtained
by choosing a random permutation π : V → {1, . . . , |V |} and directing an edge (u, v) ∈ E from u to v if
and only if π(u) < π(v). Denote the resulting directed graph by ~G. Every directed path of length k in ~G
is simple and corresponds to a simple path of length k in G. Every simple path of length k in G, on the
other hand, has a 2/(k + 1)! chance of becoming a directed path (in either direction) in ~G. This simple
observation yields the following two results:

Theorem 2.1 A simple directed or undirected path of length k in a (directed or undirected) graph
G = (V,E) that contains such a path can be found in O((k + 2)! ·V ) expected time in the undirected
case and in O((k + 1)!·E) expected time in the directed case.

Proof : Consider first the undirected case. An algorithm with O((k+1)!·E) expected time is immediate.
Simply choose a random acyclically oriented version ~G of G and find the longest directed path in it. This
can easily be done in O(E) time (see e.g., [CLR90], p. 538). The longest path in ~G would be of length
at least k with a probability of at least 2/(k + 1)!. If the longest path is of length less than k, repeat the
process. The expected number of times this process is repeated before the desired path is found is at most
(k + 1)!/2.

To reduce the O((k+ 1)!·E) complexity to the desired O((k+ 2)!·V ) we use the well known (and easy) fact
that every graph with V vertices and at least k|V | edges contains a path of length k. The known proofs
of this fact easily supply a method of finding such a path in O(k·V ) time. A specific way of incorporating
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this into our algorithm follows an idea of Bodlaender [Bod93]. We start a DFS (depth-first search) on the
graph. If a vertex of depth k is ever found, we stop and output the path from the root to this vertex. If
no such vertex is found, the graph contains at most k|V | edges (as all back-edges point to ancestors) and
we may apply the algorithm described above.

The random orientation method can be easily adapted to work for directed graphs. To turn a directed
graph G = (V,E) into an acyclic graph we again choose a random permutation π : V → {1, . . . , |V |} and
then delete every edge (u, v) ∈ E for which π(u) > π(v). The O((k + 1)! ·E) expected time algorithm
described above works also in this case. 2

Theorem 2.2 A simple directed or undirected cycle of length k in a (directed or undirected) graph
G = (V,E) that contains such a cycle can be found in O(k! log k ·V ω) expected time.

Proof : The algorithm used is very similar to the one used in the proof of Theorem 2.1. We choose a
random acyclically oriented version ~G of G. We now raise the adjacency matrix of ~G to the k− 1-st power
using O(log k) matrix multiplications. This gives us all pairs of vertices connected by directed paths of
length k − 1 in ~G. If the vertices in any one of these pairs are connected by an edge, a k-cycle is found.
This will happen with a probability of at least 2/k!. This process is repeated an expected number of at
most k!/2 times. A very similar algorithm can be used to find directed simple cycles in directed graphs. 2

One can match the performance of the algorithm described in Theorem 2.1 using a deterministic algorithm
by combining techniques of Monien [Mon85] and Bodlaender [Bod93]. The obtained algorithm works in
O(k!·E) time for directed graphs or in O(k!·V ) time for undirected graphs. As this algorithm does not use
the color-coding method we omit its description.

We note that although the O(V ω) algorithm of Theorem 2.2 is extremely simple, no such result was
previously known. This algorithm is derandomized in Section 4 yielding an O(V ω log V ) deterministic
version. For k ≤ 7 we can use other methods to count the number of cycles of length k in deterministic
time O(V ω). This will appear elsewhere.

The k! dependence on k in Theorems 2.1 and 2.2 is improved in the next section.

3 Random colorings

Let G = (V,E) be a directed or undirected graph. Consider again the problem of finding simple directed
or undirected paths of length k − 1 in G. Choose a random coloring of the vertices of G with k colors. A
path in G is said to be colorful if each vertex on it is colored by a distinct color. A colorful path in G is
clearly simple. Each simple path of length k−1, on the other hand, has a chance of k!/kk > e−k to become
colorful. Note that this is only exponentially small in k. How much time is needed to find a colorful path
of length k− 1 in G, if one exists, or all pairs of vertices connected by colorful paths of length k− 1 in G?
The next lemmas give answers to these questions.

Lemma 3.1 Let G = (V,E) be a directed or undirected graph and let c : V → {1, . . . , k} be a coloring
of its vertices with k colors. A colorful path of length k − 1 in G, if one exists, can be found in 2O(k) ·E
worst-case time.

