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Abstract

The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S is the maximum, over all I ⊂ R, J ⊂ S

of the quantity |
∑

i∈I,j∈J aij |. We show that there is an absolute positive constant c so that if A

is the n by n identity matrix and B is a real n by n matrix satisfying ||A−B||C ≤ 1
16 ||A||C , then

rank(B) ≥ cn. Extensions to denser binary matrices are considered as well.
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1 The main results

The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S is the maximum, over all I ⊂ R, J ⊂ S of

the quantity |
∑

i∈I,j∈J aij |. This concept plays a major role in the work of Frieze and Kannan [7] on

efficient approximation algorithms for dense graph and matrix problems.

Consider matrices with a set of rows indexed by R and a set of columns indexed by S. For I ⊂ R
and J ⊂ S, and for a real d, the cut matrix D = CUT (I, J, d) is the matrix (dij)i∈R,j∈S defined by

dij = d if i ∈ I, j ∈ J and dij = 0 otherwise. A cut-decomposition of A expresses it in the form

A = D(1) + . . .+D(k) +W,

where the matrices D(i) are cut matrices, and the matrix W = (wij) has a relatively small cut-norm.

The authors of [7] proved that any given n by n matrix A with entries in [−1, 1] admits a cut-

decomposition in which the number of cut matrices is O(1/ε2), and the cut-norm of the matrix W is

at most εn2. The fact that O(1/ε2) is tight is proved in [3]. Suppose we wish to approximate sparse

{0, 1}-matrices, say, n by n binary matrices with m 1’s, and our objective is to get a cut decomposition

so that the cut norm of the matrix W is at most εm. How large should k be in this case ? The case of

binary matrices arises naturally when considering adjacency matrices of bipartite or general graphs,

and the sparse case in which m = o(n2) is thus interesting.

The first case to consider, which will turn out to be helpful in the study of the general case

too, is when A is the n by n identity matrix. Note that in this case the all 0 matrix B satisfies
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||A − B||C = n, and the constant matrix B′ in which each entry is − 4
5n gives ||A − B′||C ≤ n/5.

Therefore, an approximation up to cut norm 1
5 · n is trivial in this case, and can be done by one cut

matrix. It turns out that for smaller values of ε, e.g., for ε = 1
20 , the required number k of cut matrices

jumps to Ω(n).

This is proved in the next theorem. In fact, we prove a stronger result: not only does the number

of cut matrices in such a cut decomposition have to be linear in n, the rank of any good approximation

of the identity matrix in the cut norm has to be Ω(n).

Theorem 1.1 There is an absolute positive constant c so that the following holds. Let A be the n by

n identity matrix, and let B be an arbitrary real n by n matrix so that ||A−B||C ≤ n
16 . Then the rank

of B is at least cn.

Note that if we replace the cut norm ||A||C of A = (aij) by the `∞-norm ||A||∞ = maxij |aij | then it is

known (see [1]) that the minimum possible required rank of an ε-approximating matrix in this norm

(that is, a matrix B so that ||A−B||∞ ≤ ε||A||∞ (= ε)) is between Ω( 1
ε2 log(1/ε)

log n) and O( 1
ε2

log n).

The above can be extended to denser binary matrices, yielding the following more general result.

Theorem 1.2 (i) There is an absolute positive constant c so that the following holds. For every m

satisfying n ≤ m ≤ n2 there is an n by n binary matrix A with m 1s, so that for any real n by n

matrix B satisfying ||A−B||C ≤ m
16 , rank(B) ≥ cn2

m .

(ii) The above is tight in the following sense: any n by n matrix A satisfying ||A||22 ≤ m admits a cut

decomposition

A = D(1) + . . .+D(k) +W,

where Di are cut matrices, ||W ||C ≤ εm and k ≤ n2

ε2m
.

Note that the constant 1
16 in both theorems can be improved, we make no attempt to optimize

it and the other absolute constants in our estimates. To simplify the presentation we also assume,

throughout this note, that n is sufficiently large whenever this is needed, and omit all floor and ceiling

signs when these are not crucial.

