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Abstract

In the past decade, there has been a stream of work in designing approximation schemes for
dense instances of NP-Hard problems. These include the work of Arora, Karger and Karpinski
from 1995 and that of Frieze and Kannan from 1996. We address the problem of proving
hardness results for (fully) dense problems, which has been neglected despite the fruitful effort
put in upper bounds. In this work we prove hardness results of dense instances of a broad family
of CSP problems, as well as a broad family of ranking problems which we refer to as CSP-
Rank. Our techniques involve a construction of a pseudorandom hypergraph coloring, which
generalizes the well-known Paley graph, recently used by Alon to prove hardness of feedback
arc-set in tournaments.

1 Introduction

Dense instances of MAX-SNP problems are known to be easier to approximate than the general
case [4, 5, 8, 12–15, 17]. In 1995, Arora et al. [8] proved that there exist approximation schemes
for MAX-SNP problems for dense instances, and introduced the technique of smooth programs.
Later in 1996, Frieze et al. [14] proved an efficient verion of the regularity lemma and used it as a
general framework for approximation scheme for MAX-SNP problems. (Some earlier special cases
have been treated already in [4].) More recently, Ailon et al. [1] proved that finding the minimum
feedback arc-set of a tournament (fully dense digraph) can be approximated to within a constant
factor of 2.5, where the best known algorithm for general digraph was O(log n log log n) [11,19].

To the best of our knowledge, there are only few hardness results for dense or fully dense
instances. NP-Hardness of the minimum feedback arc set in tournaments (fully-dense digraphs) was
conjectured by Bang-Jensen and Thomassen [9] (NP-Hardness of the general digraph case was well
known [16]). A first step in proving the conjecture was taken by Ailon et al. [1], by demonstrating
a poly-time randomized reduction from hard digraphs to tournaments. Thus, NP * BPP if and
only if there is no poly-time algorithm for minimum feedback arc-set in tournaments. Alon [3]
derandomized this reduction, consequently proving Bang-Jensen and Thomassen’s conjecture with
no assumption. The randomized reduction and its derandomization can be informally explained as
follows. Start with a hard digraph G, and blow it up by a factor of some integer a by creating a
group of a copies of each vertex, and for any edge e in G connect the two groups corresponding to
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the vertices incident to e by a complete bipartite digraph (with the same orientation as e). This
blow-up is not a tournament but it can be made a tournament by randomly and independently
orienting all non-edges. The main idea is, that the rate of growth of the hardness (with respect to a)
dominates the “noise” introduced by the random edges. The derandomization is done by choosing
the orientation of non-edges according to the Paley tournament. The Paley tournament (see,
for example, [7], Chapter 9) is an algebraically constructed tournament possessing pseudorandom
properties that are required for the reduction.

In this work we address two types of problems, which we refer to as r-CSPF and r-CSP-RANKF .
The former is parameterized by an integer r and a finite family of real valued functions F on r
boolean variables. An instance of the problem involves a set of clauses, each clause contains a
subset of r variables in a set of n variables, and a function f ∈ F . Given an assignment of boolean
values to the variables, the value of the objective function is the total sum over all clauses of the
evaluation of f on its corresponding variables. The goal is to minimize the objective function.

In r-CSP-RANKF , the functions f ∈ F are from the domain of permutations on r objects.
Given a ranking (permutation) of the n variables, the value of the objective function is the total
sum over all clauses of the evaluation of f on the induced ranking of its corresponding variables,
and the goal is to minimize the objective function.

In fully dense instances of r-CSPF and r-CSP-RANKF , which we refer to as r-CSP-FULLF
and r-CSP-RANK-FULLF , respectively, there is a clause corresponding to each possible choice of
r variables. In Section 4 we show that under a certain assumption of homogeneity that will be
explained later, if an r-CSP-RANKF problem is NP-Hard, then its r-CSP-RANK-FULLF version
is NP-Hard to approximate to within an additive error of nr−ε for any ε > 0, where n is the number
of variables.

Examples of NP-Hard homogenous r-CSPF ’s are MAX-r-LIN-2 (maximizing the number of
satisfied equations modulo 2, each equation involving exactly r variables), and MAX-r-CNF (max-
imizing the number of satisfied CNF clauses, each clause involving exactly r variables).

