
Logarithmically larger deletion codes of all distances

Noga Alon ∗ Gabriela Bourla † Ben Graham ‡ Xiaoyu He § Noah Kravitz ¶

September 26, 2022

Abstract

The deletion distance between two binary words u, v ∈ {0, 1}n is the smallest k such that u and v

share a common subsequence of length n− k. A set C of binary words of length n is called a k-deletion

code if every pair of distinct words in C has deletion distance greater than k. In 1965, Levenshtein

initiated the study of deletion codes by showing that, for k ≥ 1 fixed and n going to infinity, a k-

deletion code C ⊆ {0, 1}n of maximum size satisfies Ωk(2n/n2k) ≤ |C| ≤ Ok(2n/nk). We make the

first asymptotic improvement to these bounds by showing that there exist k-deletion codes with size

at least Ωk(2n logn/n2k). Our proof is inspired by Jiang and Vardy’s improvement to the classical

Gilbert–Varshamov bounds. We also establish several related results on the number of longest common

subsequences and shortest common supersequences of a pair of words with given length and deletion

distance.

1 Introduction

The main goal of coding theory is to construct schemes for efficiently and faithfully communicating messages

across a noisy channel. In this paper, we study a noise model proposed by Levenshtein [9] in which messages

are finite binary words in {0, 1}n and the communication channel, a “deletion channel”, deletes a fixed number

k of bits from the transmitted message; the locations of the deletions are unknown to the receiver. Deletion

errors are a special case of “synchronization errors”, which are remarkably poorly understood compared to

the better-studied noise models of bit flips and bit erasures.

Formally, for n ≥ k ≥ 1 a k-deletion code of length n is a collection C ⊆ {0, 1}n of binary words with the

property that for any y ∈ {0, 1}n−k, there is at most one x ∈ C containing y as a subsequence. Equivalently,

C is a k-deletion code if for all distinct s, t ∈ C, the longest common subsequence of s and t has length

strictly smaller than than n− k. We would like to determine the maximum size D(n, k) of a k-deletion code

of length n. In his seminal 1965 paper [9], Levenshtein established the upper and lower bounds

Ωk

(
2n

n2k

)
≤ D(n, k) ≤ Ok

(
2n

nk

)
. (1)

For the case k = 1, Levenshtein used a construction of Varshamov and Tenengolts [12] to show that

D(n, 1) = Θ(2n/n), so the upper bound in (1) is asymptotically correct in this case. In contrast, despite a

∗Department of Mathematics, Princeton University, Princeton, NJ 08544, USA and Schools of Mathematical Sciences and

Computer Science, Tel Aviv University, Tel Aviv, Israel. Email: nalon@math.princeton.edu. Research supported in part by

NSF grant DMS-2154082
†Department of Mathematics, Princeton University, Princeton, NJ 08544. Email: gbourla@princeton.edu. Research sup-

ported by the math department’s undergraduate funding.
‡Department of Mathematics, Princeton University, Princeton, NJ 08544. Email: bagraham@princeton.edu. Research

supported by the math department’s undergraduate funding.
§Department of Mathematics, Princeton University, Princeton, NJ 08544. Email: xiaoyuh@princeton.edu. Research sup-

ported by NSF Award DMS-2103154.
¶Department of Mathematics, Princeton University, Princeton, NJ 08544. Email: nkravitz@princeton.edu. Research sup-

ported by NSF GRFP Award DGE-2039656.

1

great deal of effort and progress on many related questions (see e.g. [4, 5, 6, 7, 11]) in recent years, neither

bound in (1) has been improved for any fixed k ≥ 2. Our main result is a logarithmic improvement on the

lower bound.

Theorem 1. If n ≥ k ≥ 2, then D(n, k) ≥ Ωk(2n log n/n2k).

We remark that Theorem 1 generalizes without difficulty to codes over fixed alphabets of arbitrary size,

although in this paper we will consider only binary words.

Our proof is nonconstructive: We reduce the problem of finding large codes to the problem of finding a

large independent set in the associated k-deletion graph Γn,k. The graph Γn,k has vertex set {0, 1}n, and

two words are connected by an edge if they have a common subsequence of length at least n− k. We show

that Γn,k is locally sparse, that is, contains few triangles. Theorem 1 then follows from standard lemmas

about the independence number of locally sparse graphs. A similar application of local sparsity to coding

theory appears in the work of Jiang and Vardy [8], who obtained the first asymptotic improvements on the

Gilbert–Varshamov bounds.

