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Abstract

We describe algorithmic Number On the Forehead protocols that provide dense Ruzsa-Szemerédi

graphs. One protocol leads to a simple and natural extension of the original construction of Ruzsa

and Szemerédi. The graphs induced by this protocol have n vertices, Ω(n2/ log n) edges, and

are decomposable into n1+O(1/ log logn) induced matchings. Another protocol is an explicit (and

slightly simpler) version of the construction of [1], producing graphs with similar properties. We

also generalize the above protocols to more than three players, in order to construct dense uniform

hypergraphs in which every edge lies in a positive small number of simplices.

1 Introduction

For an integer n and a positive real c, let h(n, c) denote the maximum number so that any n vertex

graph with at least cn2 edges in which every edge is contained in a triangle, must contain an edge

lying in at least h(n, c) triangles. Erdős and Rothschild asked to determine or estimate h(n, c), see

[5], [8], [9], [10]. Szemerédi observed that the triangle removal lemma (see [21]) implies that for

every fixed c > 0, h(n, c) tends to infinity with n, and Trotter and the first author noticed that for

any c < 1/4 there is a c′ so that h(n, c) < c′
√
n. A clever construction of Fox and Loh [13] shows

that in fact for any fixed c < 1/4 , h(n, c) ≤ nO(1/ log logn). While this is still very far from the lower

bound based on the triangle removal lemma and its improved quantitative version in [12], which

provides a lower bound exponential in log∗ n for any fixed c > 0, it does show that h(n, c) = no(1).

∗Research supported in part by NSF grant DMS-1855464, ISF grant 281/17, BSF grant 2018267 and the Simons
Foundation.
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Note that the constant 1/4 is tight, as it is known that any n-vertex graph with bn2/4c+ 1 edges

must contain an edge lying in at least n/6 triangles (see [15]).

The construction of Fox and Loh triggered another surprising result in the study of a closely

related problem. The first author, Moitra and Sudakov [1] constructed (r, t)-Ruzsa-Szemerédi

graphs on n vertices with r = n1−o(1) and rt = (1− o(1))
(
n
2

)
. A graph is an (r, t)-Ruzsa-Szemerédi

graph if its set of edges can be partitioned into t pairwise disjoint induced matchings, each of size

r. These graphs were introduced in a paper by Ruzsa and Szemerédi [21]. They used these graphs,

together with the regularity lemma of Szemerédi [23] to tackle the so called (6, 3)-problem dealing

with the maximum possible number of edges of a 3-uniform hypergraph on n vertices that contains

no 3 edges spanning at most 6 vertices. Ruzsa-Szemerédi graphs have been studied extensively since,

finding applications in Combinatorics, Complexity Theory and Information Theory. A natural line

of research is to find dense graphs with relatively large r. One such construction is given by

Birk, Linial and Meshulam [4], with r = (log n)Ω(log logn/(log log logn)2) and t = Ω(n2/r). Meshulam

conjectured that there are no (r, t)-Ruzsa-Szemerédi graphs with both rt = Θ(
(
n
2

)
) and r ≥ nΩ(1).

The construction from [1] disproved Meshulam’s conjecture in a strong form, vastly improving the

one in [4].

The first aim of the present short paper is to describe these results in communication complexity

terms by providing algorithmic Number-On-the-Forehead (NOF, for short) protocols that entail

them. Ruzsa-Szemerédi graphs are closely related to the NOF model in communication complexity,

as observed in [18]. They are related to the communication complexity of 2-dimensional permu-

tations and sub-permutations (see details in the sequel). We observe here that communication

protocols in the NOF model for 2-dimensional permutations also imply upper bounds on h(n, c).

We give algorithmic NOF protocols that derive the constructions of dense Ruzsa-Szemerédi

graphs from [1] and also the results of Fox and Loh [13]. This makes the constructions strongly

explicit and also somewhat simpler. Another advantage of this approach is that it provides a clear

link between these results and the original results of Ruzsa and Szemerédi [21].

The second aim of this paper is to extend the above mentioned results to uniform hypergraphs.

To do so we extend the protocols to any number k > 3 of players. Let Kk = K
(k−1)
k denote the

complete (k− 1)-uniform hypergraph ((k− 1)-graph, for short) on k vertices. For an integer n and

a positive real c, let hk−1(n, c) denote the maximum number so that any n vertex (k − 1)-graph

with at least cnk−1 edges, in which every edge is contained in a copy of Kk, must contain an edge

lying in at least hk−1(n, c) such copies. By the hypergraph removal lemma proved in [14] and

independently in [20], [19], for any fixed positive c, hk−1(n, c) tends to infinity with n. Indeed,

for example, if G is an n-vertex 3-graph with at least cn3 edges, and each edge is contained in at

least 1 and at most h = h3(n, c) copies of K = K4, then G must contain at least cn3

4h pairwise

edge-disjoint copies of K. Hence at least that many edges have to be omitted from G in order to

destroy all copies of K, and thus by the hypergraph removal lemma if h is a constant then G must

contain at least Ω(n4) copies of K, implying that some edges are contained in Ω(n) such copies,

contradiction.

