Corruption Detection on Networks

Noga Alon∗ Elchanan Mossel† Robin Pemantle‡

June 3, 2019

Abstract

We consider the problem of corruption detection on networks. In this model each vertex of a directed graph can be either truthful or corrupt. Each vertex reports about the types (truthful or corrupt) of all his outneighbors. If it is truthful, it reports the truth, whereas if it is corrupt it reports adversarially. This model, first considered by Preparata, Metze and Chien in 1967, motivated by the desire to identify the faulty components of a digital system by having the other components checking them, became known as the PMC model. The main known results for this model characterize networks in which all corrupt (that is, faulty) vertices can be identified, when there is a known upper bound on their number. We are interested in the investigation of networks in which most of the corrupt vertices can be identified. We show that an expansion-type graph parameter is relevant here. The known results about the PMC model imply that in order to identify all corrupt vertices when their number is \(t \) all indegrees have to be at least \(t \). In contrast, we show that in bounded-degree graphs with strong expansion properties almost all corrupt and almost all truthful vertices can be identified, whenever there is a majority of truthful vertices. We also observe that if the graph is very far from being a good expander, namely, if the deletion of a small set of vertices splits the graph into small components, then no corruption detection is possible even if most of the vertices are truthful. Finally we discuss the algorithmic aspects and the computational hardness of the problem.

∗Department of Mathematics, Princeton University, Princeton, New Jersey, 08544 USA and Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv, Israel. Email: nogaa@tau.ac.il. Research supported in part by ISF grant No. 281/17, GIF grant No. G-1347-304.6/2016 and the Simons Foundation.

†Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Email: elmos.mit.edu. Research supported by ...

‡Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA. Email: pemantle@math.upenn.edu. Research supported in part by NSF grant # DMS-1209117
1 Introduction

We study the problem of corruption detection on networks. Given a network of agents, a subset of whom are corrupt, our goal is to find as many corrupt and non-corrupt agents as possible. Neighboring vertices audit each other. We assume that truthful (non-corrupt) agents report the status of their neighbors accurately. We make no assumption on the report of corrupt agents. For example, two corrupt neighbors may collude and report each other as non-corrupt. Similarly, a corrupt vertex may prefer to report the status of some of its neighbors accurately, hoping that this will establish a truthful record for itself. Moreover, we assume that the corrupt agents may coordinate their actions in an arbitrary fashion.

The corruption model studied here is identical to the model of diagnosable systems that was introduced by Perparata, Metze and Chien [20] as a model of a digital system with many components that can potentially fail. It is assumed that components can test some other components. The goal in [20] and follow up work including [10, 11, 12] and more is to characterize networks that can detect a certain number of corrupted nodes and find them. Similar models were introduced and studied in other areas of computer science, including Byzantine computing [14] and intrusion detection in the security community [18]. See also the survey [23]. A byproduct of this line of research is the VLSI chips puzzle discussed in [6]. In this puzzle there are n supposedly identical VLSI chips that in principle are capable of testing each other. A basic test involves two chips, each chip tests the other and reports whether it is good or bad. A good chip always reports accurately whether the other chip is good or bad, but the answer of a bad chip cannot be trusted. The objective is to find a good chip, or all good chips, assuming more than half of the chips are good, using the minimum possible number of tests. It is clear that this is the corruption detection problem on a complete graph, but the required algorithm in this problem is adaptive.

The original motivation for our work is corruption detection in social and economic networks, where the main objective is to understand the structure of networks that enable one to identify most of the corrupt nodes and most of the truthful ones. We call the task of identifying the types of most nodes the corruption detection problem. Examples of such networks may include different government agencies in a country, the network of banks in the EU or the network of hospitals in a geographic location. Our goal is to understand which network structures are more amenable to corruption and which are more robust against it. Social scientists have studied many aspect of corruption networks, see e.g. [19, 21, 8]. However, to the best of our knowledge, prior to this work there is no
systematic study of the effect of the network structure on corruption detection.

1.1 Formal Definitions and Main Results

Consider a network of agents represented by a finite directed graph (digraph) \(G = (V, E) \). Each vertex can be either truthful, or corrupt. We denote by \(B \) the set of corrupt agents and by \(T \) the set of truthful ones. Thus \(V = T \cup B, T \cap B = \emptyset \). For each vertex \(u \) and each of its out-neighbors \(v \), \(u \) examines \(v \) and reports about its type. If \(u \) is truthful, it reports the truth, that is, reports that \(v \in T \) if indeed \(v \in T \) and reports that \(v \in B \) if \(v \in B \). If \(u \in B \), then it reports adversarially. That is, if \(v \in T \), \(u \) may report that \(v \in T \) or that \(v \in B \), and similarly if \(v \in B \), \(u \) may report either that \(v \in T \) or that \(v \in B \). We assume that the corrupt vertices can cooperate in an arbitrary fashion. The question we address is under what conditions on the digraph \(G \) and the number of truthful vertices it is possible to identify almost all truthful vertices and almost all corrupt ones, with certainty. It is easy to see that this is impossible if \(|T| \leq |B|\). Indeed, if \(V = V_1 \cup V_2 \cup W \) is a partition of \(V \) into 3 pairwise disjoint sets where \(|V_1| = |V_2|\) (and \(W \) may be empty), then the corrupt agents can ensure that all the reports in the two scenarios \(T = V_1, B = V_2 \cup W \) and \(T = V_2, B = V_1 \cup W \) will be identical. As there is no common truthful agent in these two possibilities, no deterministic algorithm can locate a truthful agent with no error.

