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Abstract

The choice number ch(G) of a graph G = (V,E) is the minimum number k such that for every
assignment of a list S(v) of at least k colors to each vertex v ∈ V , there is a proper vertex coloring
of G assigning to each vertex v a color from its list S(v). We prove that if the minimum degree of
G is d, then its choice number is at least ( 1

2 − o(1)) log2 d, where the o(1)-term tends to zero as d
tends to infinity. This is tight up to a constant factor of 2 + o(1), improves an estimate established
in [1], and settles a problem raised in [2].

1 Introduction

An undirected, simple graph G = (V,E) is k-choosable if for every assignment of a list S(v) of at least
k colors to each vertex v ∈ V , there is a proper vertex coloring of G assigning to each vertex v a color
from its list S(v). The choice number ch(G) of G, (which is also called the list chromatic number of
G) is the minimum number k such that G is k-choosable.

The concept of choosability, introduced by Vizing in 1976 [6] and independently by Erdős, Rubin
and Taylor in 1979 [4], received a considerable amount of attention recently. Many of the recent results
can be found in the survey papers [1], [5] and their many references. By definition, the choice number
ch(G) of any graph G is at least as large as its chromatic number χ(G), and it is well known that
strict inequality can hold. In fact, it is shown in [4] that the choice number of the complete bipartite
graph with d vertices in each color class satisfies

ch(Kd,d) = (1 + o(1)) log2 d. (1)

The coloring number col(G) of G = (V,E) is the minimum number d such that every subgraph of
G contains a vertex of degree smaller than d. Equivalently, it is the minimum d such that there is an
acyclic orientation of G in which every outdegree is smaller than d, or the minimum d such that G is
(d − 1)-degenerate. As observed already in [4], for every graph G, ch(G) ≤ col(G). In [1] a certain
converse is proved: there is an absolute constant c > 0 such that if col(G) > d then ch(G) ≥ c log d

log log d .

In [2] it is conjectured that the log log d term can be omitted. This is the main result of the present
note, stated in the following theorem (in which the constants can be slightly improved).
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Theorem 1 Let G be a simple graph with minimum degree at least d. If s is an integer and

d >
4(s2 + 1)2

(log2 e)2
22s (2)

then ch(G) > s.

This implies that the choice number of any graph with coloring number that exceeds d is at least
(1

2 − o(1)) log2 d. By (1) this is tight up to a constant factor of 2 + o(1).

2 The proof

Note, first, that there is a very simple characterization, given in [4], of graphs with choice number at
most 2. By this characterization, each such graph contains a vertex of degree at most 2, implying the
assertion of the theorem for s ≤ 2. We thus may and will assume that s is at least 3. The proof of
the theorem is probabilistic. Let G = (V,E) be a simple graph with minimum degree at least d, and
suppose (2) holds. Put |V | = n and let S = {1, 2, . . . , s2} be a set of colors. Our objective is to show
that there are subsets S(v) ⊂ S, where |S(v)| = s for all v ∈ V , such that there is no proper coloring
c : V 7→ S that assigns to every v ∈ V a color c(v) ∈ S(v).

Let B be a subset of V where each v ∈ V , randomly and independently, is chosen to be a member
of B with probability 1√

d
. For each b ∈ B, let S(b) be a random subset of cardinality s of S, chosen

uniformly and independently among all the
(s2
s

)
subsets of cardinality s of S. Call a vertex v ∈ V good

if v 6∈ B and for every subset T ⊂ S of cardinality |T | = ds2/2e, there is a neighbor b of v in G such
that b ∈ B and S(b) ⊂ T . Note that for each fixed vertex v ∈ V , the probability that v is not good
does not exceed

1√
d

+ (1− 1√
d

)

(
s2

ds2/2e

)(
1− 1√

d

ds2/2e(ds2/2e − 1) . . . (ds2/2e − s+ 1)
s2(s2 − 1) . . . (s2 − s+ 1)

)d
(3)

This is because the probability that v ∈ B is at most 1√
d
. If it is not in B, then for each fixed subset

T of cardinality ds2/2e of S, and for each neighbor u of v in G, the probability that u ∈ B and that
S(u) ⊂ T is precisely

1√
d

ds2/2e(ds2/2e − 1) . . . (ds2/2e − s+ 1)
s2(s2 − 1) . . . (s2 − s+ 1)

.

As the degree of v is at least d, it follows that the probability that there is no neighbor u of v as above
is at most (

1− 1√
d

ds2/2e(ds2/2e − 1) . . . (ds2/2e − s+ 1)
s2(s2 − 1) . . . (s2 − s+ 1)

)d
,

and the estimate in (3) follows since there are(
s2

ds2/2e

)

possible choices for the subset T .