Unlike the graph case, the maximum possible number exk−1(n,Kk) of edges of an n-vertex
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(k − 1)-graph with no copies of Kk is not known. The determination of this number is an old

problem posed by Turán [22], and Erdős offered a significant award for its solution, see [7]. By a

general result proved in [16], the limit of the ratio

exk−1(n,Kk)

nk−1

as n tends to infinity exists. This is a positive number called the Turán density of Kk. Let

dk = d(Kk) denote this number, which is conjectured to be 5/9 for k=4. See [6] and its references

for some of the work on this problem. Although dk is not known, we can prove the following.

Theorem 1.1 For any fixed c < dk there is some b > 0 so that hk−1(n, c) ≤ nb/ log logn.

Note that by the results of [11] on supersaturated hyperghraphs if c > dk then any (k−1)-graph

on n vertices with at least cnk−1 edges contains Ω(nk) copies of Kk. Therefore, for any such c there

is a constant b = b(c) > 0 so that hk−1(n, c) ≥ bn, implying that the dk bound in Theorem 1.1 is

tight.

Our protocols also imply an extension of the main result of [1]. That is, it entails a construction

of nearly complete (k − 1)-graphs whose edges can be partitioned into a nearly linear number of

induced subgraphs, each being a partial Steiner system. Recall that a (k − 1)-graph is a partial

Steiner system if no two of its edges share k − 2 common vertices. It is clear that any such graph

on n vertices cannot contain more than 1
k−1

(
n
k−2

)
< nk−2 edges, and hence any (k − 1)-graph

with at least bnk−1 edges cannot be partitioned into less than Θ(n) partial Steiner systems. The

hypergraph removal lemma shows here, too, that in fact the number of such systems cannot be

Θ(n), that is, for any fixed positive b, this number divided by n must tend to infinity with n. The

following result shows, however, that this number can be smaller than n1+ε for any positive ε.

Theorem 1.2 For every integer k ≥ 3, there is an absolute constant c > 0 so that for sufficiently

large n there is a (k − 1)-graph on n vertices with at least

(1− o(1))

(
n

k − 1

)
edges, whose edges can be decomposed into at most n1+c/ log logn induced subgraphs, each being a

partial Steiner system.

The rest of the paper contains the proofs of the above two theorems. The organization is

as follows. Section 2 contains background on communication complexity and high-dimensional

permutations, a recipe for proving Theorem 1.1 and Theorem 1.2 using communication protocols,

and a simple application of this recipe to construct a graph on n vertices and Ω(n2/ log n) edges,

decomposable into n1+O(1/ log logn) induced matchings. Section 3 contains the application of this

recipe to prove Theorem 1.1 and Theorem 1.2. The details of the graphs and hypergraphs produced

by this recipe, and the proof that it works correctly are given in Section 4. The final Section 5

contains a brief summary.
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2 From communication to graphs and hypergraphs

2.1 Background and notation

General notation We let [n] = {1, 2, . . . , n}. A k-tuple is denoted either (x1, . . . , xk) or in

abbreviated form ~x.

Communication complexity We start with a few basic communication complexity notions.

The definitions we give are a simplified version and adjusted to our needs. The interested reader can

see [17] for a more comprehensive survey. In the NOF model k players wish to compute a function

f : X1×X2×· · ·×Xk → {0, 1}. The players agree on a communication protocol P . Then, an input

(x1, x2, . . . , xk) is presented to the players so player i sees all input except xi, we sometimes refer

to this player as the xi-player. The players take turns to write messages on a blackboard according

to the agreed protocol P . Each message of each player may depend on the part of the input seen

by this player, and except for the last player it can also depend on the messages written so far on

the blackboard. The message written by the last player depends only on the part of the input he

sees, and is independent of the content of the blackboard. One way to visualize this is as if the

last player wrote a message first and then did not participate in the rest of the transaction. The

value of the function can be computed by all players from the content of the board at the end of

the protocol. The cost of a protocol, denoted C(P ), is the maximal number of bits written on the

board, over all inputs, by the first k − 1 players 1.

The string of bits written on the blackboard for a given input ~x = (x1, . . . , xk) is called a

transcript, denoted T (~x). We let Ti(~x) for i = 1, . . . , k be the part of this transcript that is written

by player i. Let T be a transcript, the subset S = S(T ) of entries satisfying T (~x) = T and f(~x) = 1,

is called a cylinder intersection 2. Note that a cylinder intersection is defined with respect to a

function and a protocol for this function, we specify the function and protocol when it is necessary

for a clear presentation and otherwise omit them.

We say that a subset of entries S is symmetric if membership in S does not depend on the

order of the first k − 1 entries. That is, S is symmetric if (x1, . . . , xk−1, xk) ∈ S if and only if

(xπ(1), . . . , xπ(k−1), xk) ∈ S for every permutation π on {1, 2, . . . , k − 1}.