Our main result is that if the graph is a good bounded-degree directed expander, in the sense described below, and we have a majority of truthful agents, it is possible to identify almost all truthful vertices and almost all corrupt ones, with certainty. The relevance of expansion to the problem resembles results obtained already in the 80s in the context of Byzantine agreement showing that expanders allow “almost everywhere agreement”, see [7], [9]. Indeed, it is not very surprising that expansion is helpful for corruption detection. The surprising point here is that in sufficiently strong expanders it is possible to identify the status of almost all vertices even if we only assume that the number of truthful vertices exceeds by only 1 the number of corrupt ones.

The relevance of expansion to the problem resembles results obtained already in the 80s in the context of Byzantine agreement showing that expanders allow “almost everywhere agreement”, see [7], [9]. Indeed, it is not very surprising that expansion is helpful for corruption detection. The surprising point here is that in sufficiently strong expanders it is possible to identify the status of almost all vertices even if we only assume that the number of truthful vertices exceeds by only 1 the number of corrupt ones.

We first consider the case of symmetric digraphs, that is, digraphs in which \((u, v)\) is a directed edge iff \((v, u)\) is such an edge. This case is somewhat simpler, and is equivalent to considering \(G \) as an undirected graph in which each vertex reports about all its neighbors.

For a positive \(\delta < 1/8 \) call a graph \(G = (V, E) \) on a set of \(n \) vertices a \(\delta \)-good expander if any set \(U \) of at most \(2\delta n \) vertices has more than \(|U| \) neighbors outside \(U \), and there is
an edge between any pair of sets of vertices provided one of them is of size at least δn and
the other is of size at least $n/4$. Standard results about expanders (see, e.g., [1], Corollary 1) imply that this holds for Ramanujan graphs or random regular graphs with degrees at least c/δ for an appropriately chosen absolute constant c. Note that the definition above implies that every nonempty set X of at most half the vertices has more than $|X|/2$ neighbors outside X. Call a graph an (n,d,λ)-graph if it is d-regular, has n vertices and all its eigenvalues besides the top one are in absolute value at most λ. In this notation, it follows easily from known results (see e.g. [4], Theorem 9.2.4) that any (n,d,λ)-graph in which $\lambda^2 \leq c \delta$ is a δ-good expander, where $c > 0$ is an absolute constant.

The main result for the undirected case is the following theorem. The proof is presented in subsection 2.1.

Theorem 1.1 Let $G = (V,E)$ be a δ-good expander and suppose $V = T \cup B$, $T \cap B = \emptyset$ and $|T| > |B|$. Then when getting the reports of each vertex of G about all its neighbors we can identify a subset $T' \subset T$ and a subset $B' \subset B$ so that $|T' \cup B'| > (1 - \delta)n$. That is, we will be able to recover the type of almost all vertices of G.

Moreover, if $|T| > (1/2 + \delta)n$ then there is a linear-time algorithm that identifies subsets as above from the given reports.

We note that the algorithm in the proof of the theorem is an exponential time algorithm if we only assume that $|T| > |B|$ (or if we assume that $|T| > (1/2 + \mu)n$ for a very small fixed $\mu = \mu(\delta)$). The fact that the detection algorithm is not efficient when we only assume that T is just a little bit bigger than B is not a coincidence. Indeed, the algorithm described in the proof of the theorem, presented in the next section, provides a set T of more than $n/2$ truthful agents, which is consistent with the reports obtained, when such a set exists. We show that the problem of producing such a set when it exists is NP-hard, even when restricted to bounded-degree expanders (and even if we ensure that there is such a set of size at least $n/2 + \eta n$.)

Theorem 1.2 For any $\delta > 0$ there exists an $\eta > 0$ such that the following promise problem is NP-hard. The input is a graph $G = (V,E)$ with $|V| = n$, which is a δ-good expander along with the status of u reported by v and vice versa for every edge $e = (u,v) \in E$. The promise is that either

- There exists a partition of $V = T \cup B$ which is consistent with all of the reported values and $|T| \geq n/2 + \eta n$, or
- All partitions $V = T \cup B$ which are consistent with the reported values satisfy $|T| \leq n/2 - \eta n$.

The objective is to distinguish between the two options above.

The proof is presented in subsection 2.2.

We also establish the following simple statement, which shows that at least some (weak) form of expansion is needed for solving the corruption detection problem.

Proposition 1.3 Let $G = (V, E)$ be a graph on n vertices so that it is possible to remove at most ϵn vertices of G and get a graph in which any connected component is of size at most ϵn. Then even knowing that $V = T \cup B$ with $T \cap B = \emptyset$ and $|T| \geq (1 - 2\epsilon)n$ it is impossible to identify even a single member $t \in T$ from the reports of all vertices. In particular, this is the case for planar graphs or graphs with a fixed excluded minor even if $\epsilon = \Theta(n^{-1/3})$.

Note that there is still a significant gap between the expansion properties that suffice for solving the detection problem, described in Theorem 1.1, and the conditions in the last proposition that are necessary for such a solution. It will be interesting to obtain tighter relations between expansion and corruption detection. This is further discussed in section 4.

