
Economical Graph Discovery∗

Noga Alon† Yuval Emek‡ Michal Feldman§ Moshe Tennenholtz¶

Abstract

Consider a weighted n-vertex, m-edge graph G with designated source s and destination t.

The topology of G is known, while the edge weights are hidden. Our goal is to discover either

the edge weights in the graph or a shortest (s, t)-path. This is done by means of agents that

traverse different (s, t)-paths in multiple rounds and report back the total cost they incurred.

Various cost models are considered, differing from each other in their approach to congestion

effects. We seek bounds on the number of rounds and the number of agents required to complete

the discovery of the edge weights or a shortest path.

A host of results concerning such bounds for both directed and undirected graphs are es-

tablished. Among these results, we show that: (1) for undirected graphs, all edge weights can

be discovered within a single round consisting of m agents; (2) discovering a shortest path in

either undirected or directed acyclic graphs requires at least m−n+1 agents; and (3) the edge

weights in a directed acyclic graph can be discovered in m rounds with m+ n− 2 agents under

congestion-aware cost models. Our study introduces a new setting of graph discovery under

uncertainty and provides fundamental understanding of the problem.

1 Introduction

Suppose you are in an unfamiliar environment and wish to learn how long it takes to travel along

different roads; alternatively, you may wish to merely identify a shortest way toward some desig-

nated destination. To achieve this goal, you may operate a set of agents that traverse specified

paths from your origin to the destination and report back the total time duration of their trip.

This sort of scenarios typically arise in the context of Internet routing, where autonomous systems

or end users are aware of the network topology, but are uncertain about the delays on each link.

Learning the link delays may be crucial for routing decisions. This can be achieved by transmitting

packets along different paths and observing their trip times. How many rounds of transmissions (as

∗A preliminary version of this paper appeared in the 2nd International Conference on Innovations in Computer

Science (ICS), Beijing, 2011.
†Tel-Aviv University, and Microsoft Israel R&D Center.
‡ETH Zurich.
§School of Business Administration, The Hebrew University of Jerusalem, and Microsoft Israel R&D Center.
¶Microsoft Israel R&D Center, and Technion-Israel Institute of Technology.

1

a function of the parameters of the problem) are required in order to accomplish this task? How

many agents are needed? Our work revolves around this type of questions.

1.1 The Model

Consider a graph G = (V (G),E (G)) that may be directed or undirected. Let s and t be two

designated vertices in V (G) and suppose that every edge in E (G) appears on some simple (s, t)-

path in G. Unless stated otherwise, all graphs considered in this paper are assumed to satisfy this

property. We shall use the convention that n = |V (G)| and m = |E (G)|.

Each edge e ∈ E (G) is associated with some non-negative weight w(e); these edge weights are

unknown a priori (the topology of G is fully known). Information on the edge weights is gathered

by means of agents that explore the graph. Each agent i traverses some (not necessarily simple)

(s, t)-path Pi in G and reports the cost c(Pi) of Pi. The exact definition of this cost will soon

be clarified, but first, let us introduce the following notation: Define α(e, i) to be the number of

appearances of edge e in Pi (recall that e may appear multiple times in Pi as Pi is not necessarily

a simple path) and fix α(e) =
∑

i α(e, i).

We now turn to define the cost c(Pi) of path Pi. In fact, we consider three different cost mod-

els:

Independent costs. This is the most natural cost model. The cost of Pi under the indepen-

dent costs model is defined simply as the length of Pi with respect to the edge weights, that is,

c(Pi) =
∑

e∈E(G) α(e, i) · w(e).

Things become more complicated when one considers congestion effects that may be either negative

or positive as exhibited in the following two models.

Shared costs. In this cost model the weight of an edge is shared by all agents using this edge.

Formally, under the shared cost model, the cost of Pi is defined as c(Pi) =
∑

e∈E(G)
α(e,i)
α(e) · w(e).

Routing costs. In this cost model the cost incurred by agent i for using edge e increases lin-

early with α(e). Formally, under the routing cost model, the cost of Pi is defined as c(Pi) =∑
e∈E(G) α(e, i) · α(e) · w(e).

Depending on the cost model, the agents can provide crucial information on the edge weights

by exploring various (s, t)-paths in G. This can be employed to implement:

(a) a weight discovery protocol whose goal is to identify the weights of all edges in E (G); and

(b) a shortest path discovery protocol whose goal is to identify some shortest (s, t)-path in G.

The discovery protocols organize their agents in rounds. This has two implications. First, the

paths traversed by the agents of round t + 1 are decided only after the agents of round t have

made their reports. In particular, this means that the protocol admits a certain level of adaptivity.

Second, the variables α(e, i) and α(e) are determined for each round independently of other rounds.

In other words, agents belonging to disjoint rounds do not “interfere” with each other. This does

2

Independent Shared/Routing

Undirected

Weight
≤ 1 round, m agents ≤ 1 round, m agents

≥ m agents ≥ m agents

SP
≤ 1 round, m agents ≤ 1 round, m agents

≥ m− n+ 1 agents ≥ m− n+ 1 agents

DAG

Weight

Infeasible ≤ m rounds, m+ n− 2 agents (1-2 per round)

≤ 2 rounds (in-degree ≤ 2)

≥ m agents

SP

≤ 1 round, m− n+ 2 agent ≤ m− n+ 2 rounds, 1 agent per round

≥ 2 rounds (existential)

≥ m− n+ 1 agents ≥ m− n+ 1 agents

Table 1: Summary of our results. The columns correspond to the different cost models, and the rows

correspond to either undirected or directed acyclic graphs (DAG). The rows are further divided

into weight discovery (Weight) or shortest path discovery (SP) protocols. The cells contain the

bounds on the number of agents and rounds, expressed in terms of the number of edges (m) and

the number of vertices (n).

not affect the independent costs model, however, it may be crucial for discovery protocols operating

under the shared and routing costs models. The objective of a discovery protocol would typically

be to minimize the number of rounds and the number of agents used within each round.