Counting triangles is harder for the graph Γn,k than it is for the extremely symmetric setting studied by

Jiang and Vardy, where the analogous graph is just a power of the Hamming cube. In contrast, Γn,k is not

even regular. In order to overcome these difficulties, we restrict our attention to “pseudorandom” words in

the graph that are related by “pseudorandom” sequences of insertion and deletion operations, for suitable

notions of pseudorandomness.

In this work we also prove additional results about the number of longest common subsequences and

shortest common supersequences of a pair of words, as a function of their lengths and deletion distance.

These bounds, which were necessary in earlier versions of our proof of Theorem 1, are of independent

interest and may be useful for future study of deletion codes and the structure of the graphs Γn,k.

We denote the length of a word u by |u|. We say that the word w is a subsequence of the word u if w can

be obtained from u by deleting some of the letters of u. If w is a subsequence of the words u and v, then we

say that w is a common subsequence of u and v; further, w is a longest common subsequence (or LCS) of u

and v if it is a common subsequence of maximum length. We let LCS(u, v) denote the length of an LCS of u

and v. If u and v are words of the same length |u| = |v| = n, then we define the deletion distance between

u and v to be d(u, v) := n− LCS(u, v). One can define shortest common supersequences (or SCS ’s) and the

insertion distance analogously. It is well known that LCS(u, v) + SCS(u, v) = |u|+ |v| for all words u, v, so,

in particular, deletion distance and insertion distance are identical; LCS’s and SCS’s are in this sense dual.

For words u and v, we define the LCS multiplicity mLCS(u, v) (respectively, SCS multiplicity mSCS(u, v))

to be the number of distinct LCS’s (respectively, SCS’s) of u and v. The following simple inequality relating

LCS and SCS multiplicity is probably known to experts, but we could not locate a reference in the literature.

Proposition 2. For all words u, v, we have mLCS(u, v) ≤ mSCS(u, v).

Our main result on LCS and SCS multiplicity is the following.

Theorem 3. Let n, a, b be natural numbers with n ≥ a + b. If u and v are words with lengths n − a and

n− b (respectively) and SCS(u, v) = n (equivalently, LCS(u, v) = n− a− b), then

mLCS(u, v) ≤ mSCS(u, v) ≤
(
a+ b

a

)
.

(We remark that this theorem remains true if we work over arbitrary alphabets.) The a = b case can be

phrased symmetrically as follows: If u, v are words of equal length with d(u, v) = d, then we have

mLCS(u, v) ≤ mSCS(u, v) ≤
(

2d

d

)
,

independent of the lengths of u, v. We also prove in the appendix that this theorem is tight in that for all

choices of a and b and all sufficiently large n (in terms of a, b), there exists a pair of words u, v for which

equality is attained in both inequalities.

2

The paper is organized as follows. We prove the main result Theorem 1 in Section 2; we prove Proposi-

tion 2 and Theorem 3 in Section 3; finally, we describe a family of pairs of words which attain equality in

Theorem 3 in the appendix.

We use standard asymptotic notation, as follows. If f(n), g(n) : N → R are functions, then we write

f = O(g) to indicate that there is some constant C > 0 such that |f(n)| ≤ Cg(n) for all natural numbers

n. If g is nonnegative, then we write f = Ω(g) to indicate that g = O(f). We write f = Θ(g) if f = O(g)

and g = O(f). Subscripts on O,Ω,Θ indicate that the implied constants C may depend on the subscripted

parameters. All logarithms are base-2.

2 Proof of Theorem 1

In this section we prove Theorem 1 in two steps: We reduce the problem to counting triangles in the k-

deletion graph Γn,k, and then we approximate this triangle count. Observe that D(n, k) is by definition the

independence number of Γn,k. We need the following standard lemma of Bollobás, which states that graphs

with few triangles have large independence numbers. This lemma is a generalization of a result of Ajtai,

Komlós, and Szemerédi [1] on triangle-free graphs. See also Shearer [10] for a simpler argument and [2, pp.

336-337] for a very short proof. This line of work has led to several important developments in extremal

graph theory and Ramsey theory.