1.2 Results for directed graphs

In this subsection we consider directed graphs (digraphs). This is motivated by the fact that in various auditing situations it is unnatural to allow u to inspect v whenever v inspects u. In fact, it may even be desirable not to allow any short cycles in the directed inspection graph. For a fixed $\delta < 1/16$, call a directed graph $G = (V, E)$ on n vertices a δ-good directed expander if the following conditions hold.

(i) For any set $U \subset V$ of size at most $4\delta n$, $|N^+(U) - U| > |U|$, where $N^+(U)$ is the set of all out-neighbors of V.

(ii) For any two disjoint sets of vertices A and B so that $|A| \geq \delta n$ and $|B| \geq n/4$ there is at least one directed edge from A to B and at least one directed edge from B to A.

We first show that for any fixed positive $\delta < 1/16$ there are bounded-degree δ-good directed expanders which contain no short cycles (even ignoring the orientation of edges).

Proposition 1.4 There are two absolute positive constants c_1, c_2 so that for any fixed $0 < \delta < 1/16$ there is a constant $d < c_1/\delta$ and infinitely many values of n for which there is a δ-good directed expander on n vertices in which the total degree of each vertex is d and there is no cycle of length smaller than $c_2 \log n / \log d$ (of any orientation).
The proof, presented in section 3, is probabilistic. We can give an explicit construction of such digraphs as well, but for simplicity we present here the probabilistic argument and only sketch briefly a possible explicit construction. The following theorem shows that these directed expanders are good detection networks. The proof appears in section 3.

Theorem 1.5 Let \(G = (V, E) \) be a \(\delta \)-good directed expander and suppose \(V = T \cup B \), \(T \cap B = \emptyset \) and \(|T| > |B| \). Then when getting the reports of each vertex of \(G \) about all its out-neighbors we can identify a subset \(T' \subset T \) and a subset \(B' \subset B \) so that \(|T' \cup B'| > (1-\delta)n \). That is, we will be able to recover the type of almost all vertices of \(G \).

Moreover, if \(|T| > (1/2 + 2\delta)n \) then there is a linear-time algorithm that identifies subsets as above from the given reports. If we only assume that \(|T| > |B| \) then the detection algorithm is exponential.

1.3 Comparison to Previous Work

The vast literature on corruption detection in computer science, and in particular on the diagnosable system problem and the PMC model introduced in [20], deal either with the problem of identifying all corrupt nodes, or with that of identifying a single corrupt node. As observed in [20], a necessary condition for the identification of all corrupt nodes in a network with \(t \) corrupt nodes is that the minimal indegree in the network is at least \(t \). Therefore, if the number of corrupt nodes is linear in the total number of vertices, all indegrees have to be linear, and the total number of edges has to be quadratic.

The main contribution of the present paper is a proof that the number of required edges may be much smaller when relaxing the requirement of identifying all corrupt nodes and replacing it by the requirement of the identification of most good and most corrupt nodes. By relaxing the requirement as above we are able to study bounded-degree graphs. Our main new result is that a linear number of edges ensures the detection of almost all corrupt and almost all truthful vertices, provided the graph is a sufficiently strong expander. It was shown already in [20] that a linear number of edges suffices to ensure the detection of a single corrupt vertex. We show that such a small number of edges suffices to determine the types of almost all vertices, even when the number of truthful vertices exceeds that of corrupt ones by only 1.

Our results are of natural interest in many of the motivating examples for the corruption detection problem:

- In a distributed computer network of bounded (average / minimal) degree it allows to find a good fraction of the network that functions properly even when a positive
fraction of the network is corrupt due to hardware problems / intrusion / viruses etc.

• Similarly in auditing social networks our results allow to identify a large fraction of the corrupt / good nodes even in networks of bounded degrees.

In the context of Byzantine agreement it was discovered already in the 80s that expanders allow “almost everywhere agreement”. This was first established by Dwork et. al. in [7] and further developed in subsequent work, see, in particular [9] and its references. It is therefore not very surprising that graph expansion is relevant to corruption detection. It is, however, interesting to note that in sufficiently strong expanders it is possible to identify nearly all truthful and nearly all corrupt agents even if the number of truthful agents exceeds the number of corrupt ones by 1.

1.4 Techniques

The proofs rely crucially on the existence of strong bounded-degree expanders, like the Ramanujan graphs of [15], [17], and the known connection between the expansion and pseudo-random properties of graphs and their eigenvalues, see [2], [1] and their references. By combining the known results with appropriate probabilistic arguments we establish the existence of strong bounded-degree directed expanders with no short cycles, and use them to show that the corruption detection problem can be solved in such networks. Combining the observation that a certain weak expansion property, that is, the existence of no small separators, is necessary for corruption detection with the planar separator theorem of Lipton and Tarjan and its extensions we conclude that planar graphs and graphs with a fixed excluded minor are not good for corruption detection. Finally we discuss the algorithmic aspects of our problem using results about hardness of approximation.

2 Proofs

2.1 Undirected graphs

Proof of Theorem 1.1: Let H be the spanning subgraph of G in which a pair of vertices u and v is connected iff u reports that $v \in T$ and v reports that $u \in T$. Let V_1, V_2, \ldots, V_s be the sets of vertices of the connected components of H.

Claim 2.1 All the vertices of each V_i are of the same type, that is, for each $1 \leq i \leq s$, either $V_i \subset T$ or $V_i \subset B$.