Proof : We describe at first an 2O(k) ·E time algorithm that receives as input the graph G = (V,E), the
coloring c : V → {1, . . . , k} and a vertex s ∈ V , and finds a colorful path of length k− 1 that starts at s, if
one exists. To find a colorful path of length k− 1 in G that starts somewhere, we just add a new vertex s′

to V , color it with a new color 0 and connect it with edges to all the vertices of V . We now look for a
colorful path of length k that starts at s′.
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A colorful path of length k−1 that starts at some specified vertex s is found using a dynamic programming
approach. Suppose we already found for each vertex v ∈ V the possible sets of colors on colorful paths of
length i that connect s and v. Note that we do not record all colorful paths connecting s and v, we only
record the color sets appearing on such paths. For each vertex v we have therefore a collection of at most(k
i

)
color sets. We inspect every subset C that belongs to the collection of v, and every edge (v, u) ∈ E. If

c(u) 6∈ C, we add the set C ∪{c(u)} to the collection of u that corresponds to colorful paths of length i+1.
The graph G contains a colorful path of length k − 1 with respect to the coloring c if and only if the final
collection, that corresponding to paths of length k− 1, of at least one vertex is non-empty. The number of
operations performed by the algorithm outlined is at most O(

∑k
i=0 i

(k
i

)
·|E|) which is clearly O(k2k ·E). 2

Lemma 3.2 Let G = (V,E) be a directed or undirected graph and let c : V → {1, . . . , k} be a coloring of
its vertices with k colors. All pairs of vertices connected by colorful paths of length k− 1 in G can be found
in either 2O(k) ·V E or 2O(k) ·V ω worst-case time.

Proof : The 2O(k) ·V E algorithm is obtained by simply running the algorithm described in the proof of
the previous Lemma |V | times, once for each starting vertex.

To obtain the 2O(k) ·V ω algorithm we use the following recursive approach. Enumerate all partitions of
the color set {1, 2, . . . , k} into two subsets C1, C2 of size k/2 each (to simplify the presentation we omit
floor and ceiling signs). There are only

( k
k/2

)
< 2k such partitions. For each such partition C1, C2, let V1

be the set of vertices of G colored by colors from C1 and V2 be the set of vertices of G colored by colors
from C2. Let G1 and G2 be the subgraphs of G induced by V1 and V2 respectively. Recursively find all
pairs of vertices in G1 and in G2 connected by colorful paths of length k/2 − 1. Collect this information
into two Boolean matrices A1 and A2. Let B be a Boolean matrix that describes the adjacency relations
between the vertices of V1 and those of V2. The Boolean product A1BA2 gives all pairs of vertices in V
that are connected by colorful paths of length exactly k − 1, where the first k/2 vertices on the paths are
colored by colors from C1 and the last k/2 vertices are colored by colors from C2. By OR-ing the matrices
obtained for all the partitions we obtain the desired result. It is easy to verify that the complexity of this
approach is indeed 2O(k) ·V ω, as the number of matrix multiplication used, t(k), satisfies the recurrence
t(k) ≤ 2kt(k/2). 2

The 2O(k)·V ω algorithm outlined above finds all pairs of vertices connected by colorful paths of length k−1.
To find the colorful paths themselves we can use an algorithm by Alon and Naor [AN94] for finding witnesses
for Boolean matrix multiplication. We omit the details.

Using the above Lemmas we immediately get the following results.

Theorem 3.3 A simple directed or undirected path of length k − 1 in a (directed or undirected) graph
G = (V,E) that contains such a path can be found in 2O(k) ·V expected time in the undirected case and in
2O(k) ·E expected time in the directed case.

Theorem 3.4 A simple directed or undirected cycle of size k in a (directed or undirected) graph G = (V,E)
that contains such a cycle can be found in either 2O(k) ·V E or 2O(k) ·V ω expected time.

In [YZ94], the last two authors show that a simple cycle of size k, where k is even, in an undirected graph
that contains such a cycle can be found deterministically in O(k!·V 2) time.

As mentioned in the introduction, the color-coding method can be used to efficiently find not only paths and
cycles but any subgraph with a bounded tree-width. This generalization is briefly presented in Section 6.
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4 Derandomized orientations and colorings

The randomized algorithms of the previous two sections can be derandomized with only a small loss of
efficiency. The 2O(k) dependence on k is retained for the small price of an extra log V factor to the
complexity.