Lemma 4 ([3], Lemma 15, p. 296). For any graph G on N ≥ 1 vertices with maximum degree at most ∆

(∆ ≥ 1), we have

α(G) ≥ N

10∆

(
log ∆− 1

2
log(T/N)

)
,

where T denotes the number of triangles in G.

The graph Γn,k has N = 2n vertices and maximum degree ∆ = Ok(n2k), since from any given vertex

u ∈ {0, 1}n, a neighbor v can be obtained by choosing k letters of u to delete in at most
(
n
k

)
ways and

then k letters to insert in at most
(
n
k

)
2k ways. Thus, if we want to use Lemma 4 to prove that D(n, k) =

Ωk(2n log n/n2k), it suffices to show that the number of triangles in Γn,k is Ok(2nn4k−ε) for some ε > 0.

We will actually prove the sharper bound that Γn,k has Ok(2nn3k(log n)k) triangles. This estimate is

tight up to the logarithmic factor. It will be convenient to focus our attention on “pseudorandom” words, as

follows. If u ∈ {0, 1}n is a word of length n and S ⊆ n is a subset, let uS denote the subword of u indexed

by S. If I = [x, y] is an interval, then we call uI a subinterval of u. For 1 ≤ λ ≤ n, we say that u ∈ {0, 1}n is

λ-nonrepeating if uI 6= uJ for all pairs of distinct intervals I, J ⊆ [n] of length λ; u is λ-repeating otherwise.

By the first moment method, if λ > (2 + ε) log n for some ε > 0, then almost all words of length n are

λ-nonrepeating.

Next we introduce notation for a sequence of insertion and deletion operations. Let u ∈ {0, 1}n, t ∈
{del, ins0, ins1} and i ∈ [0, n], where i is not allowed to be 0 if t = del (since the 0-th letter of u, which

does not exist, cannot be deleted). We write fi,t(u) for the word obtained from u by deleting ui, if t = del,

inserting a 0 after ui, if t = ins0, and inserting a 1 after ui if t = ins1. Here, “inserting after u0” means

inserting before u1.

Definition 5. Fix nonnegative integers n and `. Let I = (i`, i`−1, . . . , i1) be a nonincreasing sequence of

nonnegative integers n ≥ i` ≥ i`−1 ≥ . . . ≥ i1 ≥ 0, and let T = (t`, . . . , t1) ∈ {del, ins0, ins1}` be a sequence

of insertion/deletion types. We further require that if tj = del then ij 6= 0 (the 0-th letter of u cannot be

deleted) and that if tj = del, then ij−1 < ij (we do not operate on an already-deleted letter). We then call

the pair (I, T) a sequence of ` insertions and deletions, and we write

fI,T (u) := (fi1,t1 ◦ fi2,u2 ◦ · · · ◦ fi`,t`)(u)

for the composition of the operations fi`,t` through fi1,t1 applied to a word u ∈ {0, 1}n.

3

Whenever one obtains a word v from u by inserting and deleting letters, one can reorder these operations

to find a sequence (I, T) of insertions and deletions such that v = fI,T (u). Note that, because the elements

of I are nonincreasing, an earlier operation cannot shift the location of a later operation. In particular, ij
is not only the position in (fij+1,tj+1

◦ · · · ◦ fi`,t`)(u) at which the operation fij ,tj is applied, but also the

original position in u at which the operation occurs. This lets us refer unambiguously to the “position” ij
in u of each operation fij ,tj .

We say that an element i of a set I ⊆ [0, n] is λ-isolated if λ < i < n − λ and no other element j ∈ I
satisfies |j − i| ≤ 2λ. We are now ready to prove our key lemma.

Lemma 6. Let n, k, λ ≥ 1, and let u, v ∈ {0, 1}n be λ-nonrepeating words such that v = fI,T (u) for some

sequence of operations (I, T). If the number of λ-isolated elements of I is at least 2k + 1, then d(u, v) > k.