7
Proof: Suppose \(u \) and \(v \) are neighbors in \(H \). If \(u \in T \) then \(v \in T \) (as \(u \) reports so). If \(u \in B \), then \(v \in B \) (as \(v \) reports that \(u \in T \)).

Call a component of \(H \) truthful if it is a subset of \(T \), else it is a subset of \(B \) and we call it corrupt.

Let \(H' \) be the induced subgraph of \(G \) on the set \(T \) of all good vertices.

Claim 2.2 Any connected component of \(H' \) is also a connected component of \(H \).

Proof: If \(u, v \in T \) are adjacent in \(G \) (and hence in \(H' \)), they are adjacent in \(H \) as well, by definition and by the fact that each of them reports honestly about its neighbors. Thus each component \(C' \) of \(H' \) is contained in a component \(C \) of \(H \). However, no \(v \in T \) is adjacent in \(H \) to a vertex \(w \in B \), implying that in fact \(C' = C \) and establishing the assertion of the claim. \(\square \)

Claim 2.3 The graph \(H' \) contains a connected component of size at least \(|T| − δn > (1/2 − δ)n\).

Proof: Assume this is false and the largest connected component of \(H' \) is on a set of vertices \(U_1 \) of size smaller than \(|T| − δn \). Since the total number of vertices of \(H' \) is \(|T| > n/2 \), it is easy to check that one can split the connected components of \(H' \) into two disjoint sets, each of total size at least \(δn \). However, the bigger among the two is of size bigger than \(n/4 \), and hence, since \(G \) is a \(δ \)-good expander, there is an edge of \(G \) between the two groups. This is impossible, as it means that there is an edge of \(G \) between two distinct connected components of \(H' \). \(\square \)

The analysis so far allow us to prove the easy part of the theorem.

Claim 2.4 If \(|T| > (1/2 + δ)n \) then there exists a linear-time algorithm which finds \(T' \subset T \) and \(B' \subset B \) such that \(|T' \cup B'| \geq (1 − δ)n \).

Proof: Note that if \(|T| > (1/2 + δ)n \) then Claim 2.3 implies that \(H \) must contain a connected component of size bigger than \(n/2 \), which must be truthful. Thus, if this is the case, more than \(n/2 \) of the truthful vertices of \(G \) can be identified by the simple, linear-time algorithm that computes the connected components of \(H \). Moreover, since all vertices but at most \(δn \) are among their neighbors, this enables us to identify the types of all vertices besides less than \(δn \).

It remains to show that even if we only assume that \(|T| > n/2 \) then we can still identify correctly most of the truthful vertices. We proceed with the proof of this stronger statement.
By Claims 2.2 and 2.3 it follows that H contains at least one connected component of size at least $(1/2 - \delta)n \geq 3/8n$. If H contains only one such component, then this component must consist of truthful agents, and we can identify all of them. Otherwise, there is another connected component of size at least $(1/2 - \delta)n$, and as there is no room for more than two such components, there are exactly two of them, say V_1 and V_2. Note that by the expansion properties of G there are edges of G between V_1 and V_2, and hence it is impossible that both of them are truthful components. As one of them must be truthful, it follows that exactly one of V_1 and V_2 is a truthful component and the other corrupt. We next show that we can identify the types of both components.

Construct an auxiliary weighted graph S on the set of vertices $1, 2, \ldots, s$ representing the connected components V_1, V_2, \ldots, V_s as follows. The weight v_i of i is defined by $v_i = |V_i|/|V|$. Two vertices i and j are connected iff there is at least one edge of G that connects a vertex in V_i with one in V_j. Call an independent set in the graph S large if its total weight is bigger than 1/2. Note that by the discussion above T must be a union of the form $T = \cup_{i \in I} V_i$, where I is a large independent set in the graph S. In order to complete the argument we prove the following.

Claim 2.5 Either there is no large independent set in S containing 1, or there is no large independent set in S containing 2.

Proof: Assume this is false, and let I_1 be a large independent set in S containing 1, and I_2 a large independent set in S containing 2. To get a contradiction we show that for $w(I_1) = \sum_{i \in I_1} v_i$ and $w(I_2) = \sum_{i \in I_2} v_i$ we have $w(I_1) + w(I_2) \leq 1$ (and hence it is impossible that each of them has total weight bigger than a half).

To prove the above note, first, that the two vertices 1 and 2 of S are connected (as each corresponds to a set of more than $(1/2 - \delta)n$ vertices of G, hence there are edges of G connecting V_1 and V_2). Therefore I_1 must contain 1 but not 2, and I_2 contains 2 but not 1.

If there are any vertices i of S connected in S both to 1 and to 2, then these vertices belong to neither I_1 nor I_2, as these are independent sets. Similarly, if a vertex i is connected to 1 but not to 2, then it can belong to I_2 but not to I_1, and the symmetric statement holds for vertices connected to 2 but not to 1. So far we have discussed only vertices that can belong to at most one of the two independent sets I_1 and I_2. If this is the case for all the vertices of S, then each of them contributes its weight only to one of the two sets and their total weight would thus be at most 1, implying that it cannot be that the weight of each of them is bigger than 1/2, and completing the proof of the claim. It thus remains to deal with the vertices of S that belong to both I_1 and I_2. Let
Let \(J \subset \{3, 4, \ldots, s\} \) be the set of all these vertices. Note, first, that the total weight of the vertices in \(J \) is at most \(2\delta \), as the total weight of 1 and 2 is at least \(2(1/2 - \delta) = 1 - 2\delta \).