High-dimensional permutations A line in [n]k is a subset L ⊂ [n]k such that k − 1 of the

coordinates in L are fixed, and the remaining coordinate takes all possible values. Following is a

simple example with n = 5 and k = 3:

L = {(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (1, 5, 4)}.
1In the basic communication complexity definition all players can see each others messages, and the cost of the protocol

depends also on the message of the last player. The version of communication complexity we gave here is from the one-sided
model. Since we only need this version, we simplify our notations.

2The usual definition of cylinder intersection is more general, what we defined here is referred to as a 1-monochromatic
cylinder intersection. Since we are only interested in 1-monochromatic cylinder intersections we abbreviate the notation.
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In this example the first and third coordinates are fixed, and the second coordinate takes all possible

values in [5] = {1, 2, 3, 4, 5}. There is a distinct line for every choice of unconstrained coordinate

i ∈ [k], and a choice of values to fix the remaining coordinates. A line in [n1]× · · · × [nk] is defined

similarly. We say that the line is in the ith dimension if the unconstrained coordinate is i.

A (k − 1)-dimensional permutation is a function f : [n]k → {0, 1} such that for every line

L in [n]k there is exactly one ~x ∈ L such that f(~x) = 1. A sub-permutation is a function f :

[n]k−1× [N ]→ {0, 1} such that every line in the kth dimension contains a single 1, and every other

line contains at most one 1.

For example, let G be a group, define f : Gk → {0, 1} by f(x1, . . . , xk) = 1 if and only if

x1 + x2 + · · · + xk = 0. Then f is a permutation. Let H be a subset of G, then the function

h : Hk−1 ×G→ {0, 1} defined similarly to f , is a sub-permutation.

A weak permutation is a function f : [n]k → {0, 1} such that every line contains at most one

1-entry, and a weak sub-permutation is defined similarly: it is an f : [n]k−1 × [N ] → {0, 1} with

N ≥ n such that every line contains at most one 1-entry.

Ruzsa-Szemerédi graphs and hypergraphs As mentioned in the introduction, a graph is

an (r, t)-Ruzsa-Szemerédi graph if its set of edges can be partitioned into t pairwise disjoint induced

matchings, each of size r. Such a graph obviously has rt edges. A challenge in constructing Ruzsa-

Szemerédi graphs is to make the density of edges as large as possible while keeping the number of

matchings relatively low. We are therefore less concerned with the size of each matching, and only

worry about the number of matchings and the density of the edges.

There is a natural way to extend the notion of Ruzsa-Szemerédi graphs to hypergraphs, by

considering Steiner systems S(k − 2, k − 1). A Steiner system S(t − 1, t) in a set V , is a family

of t-element subsets of V (called blocks) such that each (t − 1)-element subset of V is contained

in exactly one block. A partial Steiner system is defined similarly with the exception that each

(t− 1)-element subset of V is contained in at most one block.

For a natural number k > 2, and a (k − 1)-graph G = (V,E) we are interested in partitioning

E into induced partial Steiner systems S(k − 2, k − 1). Note that if V is the set of vertices of a

graph, then a partial Steiner system S(1, 2) in V is a matching. Thus, this definition extends the

notion of a Ruzsa-Szemerédi graph.

2.2 A recipe

Given a function f : [n]k−1× [N ]→ {0, 1}, a protocol P for f , and a transcript T of the last player,

denote

Sk(T ) = {(x1, . . . , xk) ∈ [n]k−1 × [N ] : Tk(x1, . . . , xk) = T and f(x1, . . . , xk) = 1}.

Next we describe a recipe for generating Ruzsa-Szemerédi graphs and hypergraphs, as well as upper

bounds on hk−1(n, c), from NOF protocols.
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Recipe 1 - from protocols to graphs and hypergraphs

1. Choose a weak sub-permutation f : [n]k−1 × [N ] → {0, 1}, for natural numbers n,

N and k > 2.

2. Construct a communication protocol P for f .

3. Pick a transcript T of the last player so that Sk(T ) is symmetric, and let S =

Sk(T ).

The following theorem describes the outcome when following Recipe 1.

Theorem 2.1 Let P be a protocol found in the second step of Recipe 1, and let S be the subset of

inputs picked in the last step. Let p = |S|/nk−1, γ = C(P ) and N ′ = N · 2γ, then

1. There is an (explicitly defined) (k− 1)-graph on n vertices whose edge density is p, that is the

union of N ′ induced partial Steiner systems S(k − 2, k − 1).

2. If p = 1− o(1), then hk−1(n, c) ≤ (N ′/n)2 for c < dk. Here, the construction of the (k − 1)-

graph that gives the bound is also explicit, given explicit constructions of (k − 1)-graphs of

density dk − o(1) which contain no Kk.

We defer the proof of Theorem 2.1 and the explicit definition of the graphs produced by Recipe 1

to Section 4. In the next section we give a simple example of how Theorem 2.1 can be applied,

then in Section 3 we apply it to prove Theorems 1.1 and 1.2.

2.3 Applying Theorem 2.1 - an example

We apply Theorem 2.1 to prove:

Lemma 2.2 There is a graph on n vertices with edge density Ω(1/ log n) that is the union of

n1+1/Ω(log logn) induced matchings.