2 Proofs

Besides the cut-norm ||A||C and the norm ||A||∞, it is convenient to define several other norms of

matrices. For a (not-necessarily square) matrix A = (aij) define

||A||∞7→1 = max
∑
i,j

aijxiyj ,

where the maximum is taken over all xi, yj ∈ {−1, 1}. It is easy and well known that for any real

matrix A

||A||C ≤ ||A||∞7→1 ≤ 4||A||C . (1)
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Define also

||A||1 =
∑
ij

|aij |

and

||A||22 =
∑
i,j

a2ij .

We start with the proof of Theorem 1.1. We need the following two known results. The first is a

result of Szarek establishing a tight constant in Khinchin’s Inequality.

Lemma 2.1 (Szarek, [9]) Let c1, c2, . . . , cn be a set of n reals, let y1, . . . , yn be independent, iden-

tically distributed random variables, each distributed uniformly on {−1, 1}, and define Y =
∑

i ciyi.

Then

E(|Y |) ≥ 1√
2

(c21 + . . .+ c2n)1/2.

The second result is the following folklore inequality.

Lemma 2.2 (c.f., e.g., [2], Lemma 2.1) For any real symmetric matrix M ,

rank(M) ≥ [trace(M)]2

||M ||22
.

Note that if T is an arbitrary n by n matrix, (T + T t)/2 is symmetric, its rank is at most twice that

of T , its trace is equal to the trace of T , and the sum of squares of its entries is at most the sum of

squares of the entries of T . Thus the last lemma implies.

Corollary 2.3 For any real n by n matrix T ,

rank(T ) ≥ 0.5
[trace(T )]2

||T ||22
.

We will also use the following simple corollary of Lemma 2.1.

Corollary 2.4 For any n by n matrix B = (bij)

||B||∞7→1 ≥
1√
2

n∑
i=1

(
n∑
j=1

b2ij)
1/2.

Proof: Let y1, y2 . . . , yn be independent and uniform in {−1, 1}. By Lemma 2.1 for each fixed i,

1 ≤ i ≤ n:

E[|
n∑
j=1

bijyj |] ≥
1√
2

(

n∑
j=1

b2ij)
1/2.

By linearity of expectation,

E[
n∑
i=1

|
n∑
j=1

bijyj |] ≥
1√
2

n∑
i=1

(
n∑
j=1

b2ij)
1/2.
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Fix values yj ∈ {−1, 1} so that

n∑
i=1

|
n∑
j=1

bijyj | ≥
1√
2

n∑
i=1

(
n∑
j=1

b2ij)
1/2.

For each i, let xi ∈ {−1, 1} be the sign of
∑n

j=1 bijyj (+1, say, if this sum is 0), then

||B||∞7→1 ≥
∑
i,j

bijxiyj =
n∑
i=1

|
n∑
j=1

bijyj |] ≥
1√
2

n∑
i=1

(
n∑
j=1

b2ij)
1/2,

completing the proof. 2

Proof of Theorem 1.1: Let A be the n by n identity matrix, and suppose B is an n by n matrix

so that ||A − B||C ≤ n
16 . Clearly ||B||C ≤ ||A||C + n

16 = 17n
16 and hence by (1), ||B||∞7→1 ≤ 17n

4 . By

Corollary 2.4 this implies
n∑
i=1

(

n∑
j=1

b2ij)
1/2 ≤

√
2||B||∞7→1 ≤

17
√

2n

4
. (2)

Define

I = {i : (
n∑
j=1

b2ij)
1/2 > 34

√
2.}

By (2), |I| < n/8. We can thus delete a set of n/8 rows and the same columns from B, getting a

matrix B′ = (b′ij) with ` = 7n/8 rows and columns so that

(
∑̀
j=1

(b′ij)
2)1/2 ≤ 34

√
2

for all 1 ≤ i ≤ `. If A′ is the ` by ` identity matrix, then clearly ||A′ − B′||C ≤ n
16 , as A′ − B′ is a

submatrix of A−B. We further assume that ` is even, otherwise we omit another row and column to

ensure this is the case.