Note also that by the discussion above each \(j \in J \) is not a neighbor of 1 or of 2. By the assumption about the expander \(G \) the total weight of the vertices that are neighbors of vertices in \(J \) and do not belong to \(J \) is bigger than the total weight of the vertices in \(J \). Indeed, this is the case as the number of neighbors in \(G \) of the set \(\bigcup_{j \in J} V_j \) that do not lie in this set is bigger than the size of the set. We thus conclude that if \(J' = N_S(J) - J \) denotes the set of neighbors of \(J \) that do not belong to \(J \), then the total weight of the vertices in \(J' \) exceeds the total weight of the vertices in \(J \), and the vertices in \(J' \) belong to neither \(I_1 \) nor \(I_2 \). We have thus proved that the sum of weights of the two independent sets \(I_1 \) and \(I_2 \) satisfies

\[
w(I_1) + w(I_2) \leq 2w(J) + (1 - w(J) - w(J')) \leq w(J) + w(J') + (1 - w(J) - w(J')) = 1
\]

contradicting the fact that both \(I_1 \) and \(I_2 \) are large. This completes the proof of the claim.

By Claim 2.5 we conclude that one can identify the types of the components \(V_1 \) and \(V_2 \). This means that we can identify at least \((1/2 - \delta)n\) truthful vertices with no error. Recall that this is the case also when \(H \) has only one connected component of size at least \((1/2 - \delta)n\). Having these truthful vertices, we also know the types of all their neighbors. By the assumption on \(G \) this gives the types of all vertices but less than \(\delta n \), completing the proof of the main part of the theorem.

It is easy to see that the algorithm described in the proof above is a linear time algorithm provided \(|T| > (1/2 + \delta)n\). However, if we only assume that \(|T| > |B|\) the proof provides only a non-efficient algorithm for deciding the types of the components \(V_1 \) and \(V_2 \). Indeed, we have to compute the maximum weight of an independent set containing 1 in the weighted graph \(S \), and the maximum weight of an independent set containing 2. By the proof above, exactly one of this maxima is larger than \(1/2 \), providing the required types.

2.2 Hardness

In this subsection we prove Theorem 1.2 which explains the non-efficiency of the algorithm in the proof of Theorem 1.1.

Proof of Theorem 1.2: The proof is based on the following fact [5]: there exist constants \(b < a < 1/2 \) such that deciding if a graph \(H \) on \(m \) vertices, all of whose degrees are bounded
by 4, has a maximum independent set of size at least $(a + b)m$ or at most $(a - b)m$ is NP-hard.

Let G' be a δ-good bounded-degree expander on a set V of n vertices. Split the vertices into 3 disjoint sets V_1, V_2, V_3, where V_3 is an independent set in G' of size m, where $bm = \eta n$, all its neighbors are in V_2, $|V_1| = n/2 - am$ and $|V_2| = n/2 - m + am$. Add on V_3 a bounded-degree graph H as above, in which it is hard to decide if the maximum independent set is of size at least $(a + b)m$ or at most $(a - b)m$. That is, identify the set of vertices of H with V_3 and add edges between the vertices of V_3 as in H. Call the resulting graph G and note that it is a δ-good expander (as so is its spanning subgraph G').

The reports of the vertices are as follows. Each vertex in V_1 reports true on each neighbor it has in V_1, and corrupt on any other neighbor. Similarly, each vertex of V_2 reports true on any neighbor it has in V_2 and corrupt on any other neighbor, and each vertex in V_3 reports corrupt on all its neighbors. Note that with these reports the connected components of the graph H in the proof of Theorem 1.1 are V_1, V_2 and every singleton in V_3.

It is easy to check that here if H has an independent set I of size at least $(a + b)m$, then G has a set T of truthful vertices of size at least $n/2 + bm$, namely, the set $I \cup V_1$, which is consistent with all reports. If H has no independent set of size bigger than $(a - b)m$, then G does not admit any set T of truthful vertices of size bigger than $n/2 - bm$ consistent with all reports. This completes the proof.

2.3 Graphs with small separators

In this subsection we describe the simple proof of Proposition 1.3.

Proof of Proposition 1.3: Let B' be a set of at most cn vertices of G whose removal splits G into connected components with vertex classes V_1, V_2, \ldots, V_s, each of size at most cn. Consider the following s possible scenarios R_i, for $1 \leq i \leq s$.

R_i: the set of corrupt vertices is $B = B' \cup V_i$, all the others are good vertices. The vertices in B' report that all their neighbors are corrupt. The vertices in V_i report that their neighbors in V_i are in T, and that all their other neighbors are in B. (The truthful vertices, of course, report truthfully about all their neighbors).

It is not difficult to check that in all these s scenarios, all vertices make exactly the same reports. On the other hand, there is no vertex of G that is truthful in all these scenarios, hence it is impossible to identify a truthful vertex with no error. Since the number of
corrupt vertices in all scenarios is at most $2\epsilon n$, the first assertion of the theorem follows. The claim regarding planar graphs and graphs with excluded minors follows from the results in [16], [3].