Proof We follow the steps of Recipe 1:

Choosing the function Let q, d > 1 be natural numbers, denote n = qd, and define Zq,d =

{1
2(x+y) : x, y ∈ [q]d}. Denote by gq,d : ([q]d)2×Zq,d → {0, 1} the function satisfying gq,d(x, y, z) = 1

if and only if x + y = 2z (here addition is in Rd). It is not hard to verify that gq,d is a sub-

permutation. Denote N = Nq,d = |Zq,d|, then

N ≤ (2q)d = qd · 2d = n1+1/ log q.

Since log log n = log d + log log q, we have that N ≤ n1+1/Ω(log logn) as long as d ≤ qc for some

constant c. We will later choose d = q4.
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The protocol Next we present a protocol for gq,d.

Protocol 1 A protocol for gq,d

1. The z-player computes ‖x− y‖22, and writes the result on the board.

2. The y-player writes 1 iff ‖x− y‖22 = 4‖x− z‖22.

3. The x-player writes 1 iff ‖x− y‖22 = 4‖y − z‖22.

At the end, all players know the value of the function. Indeed, the value of the function is 1 if

the last two bits written on the board are both equal to 1, and 0 otherwise.

The cost of the protocol The cost of the protocol is C(P ) = 2, as the first two players send

only 2 verification bits.

The choice of S By the Chernoff-Hoeffding’s inequality (c.f., e.g., [2]), the quantity ‖x − y‖22
computed by the third player satisfies

P (
∣∣‖x− y‖22 − E(‖x− y‖22)

∣∣ ≥ t) ≤ 2e
− 2t2

dq4 .

Thus, with constant probability, ‖x − y‖22 takes one of
√
dq2 values. There is, therefore, a

transcript T for the third player such that |S3(T )| ≥ Ω(n2/
√
dq2). If we take d = q4 we get

|S3(T )| ≥ Ω(n2/d) ≥ Ω(n2/ log n). The fact that S3(T ) is symmetric is easy to verify. Lemma 2.2

now follows from Theorem 2.1, part 1.

Note that we could improve the density of the graph in Lemma 2.2 to Ω(log log n/ logε n) for

any constant ε > 1/2 by taking d = qc for an appropriately chosen large constant c. This seems

to be the best one can get when using Protocol 1 though. In the next section we use a variant of

this protocol in which the first two players participate more, in order to save communication bits

of the last player. This will allow us to increase the density to near optimal.

3 Applying Theorem 2.1 to prove Theorems 1.1 and

1.2

3.1 The case k = 3

Choosing the function The function we choose is gq,d, defined in Section 2.3. We later fix

d = q5.
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The protocol For a natural number r let Gr = (V,Er) be the graph with V = [q]d, where d is

even, and Er = {x, y : ‖x−y‖22 ≤ r} (later we take r =
√
d). The players agree on a proper coloring

χ of G2r by d2r + 1 colors, where d2r is its maximum degree. Let µ = E(‖x − y‖22) = 1
6d(q2 − 1),

the players also agree on some partition P of [0, dq2] into intervals of length r2 +O(1). The players

choose P that satisfy: the number of intervals in the partition is ddq2/r2e, and the number µ is in

the middle of the interval containing it. As an example, the players can choose a partition which

is a translation of the partition induced by DIV (L) = b L
r2
c. Let Ir : [0, dq2] → {0, 1, . . . , dq2/r2}

map a number in [0, dq2] to the index of the interval containing it, according to P . Given an input

(x, y, z), the players then use the following protocol:

Protocol 2 A protocol for gq,d

1. The z-player writes Ir(‖x− y‖22) on the board.

2. The y-player verifies that Ir(‖x− y‖22) = Ir(4‖x− z‖22), and writes 1 on the board

iff this is the case.

3. The x-player verifies that Ir(‖x− y‖22) = Ir(4‖y − z‖22), and writes 1 on the board

iff this is the case.

4. If one of the last two bits are equal to 0, reject and finish.

5. The x-player writes χ(2z − y) on the board.

6. The y-player writes the value of gq,d(x, y, z).

Theorem 3.1 Protocol 2 is correct.

For the proof of correctness, we use the following two observations (used also in [1]):

Lemma 3.2 (Parallelogram law) Let x, y, z ∈ Rd then:

‖x− y‖22 + ‖x+ y − 2z‖22 = 2‖x− z‖22 + 2‖y − z‖22

Lemma 3.3 ([1]) For an even integer d > 0, the number of integral points contained in the ball

of radius r in Rd is at most:

πd/2(r + 0.5)d

(d/2)!
<

(2πe)d/2(r + 0.5
√
d)d

(d)d/2

Proof [of Theorem 3.1] By Lemma 3.3, the maximum degree of Gr is at most

dr =
(2πe)d/2(r + 0.5

√
d)d

(d)d/2
.

The chromatic number of G2r is therefore at most d2r + 1.
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If x + y = 2z then obviously the protocol reaches step 5. On the other hand, if the protocol

reached step 5 then ‖x − y‖22, 4‖x − z‖22, and 4‖y − z‖22, all lie in the same interval of length r2.