Proof. We may pick 2k + 1 of the λ-isolated terms of I and call them j2k+1 > j2k > · · · > j1; let the

corresponding terms of T be t2k+1, . . . , t1. Note that since the operations of (I, T) are applied in decreasing

order of index, these operations fjs,ts are applied in decreasing order of s as well. For each λ < j < n − λ,

write L(j) := [j − λ, j − 1] and R(j) := [j + 1, j + λ] for the length-λ intervals in [n] immediately to the left

and right of j. The definition of λ-isolation implies that the 4k + 2 intervals

L(j1), R(j1), L(j2), R(j2), . . . , L(j2k+1), R(j2k+1)

are pairwise disjoint. Moreover, no insertion or deletion operations occur in any of the corresponding 4k+ 2

subintervals of u. Since u and v are λ-nonrepeating, each of these 4k + 2 words appears exactly once as a

subinterval of u and once as a subinterval of v.

The key observation is that when we apply fjs,ts , we either insert or delete a single letter between uL(js)
and uR(js). Since no other insertion or deletion happens nearby, the number of letters in v between the

unique appearances of uL(js) and uR(js) is either 0 (if a letter was deleted) or 2 (if a letter was inserted).

Assume for the sake of contradiction that d(u, v) ≤ k, and let (I ′, T ′) be a sequence of at most k insertions

and at most k deletions such that v = fI′,T ′(u). Since |I ′| ≤ 2k, there exists some 1 ≤ s ≤ 2k + 1 for which

I ′ is disjoint from the entire length-(2λ+ 1) subinterval [js − λ, js + λ]. It follows that u[js−λ,js+λ] appears

unaltered as a subinterval of v, and in particular the unique copy of uL(js) in v and the unique copy of uR(js)

in v have exactly one letter between them. This contradicts the key observation in the previous paragraph,

so we conclude that d(u, v) > k, as desired.

This lemma lets us upper-bound the number of triangles in Γn,k and, more generally, the number of

triples (u, v, w) ∈ ({0, 1}n)3 with prescribed values of d(u, v),d(v, w),d(w, u).

Lemma 7. Let n ≥ a ≥ b ≥ c ≥ 1. The number of triples (u, v, w) ∈ ({0, 1}n)3 with d(u, v) ≤ a, d(v, w) ≤ b,
and d(w, u) ≤ c is Oa(2nna+b+c(log n)b+c−a).

Proof. Say that a triple (u, v, w) ∈ ({0, 1}n)3 is good if d(u, v) ≤ a, d(v, w) ≤ b, and d(w, u) ≤ c. Note that

d(u, v) ≤ d(v, w)+d(w, u) ≤ b+c by the Triangle Inequality, so all good triples (u, v, w) satisfy d(u, v) ≤ b+c,
and we may restrict our attention to the regime a ≤ b+ c.

Let λ = 10a log n, and observe that the probability of a uniformly random u ∈ {0, 1}n being λ-repeating

is at most
(
n
2

)
n−10a ≤ n−8a. Thus, the total number of such exceptional words is at most 2nn−8a. For

each u ∈ {0, 1}n, there are at most Oa(n2a) words v at distance at most a and at most Oa(n2c) words w at

distance at most c, so there are at most Oa(n2a+2c) ≤ Oa(n4a) good triples (u, v, w) for each choice of fixed

u (and likewise for each fixed choice of v or w). We find that the total number of good triples containing a

λ-repeating word is 2nn−8a ·Oa(n4a) = o(2n), which is negligible. It remains to bound the number of good

triples consisting of λ-nonrepeating words.

It suffices to prove that every λ-nonrepeating u lies in at most Oa(na+b+c(log n)a+b−c) good triples

(u, v, w) with v, w both λ-nonrepeating. Note that a good triple (u, v, w) is uniquely determined by the data

of u and sequences (I, T), (I ′, T ′) of insertion or deletion operations for which w = fI,T (u) and v = fI′,T ′(w).

4

Since d(u,w) ≤ c and d(w, v) ≤ b, we may choose (I, T) to have length at most 2c and (I ′, T ′) to have length

at most 2b. Since fI′,T ′(fI,T (u)) = v, we can “combine” the insertions and deletions of (I, T) and (I ′, T ′)

to obtain a sequence (I ′′, T ′′) of insertions and deletions of length |I ′′| = |I| + |I ′| ≤ 2b + 2c such that

fI′′,T ′′(u) = v. Furthermore, there are only Oa(1) choices of (I, T) and (I ′, T ′) that produce each such

sequence (I ′′, T ′′). Thus, for a given u, the number of good triples (u, v, w) is at most Oa(1) times the

number of ways to pick a sequence (I ′′, T ′′) of at most 2b + 2c total insertions and deletions such that

v = fI′′,T ′′(u) is λ-nonrepeating and d(u, v) ≤ 2a.