3 Directed Graphs

Here we provide the proofs for the case of directed graphs. We start with the proof of existence of δ-good directed expanders.

Proof of Proposition 1.4: The graphs constructed are orientations of undirected expanders. It will be convenient to start with high-girth Ramanujan Cayley graphs, but as we explain in the end of the proof it is possible to start with any high girth strong expander.

Let $G = (V, E)$ be a d-regular undirected non-bipartite Ramanujan Cayley graph as constructed in [15] or [17], where $d = \Theta(1/\delta)$. This is a Cayley graph with $d/2$ generators, and its girth is bigger than $\frac{2 \log n}{\log d}$. Let E_1 denote all edges corresponding to, say, $k = \lceil 3\sqrt{d} \rceil$ of the generators and their inverses. Thus (V, E_1) is a $2k$-regular graph, take an arbitrary Eulerian orientation of it (an orientation where each vertex has in-degree and out-degree k). Orient the rest of the edges randomly, that is, for each edge $e \in E - E_1$ choose, randomly, independently and uniformly, one of the two possible orientations. As shown in [2] the average degree in the induced subgraph of G on any set of γn vertices does not exceed $\gamma d + 2\sqrt{d} - 1 < 3\sqrt{d}$ provided $\gamma < 1/\sqrt{d}$. In particular, if $\gamma \leq 8d$ and $d < 1/\gamma^2$ (which holds in our case, as $d = \Theta(1/\delta)$), the above inequality holds. Now if U is any set of at most $\gamma n/2$ vertices, and $U' = N^+(U) - U$ satisfies $|U'| \leq |U|$, then the set $U \cup U'$ is of size at most γn but contains at least $k|U| \geq k(|U| + |U'|)/2$ edges: namely all the edges of E_1 emanating from some vertex of U. This means that the average degree in the induced subgraph on $U \cup U'$ is at least $k \geq 3\sqrt{d}$, which is impossible. This shows that our oriented graph satisfies property (i) in the definition of a δ-good directed expander (independently of the orientation of the edges in $E - E_1$). To prove that property (ii) in that definition holds with high probability note that for any fixed disjoint sets of vertices A and B of sizes $|A| \geq \delta n$ and $|B| \geq n/4$, the expander mixing lemma (c.f., e.g., [4], Corollary 9.2.5) implies that there are more than $2n$ edges of $E - E_1$ connecting A and B, provided d is at least some c/δ. The probability that all these edges are directed from A to B, or that all of them are directed from B to A is smaller than $2^ {-(2n-1)}$. As the number of choices for the pair of sets A and B is much smaller than 2^{2n-1}, we conclude that our oriented graph satisfies property (ii) as well with high probability, completing the proof of the lemma.
Finally we explain briefly how it is possible to modify the above proof starting from any high girth strong expander, which is not necessarily a Cayley graph. We also sketch a proof of an explicit construction of such digraphs.

Let $G = (V, E)$ be a high-girth (n, d, λ)-graph, that is, G is d-regular, has n vertices, and all its nontrivial eigenvalues have absolute value at most λ. If d is even, then by Petersen’s Theorem the edges of G can be decomposed into 2-regular spanning subgraphs and we can use some of them for generating the set of edges E_1 as above. If d is odd we can use the fact that $d - \lambda \geq 2$ to conclude that G contains a perfect matching (see, e.g., [13], Theorem 4.3), omit it, and use Petersen’s Theorem to break the rest into 2-regular spanning subgraphs, proceeding as before.

We conclude with a brief sketch of an explicit construction of digraphs as above. Start with a high girth d-regular Ramanujan expander $G = (V, E_1 \cup E_2 \cup E_3)$, where (V, E_1) is a $2k$-regular spanning graph, and (V, E_2), (V, E_3) are spanning and regular, each of degree $d/2 - k$. Number the vertices of G by $1, 2, \ldots, n$ and orient (V, E_1) according to an Eulerian cycle, and every edge ij with $i < j$ in $E - E_1$ from i to j if it belongs to E_2 and from j to i if it belongs to E_3. Here k is, say, $\lceil 3\sqrt{d} \rceil$ and both graphs (V, E_2) and (V, E_3) are strong expanders. The edges of E_1 ensure, as before, that every set U of at most $4\delta n$ vertices has more than $|U|$ outneighbors outside U. The edges of E_2 and E_3 ensure that for any two disjoint sets of vertices A and B satisfying $|A| \geq \delta n$ and $|B| \geq n/4$ there is at least one directed edge from A to B and at least one from B to A. Indeed, suppose that the median vertex of A (according to our numbering) is smaller than the median vertex of B. Let A' be the set of all vertices of A whose number is at most that of the median of A. Similarly, let B' be the set of all vertices of B whose number is at least that of the median of B. Then all edge of E_2 that connect a vertex of A' with one of B' are directed from A' to B', and with the right choice of the parameters there are such edges. Similarly, all edges of E_3 between A' and B' are directed from B' to A'. The case that the median of A is larger than that of B is, of course, symmetric.

Since for our purpose here the probabilistic proof of existence suffices we omit the detailed choice of the parameters here as well as the proof of the fact that there are explicit high-girth Ramanujan graphs whose generators can be partitioned into three disjoint sets producing E_1, E_2, E_3 as above. \qed

We next present the proof of Theorem 1.5, which resembles that of Theorem 1.1 but requires several additional ideas.