Thus, by the Parallelogram law

‖x+ y − 2z‖22 = 2‖x− z‖22 + 2‖y − z‖22 − ‖x− y‖22
=

1

2

(
4‖x− z‖22 + 4‖y − z‖22

)
− ‖x− y‖22

≤ r2.

Thus, (2z−y) is in a ball B(x, r) of radius r around x. Every other vector v ∈ B(x, r) is in distance

at most 2r from (2z − y). The color of (2z − y) in this ball is therefore unique. It follows that at

step 6 the y-player knows the value of y and hence knows everything.

The cost of the protocol The number of bits used by the first two players is:

log d2r + Θ(1) = Θ

(
d+ d log

2r + 0.5
√
d√

d

)
.

If we take r =
√
d, the cost of the protocol is therefore bounded by

C(P ) ≤ O(d) = O

(
log n

log q

)
.

The choice of S A transcript T of the z-player corresponds to a message Ir(‖x − y‖22). The

size of S3(T ) is therefore equal to the number of pairs x, y ∈ [q]d satisfying Ir(‖x − y‖22) = T .

Hoeffding’s inequality implies that

P (
∣∣‖x− y‖22 − µ∣∣ ≥ t) ≤ 2e

− 2t2

dq4 .

In particular, the probability that Ir(‖x− y‖22) = Ir(µ) is at least (1− 2e
− r4

2dq4 ) since we chose the

partition of the intervals so that µ lies in the middle of the interval containing it.

Take r =
√
d, and pick S = S3(T ) for T = I√d(µ), we have

|S| ≥ (1− 2e
− d

2q4 )n2.

Conclusion When applying Theorem 2.1 the parameters that we get are:

• p = (1− 2e
− d

2q4 ),

• N ′ = n1+1/Ω(log logn)2O(d).

Taking d = q5, and observing that S is symmetric, this proves the k = 3 case of Theorems 1.1 and

1.2.
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3.2 The case k > 3

Choosing the function Let Zm,q,d = { 1
m(
∑m

i=1 xi) : xi ∈ [q]d} and define gk,q,d : ([q]d)k−1 ×
Zk−1,q,d → {0, 1} by gk,q,d(x1, . . . , xk) = 1 if and only if x1 + · · ·+ xk−1 = (k − 1)xk. It is easy to

verify that gk,q,d is a sub-permutation, and

|Zk−1,q,d| ≤ (kq)d = n1+1/ logk q.

The protocol The protocol is a simple reduction to the case k = 3.

Protocol 3 A protocol for gk,q,d

1. The first player writes 1 on the board if and only if 1
2((k−1)xk−x3−· · ·−xk−1) ∈

Z2,q,d.

2. If the last bit was equal to 0, the protocol ends with rejection.

3. Players 1, 2 and k run Protocol 2 for g3,q,d with r =
√
d on input x′ = x1, y

′ = x2,

and z′ = 1
2((k − 1)xk − x3 − · · · − xk−1).

The correctness of the above protocol follows from the correctness of Protocol 2 and the fact

that the equation x1 + x2 + x3 + · · · + xk−1 = (k − 1)xk holds if and only if x1 + x2 = 2(1
2((k −

1)xk − x3 − · · · − xk−1)). Note that the last equation cannot hold if 1
2((k− 1)xk − x3 − · · · − xk−1)

does not belong to Z2,q,d.

The cost of the protocol Outside the reduction to Protocol 2, the players send only one

more bit. The cost of the protocol thus satisfy C(P ) ≤ O(d) ≤ O( logn
log q ), as before.

The choice of S We can choose, as in Section 3.1, the set S = Sk(T ) for T = I√d(µ). By

Hoeffding’s inequality, the size of S is (1− o(1))nk−1 as long as d >> q4. The only problem is that

S is not symmetric. To remedy that, just add to the protocol a test whether Ir(‖xi−xj‖22) = Ir(µ)

for every 1 ≤ i < j < k. These tests can all be carried out by the last player, so this adds only one

more communication bit, which for simplicity we assume is the last bit. Now pick the transcript

T ′ = (T, 1) which imply that Ir(‖xi − xj‖22) = Ir(µ) for all 1 ≤ i < j < k. The corresponding set

Sk(T
′) is now symmetric, and as long as k is a constant, Hoeffding’s inequality still implies that

the size of Sk(T
′) is at least (1− o(1))nk−1.

4 Proof of Theorem 2.1

We first rephrase Theorem 2.1 slightly.

Theorem 4.1 Let f : [n]k−1 × [N ]→ {0, 1} be a weak sub-permutation, and let S be a symmetric

cylinder intersection (w.r.t. f). Let p = |S|/nk−1, then
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1. There is an (explicitly defined) (k− 1)-graph on n vertices whose edge density is p, that is the

union of N induced partial Steiner systems S(k − 2, k − 1).

2. If p = 1 − o(1), then hk−1(n, c) ≤ (N/n)2 for c < dk. Here, the construction of the (k − 1)-

graph that gives the bound is explicit, given explicit constructions of (k− 1)-graphs of density

dk − o(1) which contain no Kk.