What we need, if we want to give every simple path of length, say, k − 1 in a graph G = (V,E) a chance
of being discovered, is a list of colorings of V such that for every subset V ′ ⊆ V of size |V ′| = k there
exists a coloring in the list that gives each vertex in V ′ a distinct color. What we need, in other words, is
a k-perfect family of hash functions from {1, 2, . . . , |V |} to {1, 2, . . . , k}.
Schmidt and Siegal [SS90], following Fredman, Komlós and Szemerédi [FKS84], give an explicit construction
of a k-perfect family from {1, 2, . . . , n} to {1, 2, . . . , k} in which each function is specified using O(k) +
2 log log n bits. The size of the family is therefore 2O(k) log2 n. The value of each one of these functions on
each specified element of {1, 2, . . . , n} can be evaluated in O(1) time. Using this family we can derandomize
the algorithms presented in the previous sections but the incurred cost would be a multiplicative factor of
log2 V and not of log V as promised.

As pointed out by Moni Naor, the size of the desired family of hash functions can be reduced to 2O(k) log n
in the following way. First construct a k-perfect family that maps {1, 2, . . . , n} to {1, 2, . . . , k2}. Next
construct a k-perfect family that maps {1, 2, . . . , k2} to {1, 2, . . . , k}. The desired family is obtained by
composing these two families of hash functions. A k-perfect family of size 2O(k) from {1, 2, . . . , k2} to
{1, 2, . . . , k} can be obtained using the construction of Schmidt and Siegal [SS90].

To construct a k-perfect family of size kO(1) log n from {1, 2, . . . , n} to {1, 2, . . . , k2} we use small probability
spaces that support sequences of almost `-wise independent random variables. A sequence X1, . . . , Xn of
random Boolean variables is (ε, `)-independent if for any ` positions i1 < i2 < · · · < i` and any ` bits
α1, . . . , α` we have ∣∣∣Pr[Xi1 = α1, . . . , Xi` = α`]− 2−`

∣∣∣ < ε .

Note in particular that if the sequence X1, . . . , Xn is (2−`, `)-independent, then any subset of ` variables
attains each one of its 2` possible values with some positive probability.

Constructions of small probability spaces that admit almost `-wise independent random variables were
obtained by Naor and Naor [NN90] and Alon et al. ([AGHP92], [ABN+92]). The size of sample spaces
that support n random variables that are (ε, `)-independent can be as small as 2O(`+log 1

ε
) log n and they

can be constructed in 2O(`+log 1
ε

)n log n time.

To construct a k-perfect family of size kO(1) log n from {1, 2, . . . , n} to {1, 2, . . . , k2} we use a probability
space of size kO(1) log n that supports `n random variables that are (2−2`, 2`)-independent, where ` = 2 log k.
We attach ` random variables to each element of {1, 2, . . . , n} thereby assigning it a color from {1, 2, . . . , k2}.
Consider two elements 1 ≤ i < j ≤ n. The probability that i and j are assigned the same color is at most
21−` = 2/k2. The probability that two distinct elements from {1, 2, . . . , n} are assigned the same color is
therefore strictly less than 1 and the obtained family is indeed k-perfect.

The algorithms obtained using random orientations can also be derandomized. Instead of choosing a
random permutation π : V → {1, . . . , |V |}, choose a random coloring c : V → {1, . . . , k} and remove
all edges (u, v) ∈ E such that c(v) 6= c(u) + 1. An edge (u, v) ∈ E such that c(v) = c(u) + 1 will be
directed from u to v. The obtained graph ~G is again acyclic. Each simple path of length k in G now
has a probability of 2k−k of becoming a directed path in ~G. Note the difference between the color-coding
method and this version of the random orientations method. Here we require the first vertex on the path
to be colored by 1, the second by 2 and so forth. In the color-coding method we just require the vertices
on the path to be colored by the distinct colors, in some order.

A list of colorings in which each sequence v1, . . . , vk of k vertices from V is colored consecutively by
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1, 2, . . . , k by at least one coloring of the list is easily obtained by using sequences of (k log k) ·n random
variables that are almost k log k-wise independent. The size of the list will be kO(k) log V . Such a list is
used for derandomization purposes in Section 5.