Examples of NP-Hard homogenous r-CSP-RANKF ’s are FEEDBACK-ARC-SET and BETWEEN-
NESS . In FEEDBACK-ARC-SET we are given a digraph, and the goal is to rank its vertices
minimizing the number of backward edges with respect to the ordering. The fully dense version (on
tournaments) is referred to as FEEDBACK-ARC-SET-TOUR. In BETWEENNESS we are given
betweenness constraints on a ground set of n elements. Each constraints involves 3 elements and
a designated element among the three. The objective function of a ranking of the elements is the
number of betweenness constraints for which the designated element is not between the other two
with respect to the ranking, and the goal is to minimze the objective function. We refer to the fully
dense instance (i.e. a betweenness constraint for all choices of three elements) as BETWEENNESS-
TOUR. The problem BETWEENNESS is known to be NP-Hard [18], and furthermore, it is known
that ranking a betweenness instance in which all the constraints are consistent (i.e. there exists a
ranking satisfying all of them) is NP-Hard [10]1.

The proofs of our main theorems demonstrate reductions from the general dense instances to
the fully dense instances, using the basic approach of [1] and [3], and including several additional
ideas that are needed to handle the more general situation. A sparse hard instance is blown up,
and a fully dense instance is created as a hybrid of the blow-up and a pseudorandom structure that
simulates a random choice of non-clauses in the original instance.

The paper is organized as follows. In Section 2 we construct an algebraic coloring of a complete
r-regular hypergraph which will be the source of pseudorandomness for all structures that are
considered in what follows. This coloring is a generalization of the Paley graph construction. In

1Note however that ranking a fully-dense consistent BETWEENNESS-TOUR instance is very easy
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Section 3 we discuss r-CSPF , in Section 4 we discuss r-CSP-RANKF , and in Section 5 we discuss
some open problems and remarks.

2 The Basic Construction

Definition 2.1 Let s > 1, r > 1 be integer constants, and let p be a prime such that s|p − 1. Let g
denote a generator of Z∗

p . Let H denote the subgroup of Z∗
p generated by gs. Denote by Hi the coset

Hgi for i = 0, . . . , s − 1. For an element j ∈ Z∗
p , define [j]sp = i if j ∈ Hi, and formally [0]sp = −∞.

Let ω = e(2πi)/s be a primitve s’th complex root of unity. For 0 ≤ t < s let

χt(j) =

{
ωt·[j]sp j ∈ Z∗

p

0 j = 0
.

The s-adic residual coloring of the complete r-regular hypergraph on Zp is defined as follows.: The
color of the hyperedge j = (j1, . . . , jr) is

colsp(j) = max{[j1 + · · · + jr]sp, 0} .

Note that this coloring allows considering the hyperedges as multisets (hyper-self-loops), but we will
only consider r-regular hypergraphs with no hyper-self-loops in what follows.

We assume the following notation. We will use the linear order < on Zp = {0, . . . , p − 1}
induced by the order on integers. For a set B, we let

(
B
r

)
denote the family of all subsets of size r

of B. If B ⊆ Zp, we identify
(
B
r

)
with the set of vectors i = (i1, . . . , ir) ∈ Br such that i1 < · · · < ir.

For an integer m, let S(m) denote the set of permutations on the integers {1, . . . ,m}.

The s-adic residue coloring behaves like a randomized coloring in the sense that for any big
disjoint sets A1, . . . , Ar ⊆ Zp, roughly 1/s fraction of the hyperedges in A1 × · · · × Ar have color
i for all i = 0, . . . , s − 1. We make this precise in what follows. First, we state some lemmas and
definitions, starting with the following well known fact.

Lemma 2.2 Fix distinct j, l ∈ Zp, and 1 ≤ t < s.∑
i∈Zp

χt(i + j)χt(i + l) = −1 ,

where (̄·) denotes complex conjugation.

Proof: ∑
i∈Zp

χt(i + j)χt(i + l) =
∑

i6=−l,−j

χt(i + j)χt(i + l)

=
∑

i6=−l,−j

χt(
i + j

i + l
)

=
∑

i6=−l,−j

χt

(
1 +

j − l

i + l

)
= −1.

The last equality is because as i takes all values in Zp \ {−j, −l}, the expression 1 + (j − l)/(i + l)
takes all values in Z∗

p except 1, and it is well known that the sum of χt over all values in Z∗
p is 0. 2
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[7].
Assuming p, s, r fixed, for a set A ⊆

(
Zp

r

)
let nj(A) denote the number of combinations i ∈ A

such that colsp(i) = j for j = 0, . . . , s−1. That is, if we define mj(A) =
∣∣{i ∈ A|[i1 + · · · + ir]sp = j}

∣∣,
then nj(A) = mj(A) for j > 0 and n0(A) = m0(A) + m−∞(A).