By Lemma 6, the assumption d(u, v) ≤ 2a implies that at most 2a of the elements of I ′′ are λ-isolated.

We claim that the total number of ways to pick such an I ′′ is at most Oa(na+b+c(log n)b+c−a). Indeed, we

can define an equivalence relation ∼ on the elements of I ′′ by setting i ∼ j if |i − j| ≤ 2λ and then taking

the transitive closure. Let Q denote the number of equivalence classes. There are at most 2a equivalence

classes of size 1, and hence Q ≤ 2a+ (2b+ 2c− 2a)/2 = a+ b+ c. There are at most nQ ways to choose the

minimal elements of the equivalence classes and then Oa(λ2b+2c−Q) ways to choose the remaining elements

of I ′′. The quantity nQλ2b+2c−Q is at most na+b+cλb+c−a, and multiplying by a + b + c = Oa(1) (for the

possible values of Q) establishes the claim. Finally, there are at most 32b+2c = Oa(1) ways to pick T ′′, and

this completes the proof.

The proof of Theorem 1 is now immediate.

Proof of Theorem 1. By Lemma 7 with a = b = c = k, the number T of triangles in Γn,k satisfies T =

Ok(2nn3k(log n)k). Applying Lemma 4 with N = 2n and ∆ = Ok(n2k), we find that

D(n, k) = Ωk(2n log n/n2k),

as desired.

3 LCS and SCS Multiplicity

In this section, we prove Proposition 2 and Theorem 3. Before proving Proposition 2, which says that the

LCS multiplicity is always smaller than or equal to the SCS multiplicity, we set up one piece of notation.

Suppose u is a word of length n which contains the word w of length ` as a subsequence. Then there is

at least one subset S ⊆ [n] of size ` such that uS = w, and there may be several such subsets. We define

left(u,w) to be the smallest of these subsets according to the lexicographic ordering; that is, we choose S

to have the smallest possible smallest element, and we break ties by looking at the second-smallest element,

and so on. We can think of left(u,w) as describing the position of the “left-most” copy of w in u.

Proof of Proposition 2. Let |u| = m, |v| = n, and LCS(u, v) = `, and note that SCS(u, v) = m + n − `. We

define an injective map ϕ from the set of LCS’s of u, v to the set of SCS’s of u, v, as follows. Fix an LCS w

of u, v. We now construct an SCS y of u, v one letter at a time. To begin, initialize two indices i = j = 1

to track our current index in u and v, respectively. For each 1 ≤ k ≤ m+ n− `, define yk according to the

following algorithm:

(i) If i /∈ left(u,w) ∪ {m+ 1}, then let yk = ui and increment i.

(ii) If i ∈ left(u,w) ∪ {m+ 1} and j /∈ left(v, w) ∪ {n+ 1}, then let yk = vj and increment j.

(iii) If i ∈ left(u,w) and j ∈ left(v, w), then let yk = ui (which is also equal to vj), and increment both i and

j. (An easy induction shows that the r-th time this third possibility occurs, we have ui = vj = wr.)

The number of times the algorithm falls into cases (i), (ii), (iii) above are (respectively) m−`, n−`, and `, so

the algorithm terminates at exactly i = m+ 1, j = n+ 1, with m+n− ` well-defined letters y1, . . . , ym+n−`.

Define y := y1y2 · · · ym+n−`. We have |y| = m+ n− ` and y contains u, v as subsequences, so y is in fact an

SCS of u, v. Finally, let ϕ(w) = y.

5

It remains to show that ϕ is injective, i.e., that w can be recovered from ϕ(w). Note that item (iii) occurs

if and only if ui = vj , so, working from k = 1 to k = m + n − `, we can determine the set K of indices k’s

for which item (iii) occurs. By the parenthetical remark in item (iii), we get w = ϕ(w)K , as needed.

As promised, we now prove Theorem 3 on the sharp upper bound for SCS multiplicity (and by extension

LCS multiplicity). In fact, we establish a more general upper bound. If u and v are words, then we can order

all of the common supersequences of u and v by inclusion and study the minimal common supersequences

under this partial ordering. Note that the SCS’s of u, v are always minimal common supersequences of u, v.