5 Finding cycles in minor-closed families of graphs

An undirected graph G = (V,E) is d-degenerate (see Bollobás [Bol78], p. 222) if there exists an acyclic
orientation of it in which dout(v) ≤ d for every v ∈ V . The smallest d for which G is d-degenerate is
called the degeneracy or the max-min degree of G and is denoted by d(G). It can be easily seen (see again
[Bol78]) that d(G) is the maximum over the minimum degrees of all the subgraphs of G. Clearly, if G is
d-degenerate then |E| ≤ d·|V |. The following simple lemma, whose proof is omitted, is part of the folklore
(see, e.g., [MB83]).

Lemma 5.1 Let G = (V,E) be a connected undirected graph G = (V,E). An acyclic orientation of G
such that for every v ∈ V we have dout(v) ≤ d(G) can be found in O(E) time.

Let G be an undirected graph. A graph H is a minor of G if it can be obtained from G by the removal
and the contraction of edges. A family C of graphs is said to be minor-closed if a minor of a graph of the
family is also a member of the family.

It is known (see [Bol86], p. 7) that if C is a non-trivial minor-closed family of graphs, i.e., a minor-closed
family which is not the family of all graphs, then all graphs in C are of bounded degeneracy. In other
words, there exists a constant d = dC such that every G ∈ C satisfies d(G) ≤ d. As an example, consider
the family of planar graphs. It is minor-closed and the degeneracy of every planar graph is at most 5 (as
each planar graph has a vertex whose degree is at most 5). The second result claimed in the abstract
follows therefore from the following theorem and its derandomized version.

Theorem 5.2 Let C be a non-trivial minor-closed family of graphs and let k ≥ 3 be a fixed integer. Then,
there exists a randomized algorithm that given a graph G = (V,E) from C, finds a Ck (a simple cycle of
size k) in G, if one exists, in O(V ) expected time.

Proof : Let G = (V,E) be a graph from C that contains a Ck. Choose a random coloring c : V →
{1, . . . , k} of the vertices of G. A Ck in G is said to be well-colored if the vertices on it are consecutively
colored by 1, 2, . . . , k. With a probability of 2/kk−1, the Ck present in G will be well-colored.

We describe a randomized algorithm, whose running time is O(k ·V ), that given a graph G = (V,E) from
a minor-closed family of degeneracy d = O(1) and given a coloring c : V → {1, . . . , k}, has a probability
of at least 1/(2d)k of finding a well-colored Ck in G, if one exists. By combining this algorithm with the
initial random coloring phase, we obtain an O(k·V ) time algorithm that finds a Ck in G, if one exists, with
a probability of at least 2

(2d)kkk−1 . This may be a very small probability but it depends only on k and d

and not on the size of the graph. By rerunning the algorithm, with an independent set of choices, in case
of failure, we obtain an O((2dk)k ·V ) expected time algorithm for finding a Ck in graphs that contain one.

We assume that all the edges of G connect vertices that are colored by consecutive colors (modulo k).
Edges violating this property can be removed as this will not remove any well-colored Ck from G. The
randomized algorithm for finding a well-colored Ck in G starts by orienting G so that the out-degree of
every vertex is at most d. The edges that leave a vertex v ∈ V are assigned the indices 1, . . . , dout(v) ≤ d
in an arbitrary manner. This takes only O(V ) time. The well-colored Ck assumed to exist in G contains
an edge between a vertex vk−1 colored by k − 1 and a vertex vk colored by k. The algorithm guesses, by
flipping fair coins, the orientation and the index of this edge. There are two possible orientations and d
possible indices. If the guess is that the edge is directed from vk−1 to vk and the guessed index is i, then
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all edges that leave vertices colored by k − 1 but whose index is not i are removed from the graph. If
the opposite direction is guessed, then the same is done with edges that leave vertices colored by k. The
resulting graph, which we denote by G′, still contains a well-colored Ck with a probability of at least 1/2d.

The subgraph of G′ induced by vertices colored by k−1 and k is a forest of rooted stars. We contract each
such star into a single vertex and assign each such new vertex the color k − 1. We obtain a new graph G′′

and a new coloring c′′. It is easy to see that G′′ contains a well-colored Ck−1 if and only if G′ contains a
well-colored Ck. To verify this, recall that each edge of G′, and therefore also each edge of G′′, connects
consecutively colored vertices. As G′′ is a minor of G and as C is minor-closed, G′′ is also a member of C.
We now apply the algorithm recursively and look for a well-colored Ck−1 in G′′. This takes O((k − 1)·V )
time and yields a well-colored Ck−1 with a probability of at least 1/(2d)k−1. If a well-colored Ck−1 is found
in G′′, a well-colored Ck in G is easily reconstructed. The overall time spent is O(k·V ) and the probability
of finding a well-colored Ck is at least 1/(2d)k.