Lemma 2.3 Let A1, . . . , Ar be r ≥ 2 subsets of Zp, and let A = A1 × · · · × Ar. Then for all
1 ≤ t < s, ∣∣∣∣∣∣

∑
i∈A1

χt(i1 + · · · + ir)

∣∣∣∣∣∣ ≤ |A|1/2p(r−1)/2 .

Proof: Using Cauchy-Schwartz and Lemma 2.2 and letting I substitute (i1 + · · · + ir−1) and
∑

(∗)
substitute

∑
i∈Zr−1

p
,∣∣∣∣∣∑
i∈A

χt(i1 + · · · + ir)

∣∣∣∣∣
2

≤ |A1| · · · |Ar−1|
∑

i1∈A1

· · ·
∑

ir−1∈Ar−1

∣∣∣∣∣∣
∑

ir∈Ar

χt(I + ir)

∣∣∣∣∣∣
2

≤ |A1| · · · |Ar−1|
∑
(∗)

∣∣∣∣∣∣
∑

ir∈Ar

χt(I + ir)

∣∣∣∣∣∣
2

= |A1| · · · |Ar−1|

pr−1|Ar| + 2
∑
(∗)

∑
j<l∈Ar

χt(I + j)χt(I + l)


= |A|pr−1 + 2|A1| · · · |Ar−1|pr−2

∑
i∈Zp

∑
j<l∈Ar

χt(i + j)χt(i + l)

≤ |A|pr−1 + |A1| · · · |Ar−1|pr−2|Ar|(|Ar| − 1) · (−1)

= |A|
(
pr−1 − pr−2(|Ar| − 1)

)
≤ |A|pr−1 ,

(1)

as required. 2

The assertion of the last lemma for r = 2 is proved, for example, in [2], and the result for bigger
r can be deduced from this case by the triangle inequality. The short proof above is included in
order to make the paper self contrained.

Lemma 2.4 Let A1, . . . , Ar, A be as in Lemma 2.3, and assume in addition that A1, . . . , Ar are
pairwise disjoint, and that A1 < A2 . . . < Ar, that is, each element of Aj is smaller than each
element of Aj′ for all j < j′. (Thus A can be viewed as a subset of

(
Zp

r

)
.) Then for all j =

0, . . . , s − 1,
|nj(A) − |A|/s| ≤ 2(|A|)1/2p(r−1)/2

Proof:
By Lemma 2.3, we have that for all 1 ≤ t < s,

4



∣∣∣∣∣∣
s−1∑
j=0

mj(A)ωtj

∣∣∣∣∣∣
2

≤ |A|pr−1 .

Therefore, for all 0 ≤ t < s,∣∣∣∣∣∣
s−1∑
j=0

(mj(A) − |A|/s)ωtj

∣∣∣∣∣∣
2

≤ |A|pr−1 .

s−1∑
t=0

∣∣∣∣∣∣
s−1∑
j=0

(mj(A) − |A|/s)ωtj

∣∣∣∣∣∣
2

≤ s|A|pr−1 .

By Parseval’s Theorem,
s−1∑
j=0

(mj(A) − |A|/s)2 ≤ |A|pr−1 .

Therefore, |(mj(A) − |A|/s)| ≤ |A|1/2p(r−1)/2 for j = 0, . . . , s − 1. To complete the proof, we
must show that m−∞(A) ≤ |A|1/2p(r−1)/2. Clearly, m−∞(A) ≤ |A1| · · · |Ar−1| ≤ |A|1/2p(r−1)/2, as
required. We conclude that |(nj − |A|/s)| ≤ 2|A|1/2p(r−1)/2 for all j = 0, . . . , s − 1.

Lemma 2.5 Suppose r ≥ 2 and let B1, . . . , Br ⊆ Zp be some subsets. let

A = A(B1, . . . , Br) =
{

i ∈
(

Zp

r

)∣∣∣∣ ij ∈ Bj , j = 1, . . . , r

}
.

Then
|nj(A) − |A|/s| ≤ cr(|B1| · · · |Br|)1/2(log |B1| · · · |Br|)r−1p(r−1)/2 , (2)

for some global cr > 0 that depends only on r.

Proof: Let k be such that |Bk| ≥ |Bj | for j = 1, . . . , r.
We can assume that |Bk| ≥ 4, because we can always find cr > 0 that will make (2) true for the

case |Bj | < 4 for j = 1, . . . , r.
Sort the elements of Bk to obtain a sequence b0 < · · · < bn−1, where n = |Bk|. Let x be an

integer such that d|Bk|/2e elements of Bk are less than x, and b|Bk|/2c are at least x. For each
j = 1, . . . , r, let BL

j denote {y ∈ Bj |y < x} and Br
j = {y ∈ Bj |y ≥ x}.