1.2 Our Results

Our results are summarized in Table 1. The first set of results concerns undirected graphs. We

show that a single round is always sufficient to discover all edge weights regardless of the cost

model. As for the number of agents, we establish an upper bound of m (Theorem 5.1). We also

show that the bound of m agents can be achieved by traversing paths that resemble simple paths

very closely. In particular, the only deviation of an agent from a simple path is that it may need to

traverse a single edge on the simple path back and forth once beyond the first traverse. Our upper

bound is accompanied by an almost matching lower bound: no shortest path discovery protocol

can operate with less than m−n+1 agents, regardless of the number of rounds and the cost model

(Corollary 4.3). The strength of this lower bound comes from its universality, i.e., it applies to all

undirected graphs.

We proceed with the results for directed acyclic graphs (DAGs), beginning with two simple

observations: (1) Under the independent cost model, only weights of direct (s, t)-edges can be

determined (Proposition 4.6). (2) Unlike undirected graphs, a single round may not be sufficient to

determine a shortest path under the shared and routing cost models (Proposition 4.4). Note that

under the shared and routing cost models, weight discovery in DAGs is only possible if there is no

pair of edges that appear together in every path; assuming that a given DAG does not admit such

3

a pair of edges, we establish the existence of a weight discovery protocol that operates in m rounds

with m+ n− 2 agents (Section 3.1). We also show that under the shared and routing cost models,

if all vertices of a DAG have in-degree at least 2, then weight discovery is possible in 2 rounds

(Theorem 3.6). This bound is tight as demonstrated by the example given in Proposition 4.4.

Shortest path discovery protocols in DAGs can be implemented in at most m−n+2 rounds under

all cost models. On the negative side, such discovery protocols require at least m − n + 1 agents

(this also holds under all cost models).

Our techniques combine tools from linear algebra with results in graph theory, including (s, t)-

numbering of biconnected graphs and facts about the flow space of directed graphs, together with

some simple probabilistic arguments.

1.3 Related Work

The problems considered here are similar to those of reconstructing a hidden graph by a small num-

ber of queries. Problems of this type have been studied in several papers, motivated by questions

in Bioinformatics.

The basic problem in these papers is as follows: given a hidden weighted or unweighted graph

H from a prescribed family of graphs, our objective is to identify the graph (and the weights of its

edges, in the weighted case), by asking a small number of queries. A typical query in the basic model

is to check whether or not a given set of vertices contains at least one edge of H. An additive query

returns the sum of weights of all edges of H in this set. The algorithms considered can be adaptive

or non-adaptive. Similar questions have been considered in the literature on Group Testing (see [1],

[10]), but the variants dealing with graphs are more recent and arise in the study of questions in

computational biology. Here the vertices correspond to molecules, the edges to reactions between

pairs of them, and the queries correspond to experiments of putting a set of molecules together in a

test tube and determining whether a reaction occurs (or how many reactions occur, in the additive

model). See [12], [4], [3], [7], [5], [9], [8] and the references therein for the known results on these

questions.

The problems addressed in the present paper are related to these results, and especially to the

ones dealing with the additive model in the weighted case. The main differences are that each

query here corresponds to the set of edges of an (s, t)-path, and not to the collection of all edges in

a given set of vertices, and that the underlying graph here is known and only the weights (or the

edges and total weight of a shortest (s, t)-path) have to be determined. The techniques in most of

the papers dealing with hidden graphs rely mainly on probabilistic ideas, and do not share much

with the tools applied here, besides the obvious connection to linear algebra.

The problems considered here are also similar to those considered in the area of reinforcement

learning [20, 14]. Specifically they are related to work in multi-agent reinforcement learning [21, 16],

4

and in particular to work on learning in congestion games [6, 22]. In reinforcement learning agents

try to optimize their behavior in an a-priori unknown environment by an explore and exploit

approach in which they adapt their behavior based on observed feedback. The learning process is

restricted by the agents’ observation capabilities. Multi-agent learning has been studied in game

theory [11] mainly in the context of repeated games. Our work fits into the perspective of playing a

repeated game by a set of cooperative agents, but our set of agents is dynamic, and in fact consists

of a single master-agent that decides on the actions to be conducted by a pool of agents in each

iteration.

Our model of a network is as discussed in the study of congestion games [19, 17]. The unknown

parameters are the resource cost functions as discussed in [6, 22]. Agents’ observability (a.k.a. the

level of monitoring in game theory) is, however, very restrictive in our setting – we are able to see

only the total cost incurred by each agent in each iteration. Dealing efficiently with that restrictive

structure is a major contribution of our work. Our emphasis is on cooperative discovery rather

than on game-theoretic solution concepts. Our work also applies to both directed and undirected

graphs, while the related work on reinforcement learning in congestion games dealt only with

directed networks.

Finally, our work is also related to the work by Papadimitriou and Yannakakis [18], which deals

with a setting in which the graph is specified dynamically. They seek dynamic decision rules that

optimize the worst-case ratio of the distance covered to the length of the shortest path.

2 Preliminaries

Consider some graph G that may be directed or undirected. The vertex set and edge set of G are

denoted V (G) and E (G), respectively. We use the standard notions of (simple) path and cycle. In

general, we treat a path P as a multiset of edges and denote the set of vertices along P by V (P).

Given two vertices u, v ∈ V (G), a (u, v)-path is a path that leads from u to v. If P is a (u1, u2)-path

and P ′ is a (u2, u3)-path, then P ◦ P ′ refers to the (u1, u3)-path formed by the concatenation of P

and P ′.