The converse, however, is not always true: For instance, if u = 1000 and v = 0001, then the unique SCS of

u, v is 10001, and the common supersequence 0001000 does not contain any proper subsequence containing

u and v.

Lemma 8. Let n, a, b be natural numbers with n ≥ a+ b. If u and v are words with length n− a and n− b
(respectively) and SCS(u, v) = n, then the number of minimal common supersequences of u and v is at most(
a+b
a

)
.

Proof. We proceed by induction on a+ b. The base case a = b = 0 is trivial. We now perform the induction

step. If u, v have a common prefix, then every minimal supersequence of u, v must also share this prefix. By

removing any common prefix of u, v, we may assume that u, v have different first letters. The key observation

is that every minimal common supersequence of u, v is of the form

u1x or v1y,

where x is a minimal common supersequence of u[2,n−a] and v and y is a minimal common supersequence of

u and v[2,n−b]. The result now follows from Pascal’s Identity for binomial coefficients.

As mentioned above, Theorem 3 follows immediately from the observation that every SCS is a minimal

common supersequence. We remark that the methods in Section 2 can be used to prove that most words

u, v ∈ {0, 1}n at a given distance have a unique SCS and LCS.

Proposition 9. If n ≥ k ≥ 1, then the number of pairs u, v ∈ {0, 1}n with d(u, v) = k and mSCS(u, v) > 1

is Ok(2n · n2k−1 log n).

We do not include a full proof, but the idea is to exploit the fact that, typically, words u, v ∈ {0, 1}n at

distance k will be λ-nonrepeating and related by 2k operations, all of whose positions are λ-isolated, where

λ = Θ(log n). As a result, every individual insertion or deletion operation can be reconstructed from short

intervals around it in u and v.

Acknowledgments. We are grateful to Venkatesan Guruswami for helpful conversations.

References

[1] Ajtai, M., Komlós, J. and Szemerédi, E. (1980). A note on Ramsey numbers, J. Combinatorial Theory,

Ser. A 29, 354–360.

[2] Alon, N. and Spencer, J. H. (2016). The Probabilistic Method, Fourth edition, Wiley Series in Discrete

Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ.

[3] Bollobás, B. (1985). Random graphs. Academic Press, Inc., Harcourt Brace Jovanovich, Publishers,

London.

[4] Brakensiek, J., Guruswami, V., and Zbarsky, S. (2016). Efficient low-redundancy codes for correcting

multiple deletions. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), SIAM, 1884–1892.

6

[5] Bukh, B., Guruswami, V. and H̊astad, J. (2017). An improved bound on the fraction of correctable

deletions. IEEE Trans. Inform. Theory 63, 93–103.

[6] Guruswami, V. and H̊astad, J. (2021). Explicit two-deletion codes with redundancy matching the exis-

tential bound. IEEE Trans. Inform. Theory 67, 6384–6394.

[7] Guruswami, V., He, X., and Li, R. (2021). The zero-rate threshold for adversarial bit-deletions is less than

1/2. In Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS),

727–738.

[8] Jiang, T. and Vardy, A. (2004). Asymptotic improvement of the Gilbert-Varshamov bound on the size

of binary codes. IEEE Trans. Inform. Theory 50, 1655–1664.

[9] Levenshtein, V. (1965). I. Binary codes capable of correcting deletions, insertions, and reversals. Dokl.

Akad. Nauk SSSR 163 845–848; translated as Soviet Physics Dokl. 10, 707–710. (In Russian.)

[10] Shearer, J. B. (1983). A note on the independence number of triangle-free graphs, Discrete Math. 46,

83–87.

[11] Sima, J. and Bruck, J. (2019). Optimal k-deletion correcting codes. In 2019 IEEE International Sym-

posium on Information Theory (ISIT), 847–851.

[12] Varshamov, R. R., and Tenengolts, G. M. (1965). A code which corrects single asymmetric errors,

Automatika i Telemkhanika 161, 288–292. (In Russian.)

Appendix

In this appendix, we construct a family of pairs of words achieving equality in Theorem 3. It is easy to

find pairs of words achieving equality for the SCS bound. For instance, we can take u = 0a, v = 1b; then

SCS(u, v) = a+ b and mSCS(u, v) =
(
a+b
a

)
since the SCS’s of u, v are precisely the words containing a 0’s and

b 1’s. To find longer words achieving equality with the same values of a, b, simply append a fixed word w

(for instance, w = 0c) to the right of both u, v.