We divide the set A to subsets S ⊆ A, such that each S is a product S1×· · ·×Sr for some subsets
Sj ⊆ Bj such that S1 < S2 < · · · < Sr. This will enable us to use Lemma 2.4. Our construction
will be inductive over |Bk| and r. More precisely, we construct a family S(B1, . . . , Br) such that
S ⊆ A = A(B1, . . . , Br) for any S ∈ S(B1, . . . , Br), each such S is a product of r disjoint subsets as
described above, any distinct S1, S2 ∈ S(B1, . . . , Br) are disjoint and ∪S∈S(B1,...,Br)S = A. First,
for r = 1 we define S(B1) as the trivial decomposition S(B1) = {A}. For r > 1, |Bk| ≤ 4, we define
S(B1, . . . , Br) by the singleton decomposition {{i} | i ∈ A}, for all r. For r > 1, |Bk| > 4, we define

S(B1, . . . , Br) =
r⋃

r′=0

S(BL
1 , . . . , BL

r′) × S(BR
r′+1, . . . , B

R
r ) ,
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where S(BL
1 , . . . , BL

r′)×S(BR
r′+1, . . . , B

R
r ) is the collection of all S0×S1 such that S0 ∈ S(BL

1 , . . . , BL
r′)

and S1 ∈ S(BR
r′+1, . . . , B

R
r ). The desired properties of S(B1, . . . , Br) can be easily verified using

structural induction.
By the triangle inequality, we conclude that

|nj(A) − |A|/s| ≤
∑

S∈S(B1,...,Br)

|nj(S) − |S|/s| .

By Lemma 2.4 we get that for all S ∈ S(B1, . . . , Br), r ≥ 2,

|nj(S) − |S|/s| ≤ 2|S|1/2p(r−1)/2 .

Therefore,
|nj(A) − |A|/s| ≤ 2p(r−1)/2

∑
S∈S(B1,...,Br)

|S|1/2 .

So it suffices to show that

f(B1, . . . , Br) =
∑

S∈S(B1,...,Br)

|S|1/2

≤ cr(|B1| · · · |Br|)1/2(log |B1| · · · |Br|)r−1 ,

(3)

for all r ≥ 2. This can be proven using structural induction on S(B1, . . . , Br), for r ≥ 1, using the
following relations which are immediate to verify. We omit the details of the induction.

1. If |Bk| ≤ 4 then f(B1, . . . , Br) ≤ c′
r(|B1| · · · |Br|)r/2(log |B1| · · · |Br|)r−1 for some c′

r > 0 that
depends only on r.

2. If |Bk| > 4 then

f(B1, . . . , Br) = f(BL
1 , . . . , BL

r ) + f(BR
1 , . . . , BR

r )

+
r−1∑
r′=1

f(BL
1 , . . . , BL

r′)f(BR
r′+1, . . . , B

R
r )

Corollary 2.6 In the notation of Lemma 2.5,

|nj(A) − |A|/s| ≤ cr(|B1| · · · |Br|)1/2(r log p)r−1p(r−1)/2 . (4)

Note: The bounds in Lemmas 2.4, 2.5 and Corollary 2.6 are not tight and can be improved, but
they suffice for our purpose here.

3 r-CSP

An r-CSPF instance consists of the following elements.

1. A finite family F of constraints f : {0, 1}r → R, where r is a constant.

2. An r-uniform hypergraph H = (V,E, β) with vertex set V and edge set E, equipped with a
function β : E → F . We will assume that V ⊆ Z in what follows.
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We consider fixed r, F which are not part of the input. For an assignment α : V → {0, 1} of
boolean values to V , we associate an objective function FIT(H,α), defined as

FIT(H,α) =
∑
i∈E

β(i)(α(i1), . . . , α(ir)) .

In the last sum, we assume that i1 < · · · < ir to allow a canonical passing of arguments to
f ∈ F . We say that F is homogenous if for any fixed x ∈ {0, 1}r,∑

f∈F

f(x) = 0 .

We will assume in what follows that F is always homogenous.
Let r-CSP-FULLF denote the problem r-CSPF restricted to fully dense instances, that is,

instances in which E =
(
V
r

)
.

Our main result is as follows.