Proof of Theorem 1.5: Let H be the spanning subgraph of G in which an edge (u, v)
of G is an edge of H iff u reports that $v \in T$. Let V_1, V_2, \ldots, V_s be the sets of vertices of the strongly connected components (SCCs, for short) of H.

Claim 3.1 All the vertices of each V_i are of the same type, that is, for each $1 \leq i \leq s$, either $V_i \subset T$ or $V_i \subset B$.

Proof: If $u \in T$ and v is an out neighbor of u in H, then $v \in T$ (as u reports so). If $v \in B$, and u is an in-neighbor of v in H, then $u \in B$ (as u reports that $u \in T$). □

Call an SCC of H truthful if it is a subset of T, else it is a subset of B and we call it corrupt.

Let H' be the induced subgraph of G on the set T of all truthful vertices.

Claim 3.2 Any SCC of H' is also an SCC of H.

Proof: If $u, v \in T$ and (u, v) is an edge of G, then it is an edge of H too. Thus each SCC C' of H' is contained in an SCC C of H. This SCC is truthful, by Claim 3.1, and cannot contain any additional truthful vertices as otherwise these belong to C' as well. □

Claim 3.3 The graph H' contains an SCC of size at least $|T| - 2\delta n > (1/2 - 2\delta)n$.

Proof: Consider the component graph of H': this is the directed graph F whose vertices are all the SCCs of H', where there is a directed edge from C to C' iff there is some edge of H' from some vertex of C to some vertex of C'. It is easy and well known that this graph is a directed acyclic graph, and hence there is a topological order of it, that is, a numbering C_1, C_2, \ldots, C_r of the components so that all edges between different components are of the form (C_i, C_j) with $i < j$. Order the vertices of H' in a linear order according to this topological order, where the vertices of C_1 come first (in an arbitrary order), those of C_2 afterwards, etc. Let u_i be the vertex in place i according to this order $(1 \leq i \leq |T|)$. If the vertices $u_{\delta n}$ and $u_{|T| - \delta n + 1}$ belong to the same SCC, then this component is of size at least $|T| - 2\delta n$ and we are done. Otherwise, the SCC containing $u_{|T|/2}$ differs from either that containing $u_{\delta n}$ or from that containing $u_{|T| - \delta n + 1}$. In the first case, the set A of all SCCs up to that containing $u_{\delta n}$ is of size at least δn, and the set B of all SCCs starting from that containing $u_{|T|/2}$ is of size at least $|T|/2 \geq n/4$. In addition there is no edge directed from B to A, contradicting the property of G. The second case leads to a symmetric contradiction, establishing the claim. □

Note that the above shows that if $|T| > (1/2 + 2\delta)n$ then H' and hence also H must contain an SCC of size bigger than $n/2$, which must be truthful. Thus, if this is the case, more than $n/2$ of the truthful vertices of G can be identified by the known linear-time
algorithm that computes the strongly connected components of H ([24], see also [22]). In addition, since all vertices but less than δn are among their out-neighbors, this enables us to identify the types of all vertices besides less than δn.

We next show that even if we only assume that $|T| > n/2$ we can still identify correctly most of the truthful vertices.

By the last two claims it follows that H contains at least one SCC of size at least $(1/2 - 2\delta)n \geq 3/8n$. If H contains only one such component, then this component must consist of truthful agents, and we can identify all of them (and hence also the types of all their out-neighbors). Otherwise, there is another SCC of size at least $(1/2 - \delta)n$, and as there is no room for more than two such components, there are exactly two of them, say V_1 and V_2. Note that by the properties of G there are edges of G from V_1 to V_2 and from V_2 to V_1, and hence it is impossible that both of them are truthful components. As one of them must be truthful, it follows that exactly one of them is truthful and one is corrupt.

We next show that we can identify the types of both components.

Recall that we have the SCCs of H, and the set T of all truthful vertices must be a union of a subset of these SCCs. In addition, this set must be of size bigger than $n/2$ and must be consistent with all reports along every edge (in the sense that for any edge (u,v) with $u \in T$, the report of u on v should be consistent with the actual type of v.)

Claim 3.4 Given the strongly connected components V_1, V_2, \ldots, V_s of H and the reports along each edge, either there is no union I_1 of SCCs including V_1 whose size exceeds $n/2$ so that $T = I_1, B = V - I_1$ is consistent with all reports along the edges, or there is no union I_2 of SCCs including V_2 whose size exceeds $n/2$ so that $T = I_2, B = V - I_2$ is consistent with all reports along the edges.

Proof: Assume this is false, and let I_1, I_2 be as above. By the above discussion we know that I_1 contains V_1 but not V_2 and I_2 contains V_2 but not V_1. Note that if some SCC V_i is contained both in I_1 and in I_2 and there is any directed edge (u,v) from V_i to some other SCC V_j, then if the report along this edge is that v is truthful, then V_j must be truthful component in both I_1 and in I_2. Similarly, if the report along this edge is $v \in B$, then V_j must be outside I_1 and outside I_2. In particular, there are no edges at all from V_i to V_1 or V_2 (as each of them lies in exactly one of the two unions I_1, I_2). Let J be the set of all SCCs that are contained in both I_1, I_2. By the remark above, for every edge (u,v) from a vertex of J to a vertex outside J, the report along the edge must be $v \in B$ (since otherwise v would also be in an SCC which is truthful both in I_1 and in I_2 and hence
would be in J). Thus all edges (u, v) as above report $v \in B$, implying that all components outside J to which there are directed edges from vertices in J belong to neither I_1 nor I_2. By the properties of our graph the total size of these components exceeds that of J, (as $|J| \leq 4\delta n$ and all out-neighbors of J are outside V_1, V_2), and this shows that the sum of the sizes of I_1 and I_2 is at most

$$2|J| + (|V| - |J| - |N^+(J) - J|) \leq |V|.$$

Therefore it cannot be that both I_1 and I_2 are of size bigger than $n/2$, proving the claim.