It seems that there is no similarly simple example achieving equality for the LCS bound, and our con-

struction requires a delicate induction. If u is a (nonempty) word of length n and m is a natural number,

then we define u〈m〉 to be the prefix of length m of the infinite word uuu · · · . For instance, (01)〈7〉 = 0101010

and (0110)〈3〉 = 011. Our extremal example is as follows.

Proposition 10. For every c ≥ 1, the words u = (10)〈4c−2〉, v = (0110)〈4c−2〉 satisfy d(u, v) = c and

mLCS(u, v) =
(
2c
c

)
.

Let us explain why Proposition 10 provides equality cases for Theorem 3 for all choices of a, b. Suppose

a0, b0 are given, and consider the words u, v produced by the c = a0 + b0 case of Proposition 10. Since

equality in Theorem 3 is achieved for (a, b) = (c, c) by u, v, we see that equality is also achieved for all

of the other pairs of words considered in the inductive argument of Theorem 3 (which can easily be run

directly with LCS’s rather than passing through SCS’s). For instance, the words u[2,n−a], v are an equality

case of Theorem 3 for (a, b) = (c, c − 1), and the words u, v[2,n−b] are an equality case of Theorem 3 for

(a, b) = (c − 1, c). Continuing in this manner, we eventually reach an equality case for (a, b) = (a0, b0), as

needed.

To prove Proposition 10, we recursively compute LCS(u, v) and mLCS(u, v) for all words u = (10)〈a〉,

v = (0110)〈b〉 with b even. We introduce the notation `(a, b) := LCS((10)〈a〉, (0110)〈b〉) and m(a, b) :=

mLCS((10)〈a〉, (0110)〈b〉). We begin by computing `(a, b).

7

Lemma 11. For a, b ≥ 0 with b even, we have

`(a, b) =

a if a ≤ b/2
b
2 +

⌊
2a−b

4

⌋
if b

2 < a ≤ 3b
2

b if a > 3b/2.

Proof. The pairs (a, b) with a ≤ 2 or b = 0 can be checked by hand, so we restrict our attention to a ≥ 3

and b ≥ 2. Note that every LCS of u, v is, according to its first letter, of the form

1x or 01y,

where x is an LCS of (01)〈a−1〉, (1001)〈b−2〉 and y is an LCS of (01)〈a−3〉, (1001)〈b−2〉. Exchanging the roles

of 0 and 1, we find that

LCS((01)〈a−1〉, (1001)〈b−2〉) = LCS((10)〈a−1〉, (0110)〈b−2〉) = `(a− 1, b− 2),

and likewise LCS((01)〈a−3〉, (1001)〈b−2〉) = `(a− 3, b− 2). It follows that

`(a, b) = max{1 + `(a− 1, b− 2), 2 + `(a− 3, b− 2)},

and it is not difficult to check that the function defined in the lemma statement is the unique function

satisfying this recurrence and the same initial conditions.

It remains to compute m(a, b).

Lemma 12. For a, b ≥ 0 with b even, we have

m(a, b) =

{(
b/2

(2a−b)/4
)

if 2a ≡ b (mod 4)(
b/2+1

(2a−b+2)/4

)
if 2a ≡ b+ 2 (mod 4).

Proof. As in Lemma 11, we deal separately with the small cases where a = 0 or b ≤ 2. Otherwise, following

the same case distinction as in Lemma 11, we find that

m(a, b) = m(a− 1, b− 2) · 11+`(a−1,b−2)≥2+`(a−3,b−2) +m(a− 3, b− 2) · 11+`(a−1,b−2)≤2+`(a−3,b−2),

where 1 is the 0-1 indicator function of its argument. Using the exact values of ` from Lemma 11, we can

rewrite this equation as

m(a, b) =

m(a− 1, b− 2) if a ≤ b/2
m(a− 1, b− 2) +m(a− 3, b− 2) if b/2 < a < 3b

2

m(a− 3, b− 2) if a ≥ 3b
2 ,

and the lemma follows from induction and Pascal’s Identity.

Taking a = b = 4c− 2 in the previous two lemmas gives Proposition 10.

8

	Introduction
	Proof of Theorem 1
	LCS and SCS Multiplicity