Theorem 3.1 If r-CSPF is NP-Hard to approximate to within an additive error of 1 for some
fixed r, F , then r-CSP-FULLF is NP-Hard to approximate to within an additive factor of nr−ε for
any ε > 0, where n is the number of vertices in the hypergraph.

To prove Theorem 3.1 we demonstrate a reduction that will make use of the residual coloring
defined in Section 2. Let s = |F|, and assume F = {f0, . . . , fs−1}. Let µ = max{|f(x)| |f ∈ F ,x ∈
{0, 1}r}. Let Hp = (Zp,

(
Zp

r

)
, βp) denote the r-CSP-FULLF instance defined as follows. For all

i ∈
(
Zp

r

)
let

βp(i) = fcolsp(i) .

Now fix an r-CSPF instance H = (V,E, β). The a-blowup instance Ha = (V a, Ea, βa) is
defined as follows: V a is a union of families I(i) of a copies of each i ∈ V , Ea is a union of
the complete r-partite hypergraphs over I(i1), . . . , I(ir) for all (i1, . . . , ir) ∈ E, and βa(j) = β(i)
whenever jk ∈ I(ik) for k = 1, . . . , r.

Claim 3.2
max

α
FIT(Ha, α) = ar max

α′
FIT(H,α′) .

To see Claim 3.2 it suffices to notice that maxα FIT(Ha, α) is obtained when α maps I(i) to
one value, for all i ∈ V . We conclude from the assumption of Theorem 3.1 that it is NP-Hard to
approximate the family of instances Ia = {Ha}H of r-CSPF to within an additive error of 1

2ar.
In fact, it is NP-Hard to approximate r-CSPF to within an additive error of nr−ε for any ε > 0,
because a blowup factor a which is polynomial in |V | ensures that nr−ε is at most 1

2ar, where
n = |V |a is the number of vertices of the blown-up instance.

Assume p is a prime such that a|V | ≤ p ≤ 2a|V | and s|p − 1. Such a prime exists by a known
number-theoretic fact and it can be (trivially) found in polynomial (in a|V |) time. Now we define
H ′

p = (Zp,
(
Zp

r

)
, β′

p) as a hybrid of Hp and Ha. The vertex set V a is identified with a subset of Zp.
We set β′

p ≡ βa for edges i ∈ Ea and β′
p ≡ βp for all the rest.

We now claim that for all assignments α : Zp 7→ {0, 1},∣∣FIT(H ′
p, α) − FIT(Ha, α)

∣∣ ≤ c′′|V |3r/2ar−1/2(log p)r−1 , (5)

where c′′ > 0 depends only on r, s, µ. Since the RHS of the last expression is at most (a|V |)r−ε

for a large enough (polynomial in |V |), it follows from Claim 3.2 (and the conclusion thereafter)
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that it is it is NP-Hard to approximate maxα FIT(H ′
p, α) to within an additive error of nr−ε for

any ε > 0 (where n = p is the number of vertices of H ′
p). Indeed, H ′

p can be computed from Ha in
polynomial time.

Therefore, proving Theorem 3.1 reduces to proving (5). By additivity of FIT we get∣∣FIT(H ′
p, α) − FIT(Ha, α)

∣∣ ≤ |FIT(Hp, α)|

+
∑
k∈E

|FIT(Hp[I(k1), . . . , I(kr)], α)| , (6)

where H[I(k1), . . . , I(kr)] is the subgraph of H containing only edges with exactly one vertex in
each of I(k1), . . . , I(kr).

We first bound |FIT(Hp, α)|. Let Bj denote {i ∈ Zp | α(i) = j}, for j = 0, 1. For a vector
b ∈ {0, 1}r of bits, let Ab denote the set of edges

Ab =
{

i ∈
(

Zp

r

) ∣∣∣∣ ij ∈ Bbj
, j = 1, . . . , r

}
.

Clearly,

|FIT(Hp, α)| =

∣∣∣∣∣∣
∑
b

∑
i∈Ab

βp(i)(b)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
b

s−1∑
j=0

nj(Ab)fj(b)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
b

s−1∑
j=0

(|Ab|/s)fj(b)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑
b

s−1∑
j=0

µcrp
r/2(r log p)r−1p(r−1)/2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
b

s−1∑
j=0

µcrp
r−1/2(r log p)r−1

∣∣∣∣∣∣
= cr2rsµpr−1/2(r log p)r−1 .

(7)

The equality of the second and third lines of (7) was by homogeneity of F , and the inequality before
is by Corollary 2.6.