Unless stated otherwise, the graph G is assumed to admit some designated vertices s and t so

that every edge in E (G) appears on some simple (s, t)-path in G. The parameters m and n are

used to denote |E (G)| and |V (G)|, respectively.

Discovery protocols — an algebraic view. A single round of a discovery protocol is depicted

by a real matrix M with k rows and m columns. (Recall that m = |E (G)|; the parameter k is

chosen by the protocol.) Each row 1 ≤ i ≤ k of M corresponds to some (not necessarily simple)

(s, t)-path Pi in G. Assuming that edge ej appears α(j, i) times in Pi, and fixing α(j) =
∑

i α(j, i),

5

we have

Mi,j =

α(j, i), under the independent costs model;
α(j,i)
α(j) , under the shared costs model;

α(j, i) · α(j), under the routing costs model.

A matrix M that can be constructed in that manner is called attainable.

In each round t, the discovery protocol chooses some attainable matrix M t; in return, it obtains

the vector M tw⃗, where w⃗ ∈ Rm
≥0 is the vector of unknown edge weights. This new information can

be used to design the attainable matrices M t′ of rounds t′ > t. The rows of the attainable matrix

M t are referred to as the queries of round t; the vector M tw⃗ is referred to as the vector of answers

of round t. Given some collection M of attainable matrices, we say that the vector v⃗ ∈ Rm is

spanned by M if it is spanned by the union of the rows of matrices in M.

Given some edge subset F ⊆ E (G), we denote the characteristic vector of F by χ(F), i.e.,

χ(F)j = 1 if ej ∈ F ; and χ(F)j = 0 otherwise. This definition is extended to multisets in the

natural way. If F is a singleton, namely, F = {e}, then we may slightly abuse the notation and

write χ(e) instead of χ({e}). The path space of G is the vector space spanned by the characteristic

vectors of the paths of G. The (s, t)-path space, simple (s, t)-path space, and cycle space of G are

defined in the same manner.

In light of this definitions, the goal of a weight discovery protocol is to span the vectors χ(e)

for all edges e ∈ E (G); the goal of a shortest path discovery protocol is to identify some path P

such that χ(P) · w⃗ ≤ χ(P ′) · w⃗ for every path P ′ in G.

3 Weight Discovery for DAGs: Upper Bounds

In this section we introduce two weight discovery protocols operating under the shared or routing

cost models.

3.1 General DAGs

Consider some directed acyclic graph (DAG) G with a single source s and a single sink t.1 Assume

that G is edge distinguishable, namely, that for every two edges e, e′ ∈ E (G), there exists some

(s, t)-path P in G such that exactly one of the edges e and e′ appears in P . Note that if G is

not edge distinguishable, namely, there exist two edges e, e′ ∈ E (G) such that for every path P

in G, either {e, e′} ⊆ P or {e, e′} ∩ P = ∅, then w(e) and w(e′) cannot be identified and G is not

suitable for a weight discovery protocol. The edge distinguishability assumption can be lifted if

one is interested in a shortest path discovery protocol, rather than a weight discovery protocol;

implementing the former turns out to be a much easier task.

1A DAG has a single source s and a single sink t if and only if every edge appears on some (s, t)-path.

6

Outline. We establish the existence of a weight discovery protocol for G that operates in m

rounds with m+ n− 2 agents (in total). This is established in four stages:

(i) We introduce the notion of an edge distinguishable path and show that every path in G is edge

distinguishable.

(ii) We argue that if P is an edge distinguishable path, then there must exist an edge e ∈ P whose

weight w(e) can be determined.

(iii) We observe that the path P ′ obtained from P by contracting the edge e is edge distinguishable

in the corresponding directed graph G′ (which is not necessarily acyclic anymore). Then, we can

continue by induction and discover the weights of all edges in P .

(iv) The edge weight exploration process derived from steps (ii) and (iii) may require “too many”

rounds and agents. However, we identify a basis for the row spaces of all the attainable matrices

involved in the process and show that this basis can be spanned in m rounds with m+n−2 agents.

Bypassing edge distinguishable paths. Fix an arbitrary (not necessarily acyclic) directed

graph G with two designated vertices s, t ∈ V (G). We start with the following observation.

Observation 3.1. Consider two simple (s, t)-paths P, P ′ in G. Then the vectors χ(P ∩P ′), χ(P −
P ′), and χ(P ′ − P) can be spanned in 2 rounds with 1 agent in the first round and 2 agents in the

second round.

Proof. In the first round send a single agent along the path P . In the second round send one agent

along the path P and one agent along the path P ′. The assertion follows trivially.

Consider some simple (s, t)-path P in G. A simple (u, v)-path Q in G is referred to as a (u, v)-

bypass of P if (1) V (Q)∩V (P) = {u, v}; (2) u precedes v along P and (3) E (Q)∩E (P) = ∅. The
bypass Q induces a partition of P into three disjoint paths: the (possibly empty) (s, u)-subpath Ps,u,

the (u, v)-subpath Pu,v, and the (possibly empty) (v, t)-subpath Pv,t. The following observation is

a direct consequence of Observation 3.1.

Observation 3.2. The vectors χ(Q), χ(Pu,v), and χ(Ps,u ∪ Pv,t) can be spanned in 2 rounds with

3 agents (in total).

We say that the simple path P is edge distinguishable if for every two edges e, e′ ∈ P , e ̸= e′,

there exists some (u, v)-bypass Q of P such that exactly one of the edges e and e′ appears in Pu,v;

in that case we say that the bypass Q distinguishes between e and e′ in P . The following lemma

can now be established.

Lemma 3.3. Consider some directed graph G with two designated vertices s, t ∈ V (G) and let P

be an edge distinguishable (s, t)-path in G. Then there exists some edge e ∈ P such that χ(e) can

be spanned.