To complete the picture, we have to specify the way in which the recursion bottoms. The contractions
used in the various stages of the algorithm generate self-loops, which are immediately removed. Parallel
edges, however, may only occur when contractions are applied to a graph colored by three colors and a
two-colored graph is obtained. A well-colored C2 in such a graph is just a pair of parallel edges and such
a pair, if one exists, can be easily found in O(V ) time.

Alternatively, we can stop the recursion when k = 3 and use an existing O(E ·d(G)) time algorithm (see
[CN85]) for finding triangles (C3’s) in a general graph G = (V,E). Note that any triangle in a three-colored
graph is well-colored and that O(E ·d(G)) is O(V ) in our case. 2

The algorithm just described can again be derandomized.

Theorem 5.3 Let C be a non-trivial minor-closed family of graphs and let k ≥ 3 be a fixed integer. There
exists a deterministic algorithm that decides whether a given graph G = (V,E) from C contains a Ck, and
finds one, if one exists, in O(V log V ) worst-case time.

Proof : We derandomize the algorithm given in the proof of Theorem 5.2. Instead of using random
colorings, we exhaust a list of kO(k) log V colorings that has the property that every sequence v1, . . . , vk
of k vertices from V is consecutively colored by 1, 2, . . . , k in at least one coloring of the list. Such a list
was also used for derandomizing the algorithms obtained using the random orientations method. Instead
of guessing the direction and index of each edge in the well-colored Ck, we exhaust, for each coloring, all
the (2d)k possible choices. If G contains a Ck then at least one Ck will be found in this way. 2

Theorems 5.2 and 5.3 deal with undirected graphs. With only minor modifications they can be used however
to find directed cycles in directed graphs whose undirected versions belong to any nontrivial minor-closed
family C.
Without using the color-coding method, we have obtained in [AYZ94] the following result.

Theorem 5.4 Let G = (V,E) be directed or undirected graph. A (directed or undirected) C5 in G, if one
exists, can be found in O(E ·(d(G))2) worst-case time.

As a corollary, we get that if C is a non-trivial minor-closed family of graphs and G = (V,E) is a member
of C, then a C5 in a G, if one exists, can be found in O(V ) time.

Eppstein [Epp95] showed recently that if G = (V,E) is a planar graph and H is a graph on k vertices,
then a copy of H in G, if one exists, can be found in O(kO(k)V ) time. Eppstein’s result also applies to
graphs of a bounded genus but it does not apply, like our method, to all minor-closed families of graphs.
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6 Finding bounded tree-width subgraphs

A slight modification of the method used in Section 3 to find paths can be used to find any fixed directed
or undirected forest. (A directed forest is a directed graph whose undirected version is a forest.)

Theorem 6.1 Let F be a directed or undirected forest on k vertices. Let G = (V,E) be a directed or
undirected graph. A subgraph of G isomorphic to F , if one exists, can be found in 2O(k) ·E expected time
in the directed case, and in 2O(k) ·V expected time in the undirected case.

Proof : We start, as usual, by choosing a random coloring c : V → {1, . . . , k} of the graph G, which is
assumed to contain a copy of F . With a probability of at least e−k, the copy of F in G will become colorful,
i.e., each vertex in it will get a different color. Assume this is the case. Suppose that F is composed of
` (directed) trees T1, . . . , T` with k1, . . . , k` vertices each. Let Fi, for 1 ≤ i ≤ ` be the (directed) forest
composed of T1, . . . , Ti. We find, for each 1 ≤ i ≤ `, the color sets that appear on colorful copies of Ti in
G. It is then easy to find, in 2O(k) time, the color sets that appear on colorful copies Fi, for 1 ≤ i ≤ `.
Note that copies of Ti and Tj , for i 6= j, with disjoint color sets are necessarily disjoint. If the collection
corresponding to F = F` is not empty, then G contains a colorful copy of F . Such a copy is found if with
every color set found we keep at least one copy of a corresponding subgraph colored by it.