Fix k ∈ E. We now bound |FIT(Hp[I(k1), . . . , I(kr)], α)|. For a permutation τ ∈ S(r) and bits
b ∈ {0, 1}r Let Aτ,b denote

Aτ,b =
{

i ∈
(

Zp

r

) ∣∣∣∣ ij ∈ I(kτ(j)), α(ij) = bj , j = 1, . . . , r

}
.
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By definition and by Corollary 2.6,

|FIT(Hp[I(k1), . . . , I(kr)], α)| =

∣∣∣∣∣∣
∑

τ∈S(r)

∑
b∈{0,1}r

∑
i∈Aτ,b

βp(i)(b)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

τ∈S(r)

∑
b∈{0,1}r

s−1∑
j=0

nj(Aτ,b)fj(b)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

τ∈S(r)

∑
b∈{0,1}r

s−1∑
j=0

(|Aτ,b|/s)fj(b)

∣∣∣∣∣∣
+

∑
τ∈S(r)

∑
b∈{0,1}r

s−1∑
j=0

crµar/2(r log p)r−1p(r−1)/2

≤ crr!2rµsar/2r(r log p)r−1p(r−1)/2

(8)

Plugging (7) and (8) in (6), we get

|FIT(H ′
p, α) − FIT(Ha, α)| ≤ c′(log p)r−1(pr−1/2 + |E|ar/2p(r−1)/2) ,

where c′ > 0 depends only on r, s, µ. Since p = Θ(|V |a), |E| ≤ |V |r, we conclude that

|FIT(H ′
p, α) − FIT(Ha, α)| ≤ c′′|V |3r/2ar−1/2(log p)r−1, (9)

where c′′ > 0 depends only on r, s, µ, as desired.

Corollary 3.3 1. It is NP-Hard to approximate dense MAX-r-LIN-2 for r ≥ 2 to within an
additive error of nr−ε for any ε > 0.

2. Is is NP-Hard to approximate dense MAX-r-CNF to within an additive factor of nr−ε for any
ε > 0.

Proof: To prove the first statement, take F = {f0, f1}, where for x ∈ Zr
2

f0(x) =

{
1/2

∑r
i=1 xi = 0

−1/2 otherwise

f1(x) =

{
1/2

∑r
i=1 xi = 1

−1/2 otherwise

It is clear that F is homogenous. It is also clear that computing r-CSPF to within an additive
error of 1 is equivalent to solving MAX-r-LIN-2. Since MAX-r-LIN-2 is NP-Hard, we conclude by
Theorem 3.1 that it is NP-Hard to approximate fully dense MAX-r-LIN-2 to within an additive
error of nr−ε, for all ε > 0.

To prove the second statement, take F = {f0, . . . , f2r−1}, where each fb corresponds to a CNF
clause ϕ(b) on r variables, where the i’th variable is negated if and only if the i’th bit of b in binary
representation is 1. The value f(x) of x ∈ {0, 1}r is 2−r if x satisfies ϕ(b), otherwise 2−r−1. Clearly,
F is homogenous, and computing MAX-r-CNF to within an additive error of 1 is equivalent to
solving the NP-Hard MAX-r-CNF. We conclude that it is NP-Hard to approximate fully dense
MAX-r-CNF to within an additive error of nr−ε for any ε > 0.
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4 r-CSP-RANK

An r-CSP-RANKF instance consists of the following elements.

1. A finite family F of constraints f : S(r) → R, where r is a constant.

2. An r-uniform hypergraph H = (V,E, β) with vertex set V and edge set E, equipped with a
function β : E → F .

We will assume that r, F are fixed and do not form part of the input. For a ranking π of V , we
associate an objective function FIT(H,π), defined as

FIT(H,π) =
∑
i∈E

β(i)(ordπ(i)) ,

where ordπ(i) ∈ S(r) is the internal ranking of i1, . . . , ir induced by π. In the last sum, we assume
as usual that i1 < · · · < ir for canonization. We say that F is homogenous if for any fixed σ ∈ S(r),∑

f∈F

f(σ) = 0 .

We will assume in what follows that F is always homogenous.
Let r-CSP-RANK-FULLF denote the problem r-CSP-RANKF restricted to fully dense in-

stances, that is, instances in which E =
(
V
r

)
.

Our main result is as follows.

Theorem 4.1 If r-CSP-RANKF is NP-Hard to approximate to within an additive error of 1 for
some fixed r, F , then r-CSP-RANK-FULLF is NP-Hard to approximate to within an additive factor
of nr−ε for any ε > 0, where n is the number of vertices in the hypergraph.