Proof. Let P = (v0, . . . , vk), where s = v0 and t = vk. To avoid cumbersome notation, we shall

denote the vertex vi by the integer i when this is clear from the context. The assertion holds

7

u

R′ R

0 i′ i∗ h j∗ h′ k

Figure 1: The path P (dashed line) and the bypasses R and R′ (solid curves).

trivially if P consists of a single edge, so in what follows we assume that |P | = k ≥ 2. Since P is

edge distinguishable, there must exist some bypass Q that distinguishes between the first and last

edges in P .

Let (i∗, j∗), 0 ≤ i∗ < j∗ ≤ k, be the pair that minimizes j∗ − i∗ among all pairs (i, j), 0 ≤ i <

j ≤ k, that satisfy: (1) χ(Pi,j) can be spanned; (2) P admits an (i′, j)-bypass for some 0 ≤ i′ ≤ i;

and (3) P admits an (i, j′)-bypass for some j ≤ j′ ≤ k. This is well defined as Observation 3.2

guarantees that the start vertex and end vertex of the bypass Q are candidates for i∗ and j∗,

respectively.

We argue that j∗ − i∗ = 1. The assertion follows as this implies that (i∗, j∗) is an edge whose

characteristic vector can be spanned. Assume towards deriving contradiction that j∗ − i∗ > 1 and

consider the (disjoint) edges e = (i∗, i∗ + 1) and e′ = (j∗ − 1, j∗). Since P is edge distinguishable,

and in particular, e and e′ can be distinguished, there must exist some bypass R of P such that

exactly one of its endpoints is in the interval [i∗ + 1, j∗ − 1] — denote this endpoint by h. Assume

without loss of generality that the other endpoint of R is j∗ ≤ h′ ≤ k. Recall that by the definition

of the pair (i∗, j∗), there exists some (i′, j∗)-bypass R′ of P such that 0 ≤ i′ ≤ i∗. Refer to Figure 1

for illustration.

We consider two possible cases. Assume first that R ∩ R′ ̸= ∅ and let u be a vertex which is

internal to both R and R′. (Such vertex u must exist if R and R′ share an edge.) Consider the

path R′′ that starts at h, follows R until u, and then follows R′ until j∗. By definition, R′′ serves

as an (h, j∗)-bypass of P . Observation 3.2 guarantees that χ(Ph,j∗) can be spanned (due to the

bypass R′′). But this contradicts the choice of the pair (i∗, j∗): the pair (h, j∗) should have been

chosen due to the bypass R′′.

So, assume that R ∩ R′ = ∅. By applying Observation 3.1 to the paths P0,i′ ◦ R′ ◦ Pj∗,k and

P0,h ◦R ◦ Ph′,k, we conclude that the characteristic vector of P0,i′ ∪ Ph′,k, which is the intersection

of the two paths, can be spanned. This implies that χ(Pi′,h′) = χ(P) − χ(P0,i′ ∪ Ph′,k) can also

be spanned. Since Observation 3.2 guarantees that χ(Ph,h′) can be spanned (due to the bypass

R) and that χ(Pi′,j∗) can be spanned (due to the bypass R′), it follows that χ(Ph,j∗) = χ(Ph,h′) +

χ(Pi′,j∗) − χ(i′, h′) can also be spanned. But this contradicts the choice of the pair (i∗, j∗): the

8

pair (h, j∗) should have been chosen due to the bypasses R and R′. Therefore, j∗ − i∗ = 1 and the

assertion holds.

Next, we show that Lemma 3.3 can be employed to span the characteristic vectors of all edges

in an edge distinguishable path.

Lemma 3.4. Consider some directed graph G with two designated vertices s, t ∈ V (G) and let P

be an edge distinguishable (s, t)-path in G. Then w(e) can be determined for all edges e ∈ P .

Proof. The assertion holds trivially if P consists of a single edge, so assume that |P | ≥ 2. Lemma 3.3

guarantees that w(e) can be determined for some edge e = (u, v) ∈ P . Let G′ be the directed graph

obtained from G by contracting the vertices u and v into a single vertex z. Let P ′ = P − {e}
be the path in G′ which is obtained from P by contracting u and v into z. Since P is an edge

distinguishable path in G, it follows that P ′ is an edge distinguishable path in G′. The assertion

is established by showing that queries under G′ can be simulated by queries under G, thus we can

apply Lemma 3.3 to G′ and continue by induction2 on |P |.

To that end, consider some (s, t)-path Q′ in G′. If the edges of Q′ form a path in G, then a

query corresponding to Q′ under G′ is also a query under G. Otherwise, Q′ must go through the

vertex z. Moreover, the edge of Q′ that enters z corresponds to an edge that enters u in G and the

edge of Q′ that exits z corresponds to an edge that exits v in G. Hence, there exists a path Q in G

such that Q = Q′∪{e}. Since w(e) is known, we can translate the answer of a query corresponding

to Q under G to the answer of a query corresponding to Q′ under G′. The assertion follows.

Now, let G be a DAG with a single source s and a single sink t and suppose that G is edge

distinguishable. The fact that G is a DAG implies that every simple (s, t)-path in G is edge

distinguishable. As every edge of G appears on some simple (s, t)-path in G, Lemma 3.4 guarantees

that the vectors χ(e) can be spanned for all e ∈ E (G), that is, we can implement a weight discovery

protocol. However, a weight discovery protocol implemented by following the process implicitly

described in the proofs of Lemmas 3.3 and 3.4 requires too many rounds and agents.

Extending a basis for the cycle space. To tackle this obstacle, we consider the directed graph

G′ obtained from G by identifying the vertices s and t into a new vertex z. Since s and t are the

unique source and sink of the DAG G, it follows that G′ is strongly connected and that every cycle

in G′ includes the vertex z. The following theorem is a special case of Theorem 14.2.1 in [13].3

2We do not assume that the directed graph G′ is acyclic, nor did we assume that the directed graph G is acyclic.