Lemma 4.2 Theorem 4.1 implies Theorem 2.1.

Proof The difference between Theorem 4.1 and Theorem 2.1 lies in the different properties of the

subset S. In Theorem 2.1 S is defined by

S = Sk(Tk) = {(x1, . . . , xk) ∈ [n]k−1 × [N ] : Tk(x1, . . . , xk) = Tk and f(x1, . . . , xk) = 1},

for some transcript Tk of the last player. In Theorem 4.1 on the other hand, S is a cylinder

intersection, that is

S = S(T ) = {(x1, . . . , xk) ∈ [n]k−1 × [N ] : T (x1, . . . , xk) = T and f(x1, . . . , xk) = 1},

for some transcript T of all players.

This difference is easily bridged though. Let f : [n]k−1 × [N ] → {0, 1} be a weak sub-

permutation, P a protocol for f , Tk a transcript of the last player, and S = Sk(Tk) a subset,

found using Recipe 1. Let γ = C(P ), and denote N ′ = N · 2γ . For simplicity identify [N ′] with

[N ]× {0, 1}γ .

Define g : [n]k−1×[N ′]→ {0, 1} by g(x1, . . . , xk−1, (xk, T1...k−1)) = 1 if and only if f(x1, . . . , xk−1, xk) =

1 and T1...k−1 = T1(x1, . . . , xk) ◦ · · · ◦ Tk−1(x1, . . . , xk). That is, T1...k−1 is the message written on

the board by the first k − 1 players, according to protocol P , on input (x1, . . . , xk).

It is not hard to verify that g is a weak sub-permutation. We use the following protocol P ′ for

g, on input (x1, . . . , xk−1, (xk, T1...k−1)): the last player sends his message as in P , then each of the

other players verifies (using one bit of communication each) that his part in T1...k−1 agrees with P .

Obviously P ′ is correct if and only if P is correct. The subset

S′ = {(x1, . . . , (xk, T1...k−1)) ∈ [n]k−1 × [N ′] : Tk(x1, . . . , xk) = Tk and f(x1, . . . , xk) = 1}

is a cylinder intersection with respect to P ′ and g, and |S′|/nk−1 = |S|/nk−1. Theorem 4.1 can

now be applied to prove Theorem 2.1.

In the rest of this section we prove Theorem 4.1. For simplicity we first prove it for the case of

graphs (k = 3) and then explain the necessary adjustments for the general case (k ≥ 3).
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4.1 The case k = 3

We prove the first conclusion of Theorem 4.1, concerning Ruzsa-Szemerédi graphs, in Section 4.1.1.

The upper bound on h(n, c) is proved in Section 4.1.2. We use the following simple fact proved in

[18].

Lemma 4.3 ([18]) Let f : [n]× [n]× [N ] → {0, 1} be a function satisfying that every line in the

third dimension contains at most a single 1, and let S be a cylinder intersection (w.r.t f). Then,

S does not contain stars: triplets of the form (x′, y, z), (x, y′, z), (x, y, z′) where x 6= x′, y 6= y′ and

z 6= z′.

4.1.1 Ruzsa-Szemerédi graphs

The relation between Ruzsa-Szemerédi graphs and the communication complexity of 2-dimensional

permutations was observed in [18]. The graphs constructed in [18] are bipartite though, and we

need slightly different settings. Let S ⊆ [n]× [n]× [N ] be symmetric, define

ES = {(x, y), (x, z), (y, z) : (x, y, z) ∈ S}.

Let GS = (V,ES) be the graph with vertex set V = VA ∪ VB, where VA = [n] and VB = [N ],

and edge set ES . We allow self loops in ES , and consider a collection of self loops as a matching.

Note that when S is a cylinder intersection with respect to a weak sub-permutation there is always

at most one edge between a pair of vertices. The following lemma implies the first conclusion in

Theorem 4.1.

Lemma 4.4 Let f : [n]× [n]× [N ]→ {0, 1} be a weak sub-permutation, and let S be a symmetric

cylinder intersection. Let H = ([n], F ) be the subgraph of GS induced on VA. That is:

F = {(x, y) : ∃z ∈ VB s.t. (x, y, z) ∈ S}.

Then, the edges of |F | can be partitioned into N induced matchings.

Proof Partition the edge set F as follows, for every z ∈ B let

Fz = {(x, y) : (x, y, z) ∈ S}.

This is a partition of F since f a sub-permutation, and therefore there is at most a single z such

that (x, y, z) ∈ S for every (x, y) ∈ [n]2.

The fact that Fz is an induced matching follows from Lemma 4.3. Assume in contradiction that

Fz is not an induced matching, then there is an edge (x, y) ∈ Fz′ for z′ 6= z such that (x, y′), (x′, y)

are in Fz. We then get a star (x′, y, z), (x, y′, z), (x, y, z′) ∈ S, contradicting Lemma 4.3. Note that

the fact that f is a sub-permutation also implies that x′ 6= x and y′ 6= y.