By the last claim it follows that one can identify the types of the SCCs V_1 and V_2. This means that we can identify at least $(1/2 - 2\delta)n$ truthful vertices with no error. Recall that this is the case also when H has only one SCC of size at least $(1/2 - \delta)n$. Having these truthful vertices, we also know the types of all their out-neighbors. By the assumption on G this gives the types of all vertices but less than δn, completing the proof of the main part of the theorem.

The comment about the linear algorithm provided $|T| > (1/2 + 2\delta)n$ is clear. If we only assume that $|T| > |B|$ the proof provides only a non-efficient algorithm for deciding the types of the SCCs V_1 and V_2. Indeed, we have to check all 2^n possibilities of the types of each of the SCCs and see which ones are consistent with all reports and are of total size bigger than $n/2$. By the proof above, only one of the two SCCs V_1, V_2 will appear among the truthful SCCs of such a possibility.

4 Discussion and Open Problems

Our results show that for sufficiently strong expanders it is possible to find most of the truthful and most of the corrupt nodes even if the number of truthful nodes exceeds that of corrupt ones by only 1. In particular, this is possible for some very sparse, bounded-degree graphs. This is in sharp contrast to the known results about the PMC model, that show that if we want to identify all corrupt vertices when their number is linear in the number of vertices, we need dense graphs with a quadratic number of edges. A similar phenomenon has been discovered in the context of Byzantine agreement already in the 80s starting in [7], where it was shown that expanders allow “almost everywhere agreement”. The specific results and the technical analysis here are very different.

We have also seen that for graphs with small separators like a grid or more generally any planar graph, it is impossible to identify even a single truthful node even when there
is a very high percentage of truthful nodes. It is interesting to study in more detail the relation between expansion and corruption detection.

Question 4.1 Provide sharp criteria in terms of expansion and the fractional size of the set \(T \) for enabling corruption detection.

To illustrate an example of such a result, consider the following argument. We say that an undirected graph \(G \) is \(\delta \)-connected if for every two disjoint sets \(A_1, A_2 \) with \(|A_1| \geq \delta n, |A_2| \geq (1-3\delta)n\) there is at least one edge between \(A_1 \) and \(A_2 \). Note that the notion of connectedness is much weaker than expansion. In particular a graph \(G \) can be \(\delta \) connected, yet at the same time have \(\delta n/2 \) isolated vertices, while any \(\delta \)-good expander must be connected.

Claim 4.2 Suppose that \(|T| = (1-\epsilon)n\) and the graph \(G \) is \(\epsilon \)-connected then it is possible to identify \(T' \subset T \) of size at least \((1-2\epsilon)n\).

Proof: Let \(E' \subset E \) be the set of edges both of whose end-points declare each other truthful. Recall that each connected components of \(G' = (V,E') \) is either truthful or corrupt.

Let \(T_1, T_2, \ldots \) denote all the components of size at least \(\epsilon n \) in \(G' \). Then we claim that if \(T' = \cup T_i \) then \(|T \setminus T'| < \epsilon n\). Assume otherwise. Since all the connected components of \(T \setminus T' \) are of size at most \(\epsilon n \), there exists \(T'' \subset T \setminus T' \) of size in \([\epsilon n, 2\epsilon n]\) with no edges to \(T \setminus T'' \) whose size is in \([(1-3\epsilon)n, (1-2\epsilon)n]\). This is a contradiction to \(\epsilon \)-connectedness and the proof follows.

To see that the conditions of Claim 4.2 are tight up to constant factors consider the star graph with \(m \) leaves. Assume that \(|T| \leq m-1\). Then it is easy to see that one cannot find even one member of \(T \) if all vertices declare all their neighbors corrupt. On the other hand, this example is (vacuously) \(1/(4m) \) connected. To get a non-trivial example, one can replace each node with a complete graph \(K_k \) and each edge with a complete bipartite graph \(K_{k,k} \) for an arbitrary \(k \).

We conclude with a short discussion of a variant of the model. From the modeling perspective, it is interesting to consider probabilistic variants of the corruption detection problem.

Question 4.3 What is the effect of relaxing the assumption that truthful nodes always report the status correctly? Suppose for example that each truthful node reports the status of each of its neighbors independently accurately with probability \(1-\epsilon \). Note that in this
case it is impossible to detect the status of an individual node with probability one. However it is still desirable to find sets T' and B' such that the symmetric difference $T \Delta T'$ and $B \Delta B'$ are small with high probability. Under what conditions can this be achieved? What are good algorithms for finding T' and B'?

Acknowledgment: We thank Gireeja Ranade for suggesting to consider problems of corruption on networks, Peter Winkler for helpful comments regarding the Byzantine Agreement problem, and two anonymous referees for providing relevant references.

References