All we require for the inductive argument to hold is that the path P ′ is edge distinguishable.
3In fact, the setting of [13] is somewhat different then ours. Specifically, they consider an undirected graph and

show that the dimension of the flow space associated with any orientation of the graph edges is m−n+c, where c is the

number of connected components of G. The flow space is spanned by vectors corresponding to the (unoriented) cycles

in G, where a flow that does not agree with the orientation of some edge is taken to be negative in the corresponding

9

Theorem 3.5. The dimension of the cycle space of a strongly connected digraph H is |E (H)| −
|V (H)|+ 1.

By applying Theorem 3.5 to G′ (which admits n − 1 vertices and m edges), we conclude that

the dimension of the (s, t)-path space in G is m− n+ 2. It follows that in m− n+ 2 rounds, each

with a single agent, we can query a basis B for the (s, t)-path space of G.

A careful examination of the proofs of Lemmas 3.3 and 3.4 leads to the conclusion that they

essentially rely on successive applications of the building block established in Observation 3.1. This

building block consists of two rounds, the first with a single agent and the second with two agents.

The basis B spans the queries corresponding to the single agent rounds, thus it can be extended

to a basis for the whole edge space of G by appending to it m− (m− n+ 2) = n− 2 vectors, each

corresponding to a query involving two agents. The missing n− 2 vectors are spanned in at most

n−2 rounds, each with two agents. In total, a basis for the edge space of G is spanned in m rounds

with m+ n− 2 agents.

3.2 DAGs in which All Vertices Have In-Degree ≥ 2

It turns out that weight discovery protocols can be much more efficient (in terms of the number

of rounds) if every internal vertex in the DAG has in-degree at least 2. (Clearly, the same result

holds if every internal vertex has out-degree at least 2.)

Theorem 3.6. Let G be a DAG so that the in-degree of every internal vertex is at least 2. Then

G admits a weight discovery protocol that operates in two rounds under the shared and routing cost

models.

Proof. Let P be the set of all (s, t)-paths of G. In each of the two rounds, for every path P ∈ P,

the protocol chooses a random number of agents from a sufficiently large set of numbers and sends

them along P . We claim that with high probability, this protocol determines the weights of all

edges.

Fix a topological order on the vertices of G, and let v be the first vertex (succeeding s) in the

topological order. We begin with the following lemma.

Lemma 3.7. The weights of all the edges from s to v can be determined by the protocol.

Proof. Since the in-degree of every vertex is at least 2, there are at least two edges from s to v.

Let e1 and e2 be two (s, v) edges. We show that the weights of e1 and e2 can be determined. The

same analysis can be applied to any other pair of edges from s to v to establish the assertion of the

lemma. Throughout this proof we denote wi = w(ei) for simplicity.

coordinate. When the orientation of G induces a strongly connected directed graph, the flow space as defined in [13]

coincides with the cycle space considered in the current paper.

10

Let P1 = {P : e1 ∈ P} and P2 = {P : e2 ∈ P}. For every P ∈ P, let x1P denote the number of

agents that traverse the path P in round 1 (which is chosen randomly by the protocol). Also, let

x11 =
∑

P∈P1
x1P and x12 =

∑
P∈P2

x1P ; i.e., x
1
1 (respectively, x12) is the number of agents traversing

paths in P1 (resp., P2) in the first round. Since e1 and e2 both go from s to v, the sets P1 and P2

are disjoint, consequently x11 and x12 are independent, as the sums of independent variables.

Let M1 and M2 be the matrices constructed in the first and second rounds of the protocol under

the routing cost model. Consider some (v, t)-path Pv,t, and let P = e1 ◦Pv,t and P ′ = e2 ◦Pv,t. Let

M1
P (resp., M1

P ′) denote a row in M1 corresponding to an agent traversing the path P (resp., P ′).

The value (M1
P −M1

P ′)w⃗ can be computed as the difference of two answers of the protocol, denote

it by b1. Since P and P ′ share the same suffix, it holds that (M1
P − M1

P ′)w⃗ = x11w1 − x12w2. We

obtain the equation x11w1 − x12w2 = b1, where x11, x
1
2, b

1 are known and x11 and x12 are independent.

Similarly, let x21 and x22 denote the number of agents traversing paths in P1 and P2, respectively,

in the second round. Applying the same analysis to the second round gives us the equation x21w1−
x22w2 = b2 (with b2 defined analogously to b1), where x21 and x22 are independent. We obtain a system

of two linear equations with two unknowns, w1 and w2. It is easy to verify that for a sufficiently

large range of possible values for the number of agents traversing each path, the obtained system of

equations has a unique solution with probability at least, say 1− 1/2m. Consequently the weights

of e1 and e2 are determined with high probability. Under the shared cost model, the same analysis

can be applied by replacing the coefficients xji by (xji)
−1 (for i, j ∈ {1, 2}).

The last lemma establishes that the weights of all edges from s to v can be determined by

the protocol. Let G′ be the graph obtained from G by contracting the vertices s and v into a

single vertex s′. Since only (s, v) edges are contracted, the obtained graph G′ is also a DAG (with

source s′ and sink t). In addition, it preserves the in-degree ≥ 2 property. Combined with the fact

that queries under G′ can be simulated by queries under G (clearly, since the weights of the edges

from s to v can be discovered, the answer of a query corresponding to an (s, t)-path in G can be

translated to an (s′, t)-path under G′.), we can apply Lemma 3.7 to G′ and proceed by induction on

the topological order to determine the weights of all edges in E (G). The assertion of the theorem

follows since the total probability of failure is bounded by 1
2mm ≤ 1/2.