12



4.1.2 An upper bound on h(n, c)

Consider the same graph GS as in the previous section. A basic observation is:

Lemma 4.5 Let f : [n] × [n] × [N ] → {0, 1} be a function satisfying that every line in the third

dimension contains at most a single 1, and let S be a symmetric cylinder intersection (w.r.t f).

Then, a triangle (x, y, z) where x, y ∈ VA and z ∈ VB exists in GS if and only if (x, y, z) ∈ S.

Proof The fact that a triangle (x, y), (x, z), (y, z) where x, y ∈ VA and z ∈ VB exists in GS for

every (x, y, z) ∈ S follows immediately from the definition of ES . Assume in contradiction that

there is also such a triangle in GS for (x, y, z) 6∈ S. Then necessarily there are x′, y′ ∈ VA and

z′ ∈ VB such that (x′, y, z), (x, y′, z), (x, y, z′) ∈ S. But then S contains a star, in contradiction to

Lemma 4.3.

Lemma 4.6 Let f : [n]× [n]× [N ]→ {0, 1} be a weak sub-permutation, and let S be a symmetric

cylinder intersection satisfying |S| = (1− o(1))n2. Then h(n, c) ≤ N2/n2 for c < 1/4.

Proof Consider the graph GS again. By lemma 4.5, and the fact that f is a weak sub-permutation,

an edge in GS appears in exactly one triangle (x, y, z) with x, y ∈ VA and z ∈ VB. Therefore, if

we take a bipartite subgraph inside VA, we will have every edge lie in exactly one triangle, which

is optimal. But, the density of edges in GS is relatively small, since there are n + N vertices and

order of (1− o(1))n2 edges. To remedy this, we define a product function, aiming to increase the

density of edges. The price we pay is that the number of triangles an edge can lie in increases.

Let t ≥ 2 be a natural number, define f t : ([2t]× [n])2 × [N ]→ {0, 1} by f((α, x), (β, y), z) = 1

if and only if f(x, y, z) = 1. Let

St = {((α, x), (β, y), z) : (x, y, z) ∈ S}.

It is not hard to verify that St is a symmetric cylinder intersection with respect to f t. By Lemma 4.5

a triangle ((α, x), (β, y), z) where (α, x), (β, y) ∈ ([2t] × [n]) and z ∈ [N ] exists in GSt if and only

if (x, y, z) ∈ S. Thus, every edge of Gst lies in at most 2t triangles of this sort. To remove other

kind of triangles let H = ([2t]× [n], EH) be a bipartite graph with density 1/4. Now define

E′St = {((α, x), (β, y)), ((α, x), z), ((β, y), z) : (x, y, z) ∈ S, ((α, x), (β, y)) ∈ EH}.

Then every edge in E′St lies in at least one triangle and at most 2t triangles. The number of edges

satisfy |E′St | ≥ (1− o(1))(2tn)2/4. The density of edges is thus

(1− o(1))
1

4

(2tn)2

(2tn+N)2
.
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If we take t = 2 log(N/n) this becomes

(1− o(1))
1

4

(N2/n)2

(N2/n+N)2
.

Recall that S is a cylinder intersection of size (1 − o(1))n2. It therefore follows from the graph

removal lemma (and the hypergraph removal lemma for larger k) - see Theorem 34 in [18] for

details - that necessarily n = o(N). The density is thus (1− o(1))1
4 . Since every edge is in at most

2t = N2/n2 triangles, this completes the proof.

4.2 The general case

We outline the proof of Theorem 4.1 for k ≥ 3. Since the general case is very similar to the proof

of the k = 3 case, we do not repeat all the details here.

For ~x = (x1, . . . , xk) ∈ [n]k−1 × [N ] denote by [~x]k−1 the family of all subsets of size k − 1 of

entries of ~x. That is:

[~x]k−1 =

(
{x1, . . . , xk}

k − 1

)
.

Let S ⊆ [n]k−1 × [N ] be a symmetric subset of entries, define

ES =
⋃
~x∈S

[~x]k−1.

Let GS = (V,ES) be the (k − 1)-graph with vertex set V = VA ∪ VB, where VA = [n] and

VB = [N ], and edge set ES .

The generalized version of Lemma 4.3 is:

Lemma 4.7 ([18]) Let f : [n]k−1 × [N ] → {0, 1} be a function satisfying that every line in the

kth dimension contains at most a single 1, and let S be a cylinder intersection (w.r.t f). Then, S

does not contain stars: k entries of the form (x′1, x2, . . . , xk), (x1, x
′
2, . . . , xk), (x1, x2, . . . , x

′
k) where

x′i 6= xi for i = 1 . . . k.

This immediately gives:

Lemma 4.8 Let f : [n]k−1 × [N ] → {0, 1} be a function satisfying that every line in the kth

dimension contains at most a single 1, and let S be a symmetric cylinder intersection (w.r.t f).

Then, we have that [~x]k−1 is a copy of Kk in GS with x1, . . . xk−1 ∈ VA and xk ∈ VB, if and only

if ~x = (x1, . . . , xk) ∈ S.