Let T = Ti be a (directed) tree on m = ki vertices, where 1 ≤ i ≤ `, and let r be an arbitrary vertex in T .
In 2O(m) ·E time, we find, for each vertex v ∈ V , all color sets that appear on colorful copies of T in G in
which v plays the role of r. If T contains only a single vertex, this is easily done. Otherwise, let eT = (r, r′)
be a (directed) edge in T . The removal of eT from T breaks T into two (directed) subtrees T ′ and T ′′.
We recursively find, for each vertex v ∈ V , the color sets that appear on colorful copies of T ′ in which v
plays the role of r, and the color sets that appear on colorful copies of T ′′ in which v plays the role of r′.
For every (directed) edge e = (u, v) ∈ E, if C ′ is a color set that appears in u’s collection (corresponding
to T ′), if C ′′ is a color set that appears in v’s collection (corresponding to T ′′), and if C ′ ∩ C ′′ = ∅, then
C ′ ∪ C ′′ is added to the collection of u (corresponding to T ). It is easy to see that the complexity of this
recursive algorithm is 2O(m) ·E, as required.

To obtain the better bound in the undirected case, we use the fact a graph G = (V,E) with at least k·|V |
edges contains, as a subgraph, any forest on k vertices. 2

The algorithms in the last theorem can obviously be derandomized using the techniques described in
Section 4.

The basic ideas used in the above proof can be used to obtain an algorithm that looks not only for trees
and forests but for any graph with a bounded tree-width, a notion introduced by Robertson and Seymour
[RS86a].

Definition 6.2 A tree-decomposition of a graph G = (V,E) is a pair (X,T ) where T = (I, F ) is a tree
and X = {Xi : i ∈ I} is a family of subsets of V such that (i) ∪i∈IXi = V ; (ii) for every edge (u, v) ∈ E,
there exists an i ∈ I such that u, v ∈ Xi; and (iii) if i, j, k ∈ I and j is on the path from i to k in T , then
Xi ∩ Xk ⊆ Xj. The tree-width of the tree-decomposition (X,T ) is maxi∈I |Xi| − 1. The tree-width of a
graph G is the minimum tree-width over all possible tree-decompositions of G. Graphs with tree-width at
most t are also called partial t-trees.

The proof of the following result is similar to that of Theorem 6.1 and is thus omitted.

Theorem 6.3 Let H be a directed or undirected graph on k vertices with tree-width t. Let G = (V,E) be a
(directed or undirected) graph. A subgraph of G isomorphic to H, if one exists, can be found in 2O(k)·V t+1

expected time and in 2O(k) ·V t+1 log V worst-case time.
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A result similar to the above result, but with a worse dependence on k, was obtained by Plehn and Voigt
[PV90]. If a real weight function β : E → R is defined on the edges of G, then the algorithm of Plehn
and Voigt, as well as our deterministic algorithm, can be adapted to find the copy of H in G with the
minimal/maximal total weight.

As a very special case of Theorem 6.3, we get that the LOG PATH problem is in P. It is not difficult to
check that all the algorithms we have described are easily parallelizable. It follows therefore that the LOG
PATH problem is even in NC.

As mentioned in the introduction, Robertson and Seymour [RS86b] showed that if C is a minor closed
family of graphs that excludes at least one planar graph H, then there exists a (huge) constant cH such
that every graph in C has tree-width at most cH . As a simple corollary to Theorem 6.3, we get that if
G = (V,E) and H = (VH , EH) such that |VH | = O(log V ) and H is, say, K4-free (i.e., has no K4 minor),
then we can decide in polynomial time whether G contains a subgraph isomorphic to H.

7 Concluding remarks and open problems

The color-coding method is a good example for demonstrating the use of derandomization techniques. All
the algorithms obtained here using this method can be easily parallelized, yielding efficient NC algorithms
to the corresponding problems.

Several problems, listed below, remain open.

• Is there a polynomial time (deterministic or randomized) algorithm for deciding if a given graph
G = (V,E) contains a path of length, say, log2 V ?

• Can the log V factor appearing in our derandomization be omitted? (This will supply, in particular,
for every fixed k ≥ 3, an optimal, linear time deterministic algorithm for deciding if a given planar
graph contains a cycle of length k.)

• Is the problem of deciding whether a given graph G = (V,E) contains a triangle as difficult as the
Boolean multiplication of two V by V matrices?
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[FKS84] M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access
time. Journal of the ACM, 31:538–544, 1984.
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