Clearly,
ds2/2e(ds2/2e − 1) . . . (ds2/2e − s+ 1)

s2(s2 − 1) . . . (s2 − s+ 1)
≥ 1

2s

s−1∏
i=0

s2 − 2i
s2 − i

=
1
2s

s−1∏
i=0

(1− i

s2 − i
) ≥ 1

2s

(
1−

∑s−1
i=0 i

s2 − s

)
=

1
2s+1

.

Substituting in (3), and using the fact that for s ≥ 3,
( s2

ds2/2e
)
≤ 2s

2
/4, we conclude that the probability

that v is not good does not exceed

1√
d

+
2s

2

4
(1− 1√

d2s+1
)d ≤ 1√

d
+

2s
2

4
e−

√
d

2s+1 < 1/4,

where the last inequality follows from (2).
It follows that the expected number of vertices v which are not good is less than n/4 and hence,

by Markov’s inequality, the probability that there are at least n/2 good vertices exceeds 1/2. As the
expected size of B is n/

√
d, the probability that |B| > 2n/

√
d is smaller than 1/2. Therefore, with

positive probability, |B| ≤ 2n/
√
d and there are at least n/2 good vertices.

Fix a choice of B and of S(b), b ∈ B such that |B| ≤ 2n/
√
d and there is a set A of g ≥ n/2 good

vertices. For each a ∈ A choose a set of colors S(a) ⊂ S, where each set S(a) is chosen randomly
independently and uniformly among all s-subsets of S. To complete the proof we show that with
positive probability there is no proper coloring c : V 7→ S of G, assigning to each vertex v ∈ A ∪ B a
color from its list S(v).

There are at most s|B| possibilities for the restriction c|B of the coloring c to the vertices in B,
satisfying c(b) ∈ S(b) for each b ∈ B. Fix such a restriction, and let us estimate the probability that it
can be extended to a proper coloring of the induced subgraph of G on A∪B assigning to each vertex
a color from its list. The crucial observation is that as each a ∈ A is good, the set Ta of all colors
assigned by c|B to its neighbors in B is a set that intersects every subset of cardinality ds2/2e of S,
and thus its cardinality is at least bs2/2c + 1 ≥ ds2/2e. If S(a) is a subset of Ta, there is no proper
color available for a in its list. Therefore, the probability that a can be colored is at most

1− ds
2/2e(ds2/2e − 1) . . . (ds2/2e − s+ 1)

s2(s2 − 1) . . . (s2 − s+ 1)
≤ 1− 1

2s+1
.

The events corresponding to distinct good vertices a are mutually independent, by the independent
choice of the sets S(a). Therefore, the probability that a fixed partial coloring c|B can be extended to
a proper one c : A ∪B 7→ S assigning to each vertex a color from its list is at most

(1− 1
2s+1

)g ≤ (1− 1
2s+1

)n/2 ≤ e−n/2s+2
.

Note that
s|B|e−n/2

s+2 ≤ e
2n√
d

ln s−n/2s+2

,

which is less than 1, by (2) and the fact that s ≥ 3.
Therefore, with positive probability there is no coloring of the desired type, implying that ch(G) > s

and completing the proof. 2



3 Concluding remarks

The choice of the total number of colors in the proof of Theorem 1 is motivated by the old results of
Erdős [3] on uniform hypergraphs with chromatic number bigger than 2.

Theorem 1 and the discussion preceding it imply that the choice number of any graph G with coloring
number col(G) = d satisfies

(
1
2
− o(1)) log2 d ≤ ch(G) ≤ d.

As the coloring number of a given input graph can be easily determined in linear time, this provides
an efficient approximation algorithm for finding an estimate of the choice number of a given graph.
Although this is a very rough approximation, there is no known similar result for approximating the
chromatic number of a given input graph.

In [2] it is shown that the choice number of a random bipartite graph with n vertices in each class
in which each pair of vertices from distinct classes forms an edge, randomly and independently, with
probability p, is almost surely (that is, with probability that tends to 1 as np tends to infinity)
(1 + o(1)) log2(np). Note that all degrees of such a graph are (1 + o(1))np, and hence these graphs
also show that the estimate in Theorem 1 is tight, up to a multiplicative factor of 2 + o(1). It seems
plausible that the choice number of any d-regular bipartite graph is (1 + o(1)) log2 d. This is related
to a question mentioned in [2]. By the result here the choice number of each such graph is at least
(1

2 − o(1)) log2 d, and it is easy to show that it is at most O(d/ log d).
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