Remark: The bound of 2 rounds is tight for this family of graphs, as demonstrated by the graph

in Figure 2.

4 Shortest Path Discovery: a Lower Bound

Consider some undirected or directed acyclic graph G with two designated vertices s, t ∈ V (G) so

that every edge appears on some simple (s, t)-path of G. We show that any shortest path discovery

11

e1e2

e3

e4

Figure 2: An example of a DAG that does not admit a shortest path protocol that operates in a

single round under the shared and routing protocols.

protocol for G requires at least m− n+ 1 agents, regardless of the number of rounds and the cost

model. We first establish the lower bound for directed acyclic graphs.

Theorem 4.1. Any shortest path discovery protocol for a DAG requires at least m− n+1 agents,

regardless of the cost model.

Proof. Suppose by way of contradiction that some shortest path P has been discovered with less

than m−n+1 agents, and let M be the matrix representing the queries of the discovery protocol.

Note that M is not necessarily an attainable matrix, rather it may be a row concatenation of several

attainable matrices.

The heart of the proof relies on the following adversary argument. An adversary keeps answering

the queries as if all (s, t)-paths of G have exactly the same length. To see that this is possible,

fix some topological order on the vertices of G and associate every edge e with a weight pe that

equals the difference between the topological numbers of its incident vertices. This way, pe is

strictly positive for every e and the length of every (s, t)-path is n − 1. We shall next show that

the information that was gathered is not sufficient to determine a shortest path. Specifically, we

will show that one cannot certify that (χ(P)− χ(P ′))w⃗ ≤ 0 for every (s, t)-path P ′ of G.

Let B be a maximal set of linearly independent characteristic vectors of (s, t)-paths of G, and

let C = span({χ(P) − χ(P ′) : χ(P ′) ∈ B}). Since |B| is known to be m − n + 2 (see Section 3.1)

and P is an (s, t)-path of G, the dimension of C is m− n+ 1. By the contradiction assumption, at

most m − n agents are employed, thus the dimension of the row space of M is at most m − n. It

follows that there must exist a vector d⃗ ∈ C, d⃗ ̸= 0, such that Md⃗ = 0. Therefore, for every solution

p⃗ ∈ Rm
>0 that is consistent with the agents’ responses, there exists a sufficiently small ϵ > 0, such

12

that both p⃗ + ϵd⃗ and p⃗ − ϵd⃗ belong to the solution space of the attained system of equations (ϵ

should be sufficiently small so that both p⃗− ϵd⃗ and p⃗+ ϵd⃗ stay positive).

Consider the obtained solution p⃗ = {pe}e∈E(G). Let d⃗ ∈ C and ϵ > 0 be so that p⃗+ ϵd⃗ and p⃗− ϵd⃗

are in the solution space, and let P ′ be some (s, t)-path satisfying

d⃗(χ(P)− χ(P ′)) ̸= 0 (1)

(which must exist as d⃗ ∈ C, d⃗ ̸= 0). To conclude the proof we show that the sign of (χ(P)−χ(P ′))w⃗

cannot be determined.

Since all the queries have been answered as if all path lengths are equal, it follows that p⃗(χ(P)−
χ(P ′)) = 0 for every path P ′. Combined with Equation 1 we get that

(p⃗+ ϵd⃗)(χ(P)− χ(P ′))

= p⃗(χ(P)− χ(P ′)) + ϵd⃗(χ(P)− χ(P ′))

= + ϵd⃗(χ(P)− χ(P ′)) ,

while

(p⃗− ϵd⃗)(χ(P)− χ(P ′))

= p⃗(χ(P)− χ(P ′))− ϵd⃗(χ(P)− χ(P ′))

= − ϵd⃗(χ(P)− χ(P ′)) .

But since both p⃗ + ϵd⃗ and p⃗ − ϵd⃗ belong to the solution space, it follows that the sign of (χ(P) −
χ(P ′))w⃗ cannot be determined, contradicting the supposition that P has been discovered as a

shortest path.

A close examination of the last proof implies that the same analysis can be applied to an

undirected graph G if one can show that G can be directed and assigned positive edge weights so

that all of the (s, t)-paths of the obtained graph have the same length. This argument is established

in the following lemma, using the properties of st-numbering of graphs, introduced in [15].

Lemma 4.2. Let G be an undirected graph with two designated vertices s, t ∈ V (G) so that every

edge appears on some simple (s, t)-path. The edges of G can be directed and assigned positive edge

weights such that the length of every (s, t)-path of the obtained graph equals n− 1.

Proof. Partition the edges of G into maximal biconnected components (blocks) C1, . . . , Ck. Let

T (G) be the block tree associated with G (that is, associate a vertex in T (G) with every block of

G, and connect two vertices of T (G) by an edge if their corresponding blocks share a vertex in G).

It is easy to verify that since every edge appears on some (s, t)-path in G, T (G) forms a simple

path. Rename the blocks so that s ∈ V (C1), t ∈ V (Ck), and the incident vertices of every edge

in T (G) correspond to blocks Ci and Ci+1 for some 1 ≤ i ≤ k − 1. Let vi,i+1 ∈ V (G) denote the

13

unique vertex that is shared by blocks Ci and Ci+1 for 1 ≤ i ≤ k − 1. Let si = vi−1,i be the source

of block Ci for every 2 ≤ i ≤ k, and ti = vi,i+1 be the target of block Ci for every 1 ≤ i ≤ k− 1, so

that ti−1 = si for every 2 ≤ i ≤ k − 1. In addition, let s1 = s and tk = t be the source of C1 and

the target of Ck, respectively.

Consider the block C1. Since it is a biconnected component, it admits an s1t1-numbering [15],

i.e., an assignment of numbers to its vertices so that s1 has number 1, t1 has number |V (C1)|, and
every other vertex has a neighbor with a smaller number and a neighbor with a larger number.