Proof Similar to the proof of Lemma 4.5, but using Lemma 4.7 instead of Lemma 4.3.

The following two lemmas generalize Lemma 4.4 and Lemma 4.6:
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Lemma 4.9 For an integer k ≥ 3, let f : [n]k−1 × [N ] → {0, 1} be a weak sub-permutation, and

let S be a symmetric cylinder intersection. Let G′ = ([n], E′) be the subrgraph of GS induced on

VA. Then, the edges of |E′| can be partitioned into N partial Steiner systems S(k − 2, k − 1).

Proof The proof is similar to the proof of Lemma 4.4, we rewrite the main points. The edges of

G′ are:

E′ = {(x1, . . . , xk−1) : ∃xk ∈ VB s.t (x1, . . . , xk−1, xk) ∈ S}.

Partition the edge set E′ as follows, for every z ∈ VB let

E′z = {(x1, . . . , xk−1) : (x, . . . , xk−1, z) ∈ S}.

This is a partition of E′ since f a sub-permutation, and the fact that E′z is a partial Steiner system

follows from Lemma 4.7.

Lemma 4.10 For an integer k ≥ 3, let f : [n]k−1×[N ]→ {0, 1} be a weak sub-permutation, and let

S be a symmetric cylinder intersection satisfying |S| = (1− o(1))nk−1. Then hk−1(n, c) ≤ (N/n)2

for c < dk.

Proof The proof is very similar to the proof of Lemma 4.6, just instead of taking the subgraph

H = ([2t]× [n], EH) to be a bipartite graph with density 1/4, take a subhypergraph with no copies

of Kk and density dk. Note that we do not need to know dk or H, we just need to know that dk is

finite and that H exists.

5 Summary

As mentioned in the introduction, there is a link between the main construction of [1] and the

original construction of Ruzsa and Szemerédi [21]. We describe this link here, starting with a new

construction, equivalent to the one of Ruzsa and Szemerédi, derived using the recipe in Section 2.2.

Our approach avoids the use of Behrends construction of a large set of integers without a three-term

arithmetic progression [3], which was the heart of the construction of Ruzsa and Szemerédi.

Lemma 5.1 ([21]) There exists a graph on n vertices, with n2/2O(
√

logn) edges, that is the union

of Θ(n) induced matchings.

Proof We follow the steps of Recipe 1. The details are very similar to those in Section 2.3, with

slight modifications.

Choosing the function Let q, d > 1 be natural numbers and denote n = qd. Let fq,d :

([q]d)3 → {0, 1} be the function satisfying fq,d(x, y, z) = 1 if and only if x+ y = 2z. It is not hard

to verify that fq,d is a weak sub-permutation, in fact it is a weak permutation. We later set q to

be even and d = log(q) = Θ(
√

log n).
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The protocol The protocol is identical to the protocol for gq,d in Section 2.3.

The cost of the protocol The cost of the protocol is C(P ) = 2.

The choice of S By Hoeffding’s inequality, with constant probability, ‖x − y‖22 takes one

of
√
dq2 values. There is, therefore, a transcript T for the third player such that |Sk(T )| ≥

Ω(|f−1
q,d (1)|/

√
dq2). Where |f−1

q,d (1)| is the number of 1’s of the function fq,d. That is, it is the

number of x, y ∈ [q]d such that (x+ y)/2 is also in [q]d. Assume for simplicity that q is even, then

|f−1
q,d (1)| ≥ qd · (q/2)d. Therefore

|Sk(T )| ≥ Ω(qd · (q/2)d/
√
dq2) ≥ Ω(n2/2d

√
dq2).

Taking d = log q = Θ(
√

log n) we get |Sk(T )| ≥ n2/2O(
√

logn). Sk(T ) is symmetric, thus Lemma 2.2

follows from Theorem 2.1.

We can now describe the relation between the construction of Ruzsa and Szemerédi [21] and

that of [1]. Call the construction above A, the simple construction of Section 2.3 B, and the

construction of Section 3.1 (providing the graphs similar to [1]) C. The table below compares these

constructions.

A B C

Function Domain: ([q]d)3

Def. rule: x+y=2z

Dom.: ([q]d)2 × Zq,d

Def. rule: x+y=2z

Dom.: ([q]d)2 × Zq,d

Def. rule: x+y=2z

Protocol idea Third player sends

‖x− y‖22.

Third player sends

‖x− y‖22.

Third player sends

some bits of ‖x −
y‖22, then the first

two players compute

the rest.

Number of ver-

tices

n = qd n = qd n = qd

Edge density 2−O(
√

logn) Ω(log log n/ logε n)

for any constant

ε > 1/2

1-o(1)

Number of

matchings

Θ(n) n1+O(1/ log logn) n1+O(1/ log logn)
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[21] I. Rusza and E. Szemerédi, Triple Systems with no Six Points Carrying Three Triangles,

Colloquia Mathematica Societatis János Bolyai (1978), 939–945.

[22] P. Turán, Research problems. MTA Mat. Kutató Int. Közl. 6 (1961), 417–423.
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