We sketch the proof, which is very similar to that of Theorem 3.1. Let µ = max{|f(σ)| | f ∈
F , σ ∈ S(r)}. We define an r-CSP-RANK-FULLF instance Hp = (Zp,

(
Zp

r

)
, βp) for a prime p such

that s|p − 1, where s = |F|. Let F = {f1, . . . , fs}. We set βp(i) = fcolsp[i] for i ∈
(
Zp

r

)
.

Now, given an instance H of r-CSP-RANKF , we reduce to an instance H ′
p, which is a hybrid

of a blow-up Ha of H and Hp, where a will be chosen later and a|V | ≤ p ≤ 2a|V |, s|p − 1, exactly
as we did in Section 3. We claim that

Claim 4.2
max

α
FIT(Ha, π) = ar max

π′
FIT(H,π′) .

To see claim 4.2 it suffices to notice that maxπ FIT(Ha, π) is obtained when all vertices of each
I(i) form a consecutive block with respect to the order π, for all i ∈ V . We conclude by the
assumption of Theorem 4.1 that it is NP-Hard to approximate the family of instances Ia = {Ha}H

of r-CSP-RANKF to within an additive error of 1
2ar. In fact, it is NP-Hard to approximate

r-CSP-RANKF to within an additive error of nr−ε for any ε > 0, because a blowup factor a which
is polynomial in |V | ensures that nr−ε is at most 1

2ar, where n = |V |a is the number of vertices of
the blown instance.

We need the following technical lemma.
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Lemma 4.3 Let B′
1, . . . , B

′
r ⊆ Zp. Fix π ∈ S(p), σ ∈ S(r). Let A′ = A′(B′

1, . . . , B
′
r) ⊆

(
Zp

r

)
denote

the set

A′ =
{

i ∈
(

Zp

r

) ∣∣∣∣ ordπ(i) = σ, ij ∈ B′
j , j = 1, . . . , r

}
.

Then ∣∣nj(A′) − |A′|/s
∣∣ ≤ c̃r(|B1| · · · |Br|)1/2(r log p)2r−2p(r−1)/2 , (10)

for some c̃r > 0 which depends only on r.

The proof of Lemma 4.3 is similar to that of Lemma 2.5 and Corollary 2.6. We decompose A′ to
a family of classes S ′(B′

1, . . . , B
′
r) with the following change: We take k such that |B′

k| ≥ |B′
j | for

j = 1, . . . , r, and instead of halving B′
k according to the order <, we half it according to the order

<π. Each S′ ∈ S ′(B′
1, . . . , B

′
r) is a product S′

1 × · · ·S′
r such that S′

1 <π · · · <π S′
r, S′

j ⊆ B′
j . This

gives rise to a subset of A′, namely A = A(S′
σ(1), . . . , S

′
σ(r)) (using the notation of Lemma 2.5).

Then we use Corollary 2.6 to bound |nj(A) − |A|/s|. We arrive at a recursive formula almost
identical to that in Lemma 2.5 which solves to a function bounded by the RHS of (10).

To complete the proof of Theorem 4.1, it suffices to show that for all π ∈ S(p),∣∣FIT(H ′
p, π) − FIT(Ha, π)

∣∣ ≤ c′′|V |3r/2ar−1/2(log p)2r−2 ,

for some global c′′ > 0 that depends only on r, s, µ. By additivity of FIT, we get

|FIT(H ′
p, π) − FIT(Ha, π)| ≤ |FIT (Hp, π)|

+
∑
k∈E

|FIT(Hp[I(k1), . . . , I(kr)], π)| , (11)

where Hp[I(k1), . . . , I(kr)] is the subgraph of H containing only edges with exactly one vertex in
each of I(k1), . . . , I(kr). For a ranking σ ∈ S(r) let

Aσ =
{

i ∈
(

Zp

r

) ∣∣∣∣ ordπ(i) = σ

}
.

|FIT(Hp, π)| =

∣∣∣∣∣∣
∑

σ∈S(r)

∑
i∈Aσ

βp(i)(σ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

σ∈S(r)

s−1∑
j=0

nj(Aσ)fj(σ)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

σ

s−1∑
j=0

(|Aσ|/s)fj(σ)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

σ

s−1∑
j=0

µc̃rp
r/2(r log p)2r−2p(r−1)/2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

σ

s−1∑
j=0

µc̃rp
r−1/2(r log p)2r−2

∣∣∣∣∣∣
= crr!sµpr−1/2(r log p)2r−2 .