Compute some s1t1-numbering of C1 and let num(v) denote the s1t1-numbering of vertex v. Direct

every edge in E (C1) toward the vertex with the larger s1t1-numbering. Given an edge e = (u, v) ∈
E (C1), assign it weight w(e) = num(v)−num(u). It is easy to verify that with these edge weights

the length of every (s1, t1)-path in C1 is exactly |V (C1)| − 1.

Now, for every component Ci, 2 ≤ i ≤ k, repeat the aforementioned process by computing an

siti-numbering for the vertices in V (Ci) so that num(si) = num(ti−1) and num(ti) = |
∪

j≤iV (Cj)|.
One can easily verify that the resulting graph is a DAG in which all (s, t)-paths have length n-1.

Since every path in the graph obtained by the process described in the last lemma is also a path

in G, the analysis of the proof of Theorem 4.1 can be employed to establish the following corollary.

Corollary 4.3. Any shortest path discovery protocol for an undirected graph requires at least m−
n+ 1 agents, independent of the cost model.

Remark: the lower bound obtained in this section is based on algebraic arguments that hold for

every matrix that is composed of at most m−n rows. Specifically, it also holds for agents that can

traverse any subset of edges, not necessarily ones corresponding to an (s, t)-path.

We next show that under the shared and routing cost models, a single round is not always

sufficient to determine a shortest path.

Proposition 4.4. There exists a DAG that does not admit any shortest path discovery protocol

operating in a single round under the shared or routing cost models.

Proof. Consider the graphG depicted in Figure 2. G has three (s, t)-paths, namely P1 = {e1, e3}, P2 =

{e2, e3} and P3 = {e4}. We show that under the routing and shared cost models no protocol can

discover a shortest path in G with less than two rounds.

Consider the routing cost model first. Clearly, the weight of the direct edge e4 can be determined;

suppose it is 2. Let x1, x2 denote the number of agents sent by the protocol along the paths P1, P2,

respectively. The answers to the queries corresponding to P1 and P2 are w1x1 + w3(x1 + x2), and

w2x2 + w3(x1 + x2). Suppose the answers are as if w1 = w2 = w3 = 1 (so that all paths have the

same length). Assume first that x1, x2 ̸= 0. Let d⃗ = (−x2(x1 + x2),−x1(x1 + x2), x1x2). It is easy

to verify that for a sufficiently small ϵ > 0 the vectors d⃗+ = (1, 1, 1)+ ϵd⃗ and d⃗− = (1, 1, 1)− ϵd⃗ are

also valid solutions for the obtained system of equations. Now, consider the lengths of the paths

14

P1, P2, P3 according to the two solutions. According to d⃗+, their respective lengths are 2 − ϵx22,

2− ϵx21, 2, so either P1 or P2 is a shortest-path. In contrast, according to d⃗−, the respective lengths

of P1, P2, P3 are 2 + ϵx22, 2 + ϵx21, 2, so P3 is a shortest-path. Since after the first round both d⃗+

and d⃗− are valid solutions, a shortest path cannot be discovered. It remains to show that if either

x1 or x2 equals zero, a shortest path cannot be discovered. Suppose x2 = 0. In this case we have

a single answer corresponding to x1(w1 + w3). It is easy to verify that, e.g., (2, 0, 0) and (0, 1, 2)

are valid solutions. According to the former, P2 is a shortest path, while according to the latter,

P1 and P3 are shortest.

A similar analysis shows that a shortest path in G cannot be discovered within a single round

under the shared cost model either. One can easily verify that if the answers are as if w1 = w2 =

w3 = 1 and w4 = 2, two additional valid solutions are (1, 1, 1) ± ϵ(−x1,−x2, x1 + x2) for some

sufficiently small ϵ > 0, and the lengths of P1, P2 are 2± ϵx2, 2± ϵx1, respectively, while the length

of P3 is 2. Again, it is impossible to tell whether or not P3 is a shortest path.

Remark: In fact, in the last example, as long as x1 ̸= x2, it is impossible to compare any pair

of paths within a single round. To see this, let x2 = yx1 for some y > 0, y ̸= 1. If y > 1, then

according to d⃗+, P1 is shorter than P2, whereas according to d⃗−, P2 is shorter than P1. If y < 1

the opposite holds. In any case, one cannot tell which of P1 or P2 is shorter.

By Theorem 3.5, the (s, t)-path space of a DAG G has dimension m− n+ 2, hence a basis for

the (s, t)-path space of G can be spanned in m− n+ 2 rounds, each with a single agent.

Proposition 4.5. Every DAG admits a shortest path discovery protocol that operates in m−n+2

rounds with a single agent in each round.

The last proposition establishes the infeasibility of weight discovery protocols in DAGs under

the independent cost model.

Proposition 4.6. There exists no weight discovery protocol for DAGs under the independent cost

model.

Proof. Consider some internal vertex v in the DAG. In any vector that can be spanned by paths, the

sum of coordinates corresponding to edges entering v equals the sum of coordinates corresponding

to edges exiting v. Therefore, the characteristic vector of a non-direct edge (that has at least one

incident internal vertex) can never be spanned.

5 Weight Discovery for Undirected Graphs: an Upper Bound

Consider an undirected graph G with two designated vertices s, t ∈ V (G) so that every edge appears

on some simple (s, t)-path. We establish the existence of a weight discovery protocol for G that

operates in a single round with m agents.

15

Theorem 5.1. Every undirected graph admits a weight discovery protocol that operates in a single

round with at most m agents.