As before, ||B′||C ≤ ||A′||C + n
16 = 15n

16 and hence ||B′||∞7→1 ≤ 15n
4 .

Next we prove that ∑
1≤i 6=j≤`

b′ij ≥ −3n. (3)

Indeed, since ||B′||∞7→1 ≤ 15n
4 , for any xi ∈ {−1, 1}

−15n

4
≤

∑
i,j

b′ijxixj ≤
15n

4
.

Taking expectation over all random choices of xi ∈ {−1, 1} we conclude that

−15n

4
≤ trace(B′) ≤ 15n

4
.
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Taking, now, xi = yj = 1 for all i, j we have

trace(B′) +
∑

1≤i 6=j≤`
b′ij =

∑
ij

b′ij ≥ `−
n

16
=

13n

16
,

implying that ∑
1≤i 6=j≤`

b′ij ≥
13n

16
− trace(B′) ≥ −3n,

as needed.

Let σ be a random involution of S`, that is, a random partition of the members of [`] = {1, 2, . . . , `}
into `/2 disjoint pairs {i, σ(i)}. Then the expected value of the random variable

∑`
i=1 b

′
i,σ(i) is exactly

1

`− 1

∑
1≤i 6=j≤`

b′ij

since any entry b′ij with i 6= j contributes its value to this sum with probability 1
`−1 . By (3) this

expectation is at least − 3n
`−1 > −4. Fix an involution σ for which

∑`
i=1 b

′
i,σ(i) ≥ −4.

With this permutation σ, put S =
∑`

i=1 b
′
i,σ(i). Thus S > −4. Define also

T =
∑

i,j:i 6=j,σ(j)

b′i,j .

Consider, now, two random variables X and Y defined as follows. Let I ′ ⊂ [`] be a random set of

indices containing exactly one random member of each pair {i, σ(i)}. Let J ′ = [`]− I. Then

X =
∑

i∈I′,j∈J ′
b′ij ,

whereas

Y =
∑

i∈I′,j∈I′
b′ij

Note that each diagonal element b′ii of B′ contributes to the sum Y with probability 1/2 and does not

contribute to X. Each element b′i,σ(i) contributes to X with probability 1/2, and does not contribute

to Y . Each other element of B′ contributes to X with probability 1/4 and to Y with probability 1/4.

Thus, by linearity of expectation,

E(Y ) =
1

2
trace(B′) +

1

4
T

whereas

E(X) =
1

2
S +

1

4
T

showing that

E(Y −X) =
1

2
(trace(B′)− S).
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However, since ||A′ −B′||C ≤ n
16 , the variable X is always at most n

16 and the variable Y is always at

least `
2 −

n
16 . Thus the expectation of Y −X is at least `

2 −
n
16 −

n
16 = 5n

16 and we have

E(Y −X) =
1

2
[trace(B′)− S] ≥ 5n

16

implying that

trace(B′) ≥ 10n

16
+ S ≥ 5n

8
− 4 > n/2. (4)

Since by the definition of B′ for every i

(
∑̀
j=1

(b′ij)
2)1/2 ≤ 34

√
2

we conclude that ∑̀
i=1

∑̀
j=1

(b′ij)
2 ≤ 34

√
2
∑̀
i=1

(
∑̀
j=1

(b′ij)
2)1/2

≤ 34
√

2

n∑
i=1

(

n∑
j=1

b2ij)
1/2 ≤ 34

√
2

17
√

2n

4
= 289n

where here we used (2). We have thus proved that

∑̀
i=1

∑̀
j=1

(b′ij)
2 ≤ 289n.

Plugging this and (4) in Corollary 2.3 we conclude that

rank(B) ≥ rank(B′) ≥ n

8 · 289
,

completing the proof. 2

Proof of Theorem 1.2: The proof of part (i) is by a simple reduction from Theorem 1.1. Given

n ≤ m ≤ n2 let A be the n by n block diagonal matrix consisting of n2/m blocks, each being a square

m/n by m/n matrix of 1’s (we ignore here divisibility issues that are clearly not essential). Let B be

an n by n matrix and suppose that ||A−B||C ≤ m
16 . Put r = n2

m .