(12)

The equality between the second and the third lines are by homogeneity of F , and the inequality
before is by Lemma 4.3.

Fix k ∈ E. We now bound |FIT(Hp[I(k1), . . . , I(kr)], π)|. For permutations τ, σ ∈ S(r), let
Aτ,σ denote

Aτ,σ =
{

i ∈
(

Zp

r

) ∣∣∣∣ ij ∈ I(kτ(j)), ordπ(i) = σ

}
.
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By definition and by Lemma 4.3,

|FIT(Hp[I(k1), . . . , I(kr)], π)| =

∣∣∣∣∣∣
∑

τ∈S(r)

∑
σ∈S(r)

∑
i∈Aτ,σ

βp(i)(σ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

τ∈S(r)

∑
σ∈S(r)

s−1∑
j=0

nj(Aτ,σ)fj(σ)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

τ∈S(r)

∑
σ∈S(r)

s−1∑
j=0

(|Aτ,σ|/s)fj(σ)

∣∣∣∣∣∣
+

∑
τ∈S(r)

∑
σ∈S(r)

s−1∑
j=0

crµar/2(r log p)2r−2p(r−1)/2

≤ cr(r!)2µsar/2(r log p)2r−2p(r−1)/2

(13)

Plugging (12) and (13) in (11), we get

|FIT(H ′
p, π) − FIT(Ha, π)| ≤ c′(log p)2r−2(pr−1/2 + |E|ar/2p(r−1)/2) ,

where c′ > 0 depends only on r, s, µ. Since p = Θ(|V |a), |E| ≤ |V |r, we conclude that

|FIT(H ′
p, π) − FIT(Ha, π)| ≤ c′′|V |3r/2ar−1/2(log p)2r−2, (14)

where c′′ > 0 depends only on r, s, µ as desired.

Corollary 4.4 • It is NP-Hard to approximate FEEDBACK-ARC-SET-TOUR to within an
additive error of n2−ε, for any ε > 0. (This special case was proven by Alon in [3].)

• It is NP-Hard to approximate BETWEENNESS-TOUR to within an additive error of n3−ε,
for any ε > 0.

Proof: To prove the first statement set r = 2, s = 2, F = {f1, f2}, with f1((1 2)) = 1/2,
f1((2 1)) = −1/2, f2((1 2)) = −1/2, f2((2 1)) = 1/2. Clearly F is homogenous, and it is also clear
that computing r-CSP-RANKF to within an additive error of 1 is equivalet to solving FEEDBACK-
ARC-SET exactly. Since FEEDBACK-ARC-SET is NP-Hard, we conclude by Theorem 4.1 that it
is NP-Hard to approximate FEEDBACK-ARC-SET-TOUR to within an additive error of n2−ε for
any ε > 0.

To prove the second statement, set r = 3, s = 3, F = {f1, f2, f3}, where for σ ∈ S(3),
fj(σ) equals 2/3 if j is ranked between {1, 2, 3} − {j} by σ, otherwise −1/3. Clearly F is ho-
mogenous, and computing r-CSP-RANKF to within an additive error of 1 is equivalent to solving
BETWEENNESS exactly. Therefore, we conclude by Theorem 4.1 that it is NP-Hard to approx-
imate BETWEENNESS-TOUR to within an additive error of n3−ε for any ε > 0. Note that by
known results (e.g. [8]) it is possible to approximate BETWEENNESS-TOUR to within an additive
error of εn3 for any ε > 0 in polynomial time.

5 Open Problems and Remarks

• The techniques introduced here break down when trying to prove hardness of approximation
with respect to a multiplicative error. For example, it is not known if there is a PTAS for

12



FEEDBACK-ARC-SET-TOUR. It would be interesting to extend the methods in a way that
will enable one to tackle this problem.

• A property of graphs is called monotone if it is closed under omitting vertices and edges. It
is dense if there are n vertex graphs with Ω(n2) edges satisfying it. Thus, for example, the
property of being bipartite, being k-colorable, being triangle-free or containing no subgraph
with 6 vertices and at least 10 edges are all monotone and dense. In [6] the authors combine
techniques similar to the ones used in [1] and [3] with ideas from extremal graph theory to
show that for every monotone, dense graph property P and for any fixed ε > 0, it is NP-hard
to approximate within an additive error of n2−ε the minimum number of edges that have to
be deleted from a given n-vertex graph to get a graph that satisfies P . It seems plausible
that a similar result holds for hyergraphs, but a proof will require some additional ideas.
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