Proof. For every edge ei ∈ E (G), let Pi be some (s, t)-path that traverses the edge ei a “large”

number of times xi (by traversing e back and forth as needed), while traversing every other edge

ej at most once. The exact value of xi shall be determined soon. The protocol operates in a single

round — for every edge ei, it sends a single agent along the path Pi. We denote by ci the total

number of appearances of the edge ei in all paths Pj for j ̸= i. Since for every i ≠ j the edge ei

appears in the path Pj at most once, ci cannot exceed m− 1.

The matrix M constructed by the protocol has m rows, each corresponding to one of the m

agents (or paths). We next specify the values of the matrix entries under the different cost models.

Under the independent costs model, for every column i we have Mi,i = xi, and for every j ̸= i,

Mj,i = 1 if ei appears in Pj and Mj,i = 0 otherwise. Since for every column i there are exactly

ci non-zero entries off the diagonal, it follows that
∑

j ̸=iMj,i = ci. Consequently, by choosing

xi > ci for every i, the matrix M is (strictly) diagonally dominant and therefore non-singular. In

particular, it spans the vectors χ(ei) for all edges ei ∈ E (G).

A similar analysis shows that in the shared and routing costs models the obtained matrix

is diagonally dominant if xi > ci for every i. Specifically, under the shared cost model, for every

column i we have Mi,i = xi/(xi+ci), and for every j ̸= i, Mj,i ∈ {1/(xi+ci), 0}, with exactly ci non-

zero entries. Similarly, under the routing cost model, for every column i, we have Mi,i = xi(xi+ci),

and for every j ̸= i, Mj,i ∈ {xi + ci, 0}, with exactly ci non-zero entries. Applying the fact that

ci ≤ m−1 for every i implies that setting xi = m for an odd m or xi = m+1 for an even m results

in a diagonally dominant matrix.

The above protocol discovers the weights of all edges and is tight in terms of the number of

agents (and obviously in the number of rounds). One may wonder, however, whether it is possible

to improve the number of edge traverses in the protocol. We answer this question in the affirmative.

Specifically, we claim that if the protocol chooses xi randomly and uniformly to be either 1 or 3 for

every i, the weights of all edges can be determined. In doing so, the paths taken by all agents are

“almost” simple.

Let M be a random matrix that is constructed in the independent cost model by choosing xi

randomly and uniformly to be either 1 or 3. The determinant of M is a multilinear polynomial of

x1, . . . , xm. It is easy to verify that a multilinear polynomial of m variables that is not identically

zero, whose variables are chosen randomly and uniformly from a set of cardinality 2, is non-zero

with positive probability (see, e.g., [2], Lemma 2.1). It follows that M is non-singular thus spans

the characteristic vectors of all edges.

The same analysis can be applied to the shared and routing cost models by defining w′
i =

wi/(xi+ ci) and w′
i = wi(xi+ ci) (where wi = w(ei)), respectively, and observing that in both cases

16

multiplying the constructed matrix by w⃗ is equivalent to multiplying the matrix M (constructed

in the independent cost model) by w⃗′

References

[1] M. Aigner, Combinatorial Search, John Wiley and Sons, Chichester (1988).

[2] N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999),

7–29.

[3] N. Alon and V. Asodi, Learning a Hidden Subgraph, SIAM J. Discrete Math. 18 (2005),

697–712.

[4] N. Alon, R. Beigel, S. Kasif, S. Rudich and B. Sudakov, Learning a Hidden Matching, Proc.

of the 43th IEEE FOCS, IEEE(2002), 197-206. Also: SIAM J. Computing 33 (2004), 487-501.

[5] D. Angluin and J. Chen, Learning a Hidden Hypergraph, Journal of Machine Learning Re-

search 7 (2006), 2215-2236.

[6] Itai Ashlagi, Dov Monderer, and Moshe Tennenholtz. Learning equilibrium in resource selec-

tion games. In AAAI, pages 18–23, 2007.

[7] M. Bouvel, V. Grebinski and G. Kucherov, Combinatorial Search on Graphs Motivated by

Bioinformatics Applications: A Brief Survey, In: Kratsch, D. (ed.) WG 2005. LNCS, vol.

3787, pp. 16–27. Springer, Heidelberg (2005)

[8] N. H. Bshouty and H. Mazzawi, Reconstructing weighted graphs with minimal query complex-

ity, Proc. 20th ALT 2009, 97–109.

[9] S. Choi and J. H. Kim, Optimal Query Complexity Bounds for Finding Graphs. Proc. 40th

ACM STOC (2008), 749–758.

[10] D. Du and F. K. Hwang, Combinatorial group testing and its application, Series on applied

mathematics, vol. 3. World Science (1993)

[11] D. Fudenberg and D. Levine. The theory of learning in games. MIT Press, 1998.

[12] Grebinski, V., Kucherov, G.: Optimal Reconstruction of Graphs Under the Additive Model,

Algorithmica 28(2000), 104–124.

[13] C. Godsil and G. Royle, Algebraic Graph Theory, volume 207 of Graduate Text in Mathematics,

Springer, New York, 2001.

[14] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal

of AI Research, 4:237–285, 1996.

17

[15] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing of graphs, Theory of

Graphs: International Symposium, Rosentiehl, P., ed., New York, 1967, Gordon and Breach,

215-232.

[16] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In Proc.

11th ICML, pages 157–163, 1994.

[17] D. Monderer and L.S. Shapley. Potential games. Games and Economic Behavior, 14:124–143,

1996.

[18] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map, Theoretical Computer

Science, 84(1), Pages 127–150, 1991.

[19] R.W. Rosenthal. A class of games possessing pure-strategy nash equilibria. International

Journal of Game Theory, 2:65–67, 1973.

[20] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[21] M. Tan. Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents. In Pro-

ceedings of the 10th International Conference on Machine Learning, 1993.

[22] M. Tennenholtz and Aviv Zohar. Learning equilibria in repeated congestion games. In AAMAS,

pages 233–240, 2009.

18