Let A′ be the r by n matrix obtained from A by replacing each block of rows of A by a row

which is the sum of them. Similarly, let B′ be the r by n matrix obtained from B by the same

operation. It is easy to see that ||A′−B′||C ≤ ||A−B||C . Next apply the same operation to columns,

replacing each block of columns by their sum. We get two r by r matrices, A” and B”, so that

||A”−B”||C ≤ ||A−B||C ≤ m
16 , with the matrix A” being exactly m2

n2 I, where I is the r by r identity

matrix. Also, clearly rank(B”) ≤ rank(B). By Theorem 1.1 and obvious scaling we conclude that if

||A”−B”||C ≤
r

16

m2

n2
=
m

16

then rank(B”) ≥ Ω(r) = Ω(n
2

m ), establishing part (i) of the theorem.
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The proof of part (ii) follows from the one of Frieze and Kannan in [7]. Starting with W = A, as

long as ||W ||C ≥ εm take a set I of rows and a set J of columns so that |
∑

i∈I,j∈J wij | ≥ εm. Define

a cut matrix D = cut(I, J, d) where d is the average of the entries of the submatrix of W on the rows

I and columns J and define W ′ = W −D. It is easy to check that

||W ′||22 ≤ ||W ||22 −
ε2m2

|I||J |
≤ ||W ||22 −

ε2m2

n2
,

and as we started with ||A||22 ≤ m the process must terminate after at most

m

(ε2m2/n2)
=

n2

ε2m

steps. This completes the proof. 2

3 Concluding remarks

• It is interesting to note the striking difference between the cut-approximation considered here and

the `∞-approximation considered in [1], [4] (as well as in papers on communication complexity,

see, e.g. [6] and the references therein). For fixed ε, say ε = 1
20 , an ε-`∞ approximation of

the identity only requires rank Θ(log n), while that of any Hadamard matrix (shifted to have

0/1 entries) requires rank Ω(n) (which is also the rank required for random 0/1 matrices). On

the other hand, when approximating using the cut norm, the identity requires linear rank while

Hadamard, random or pseudo-random matrices require rank 1 (the constant matrix provides a

good approximation). Similarly, it is known that the binary n by n matrix A = (aij) defined by

aij = 1 if i ≥ j and aij = 0 otherwise admits a 1
20 − `∞ approximation of rank O(log3 n). This

follows from the results in [8], see also [4]. On the other hand, our results here imply that if for

this A there is a matrix B satisfying ||A−B||C ≤ n
20 , then rank(B) ≥ Ω(n). This is because the

identity matrix is (A+At)/2 and hence if B is a good approximation for it, then (B +Bt)/2 is

a good approximation for the identity.

• An (n, d, λ)-graph is a d-regular graph on n vertices in which all eigenvalues but the first have

absolute value at most λ. The adjacency matrix of any (n, d, λ)-graph with ε > λ
d can be

approximated in the cut-norm in the sense considered here by a rank 1 constant matrix, by the

Expander Mixing Lemma (see [5], Corollary 9.2.5). Similarly, for random d-regular graphs and

ε > c log dd , rank 1 suffices. On the other hand, if, say, ε < 1
100d2

then for any d-regular graph we

need rank Ω(n/d). The lower bound here comes from the fact that any such graph contains an

induced matching with at least n
2d edges, and hence the adjacency matrix contains a permutation

matrix of size Ω(n/d) and the lower bound follows from Theorem 1.1.

• It may be interesting to determine the required dependence on ε for the minimum possible rank

in the assertion of Theorem 1.2. It is not difficult to show that Ω(n2/(εm)) is required if εm ≥ n,

but it is possible that if ε2m ≥ n one may actually need Ω(n2/(ε2m)), which, if true, is tight.
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