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Abstract

We prove that for every graph H of maximum degree at most 3 and for every

positive integer q there is a finite f = f(H, q) such that every Kf -minor contains a

subdivision of H in which every edge is replaced by a path whose length is divisible

by q. For the case of cycles we show that for f = O(q log q) every Kf -minor contains

a cycle of length divisible by q, and observe that this settles a recent problem of

Friedman and the second author about cycles in (weakly) expanding graphs.

1 Introduction

There are several known results asserting that any graph with a sufficiently large minimum

(or average) degree contains a cycle of prescribed length modulo a given parameter. An

early result of this form appears in [3]: for every odd k there exists a c(k) so that every

graph with minimum degree at least c(k) contains a cycle of length ` modulo k for every

integer `. A similar result holds for every even k and every even ` (but of course not for

even k and odd ` as shown by dense bipartite graphs.) Thomassen proved in [11] that for

non-bipartite 2-connected graphs a result as above exists also for even k and odd `.

For graphs with large chromatic number stronger conclusions hold. Another result

established in [11] addresses this case: For any two positive integers m and k there exists

a number c(m, k) such that the following holds. For every assignment of two natural

numbers k(e) ≤ k and d(e) for each edge e of Km, any graph of chromatic number at least
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c(m, k) contains a subdivision of Km in which each edge e corresponds to a path of length

d(e) modulo k(e).

A more recent result with a similar flavor is proved in [10]: for every k there is a c(k)

so that every graph with average degree at least c(k) contains a subdivision of Kk in which

every edge is subdivided the same number of times.

A common feature of these results and related ones is that they apply only to graphs

with a rather large average degree. In particular, if the average degree is just a bit above

2, then none of these results holds, and indeed there are simple examples showing no such

result can hold if we do not make any additional assumptions. In this note we prove a result

applicable to very sparse graphs. The sufficient condition we give is based on complete

minors; since there exist minors of arbitrarily large complete graphs with average degree

arbitrarily close to 2 in every subgraph, this imposes essentially the weakest possible

condition in terms of graph density.

Theorem 1. For every graph H of maximum degree at most 3, and for every positive

integer q there is a finite f = f(H, q) such that every Kf -minor G contains a subdivision

of H in which every edge is replaced by a path whose length is divisible by q.

Remark: For every f and q there is a Kf -minor G with maximum degree 3, in which any

path between two vertices of degree 3 is of length divisible by q; obviously such G does

not contain a subdivision of any graph H with maximum degree ∆(H) > 3. Hence, the

assumption that H has maximum degree at most 3 is needed. Similarly the conclusion

about paths of length 0 modulo q cannot be replaced by any other residue modulo q, unlike

the results in [3] or [11] mentioned above.

We make essentially no attempt to optimize the value of f = f(H, q), and the problem

of determining its asymptotic behavior remains open.

It is well known that graphs without small separators contain large complete minors

(the line of research establishing these results started in [2] and culminated with [7]). Our

main result is thus applicable to such graphs. Also, non-existence of sublinear separators

is essentially equivalent to weak expansion (see [9] for a discussion), hence Theorem 1 can

be applied to the class of (weakly) expanding graphs.

In the very special case of obtaining a cycle of length divisible by q we get a nearly

tight bound, proving the following.

Theorem 2. For every positive integer q there is a g = g(q) = O(q log q) such that every

Kg-minor G contains a cycle of length divisible by q. Moreover, if q is a prime then

g(q) < 4q.

2



This, together with the fact that expanders contain large clique minors (see [9] for a

background), settles a problem raised recently in [6].

The proofs are described in the next two sections. The final section contains some

concluding remarks and open problems.

2 Subdivisions

In this section we prove Theorem 1. We start by proving a key lemma.

Lemma 2.1. There is a function f1(k, q) satisfying the following condition. Let k, q ≥ 2

be integers. Let T be a tree with edges labeled by the elements of Zq, and let L be a set

of specified leaves of T of cardinality |L| = f1(k, q). Then there are a subset L0 ⊂ L of

k leaves and a residue a ∈ Zq such that for every three leaves x1, x2, x3 ∈ L0 there is a

vertex v ∈ V (T ) with all paths from v to xi in T being disjoint outside of v and having all

weight a modulo q.

Proof. We set with foresight

f1 = f1(k, q) = ((k − 1)q + 1)(k−1)q
2+1 .

Assume that T, L are as given in the lemma. Observe that if the lemma’s conclusion

holds for a subtree T ′ ⊆ T containing L then it holds for T . Hence we can assume that T

is a minimal by inclusion tree containing L.

For convenience root T at an arbitrary vertex r ∈ V (T ) with dT (r) ≥ 3. For a vertex

v ∈ V (T ) denote by Tv the subtree of T rooted at v (with respect to r).

Consider first the case where there is a vertex v ∈ V (T ) with dT (v) ≥ (k − 1)q + 2.

By the minimality of T , for each child u of v the subtree Tu contains a leaf `(u) ∈ L, the

paths from v to all such `(u) are disjoint outside of v. By the pigeonhole principle there is

a subset U0 of the children of v in T of cardinality |U0| = ddT (v)−1
q e ≥ k such that all paths

from v to `(u), u ∈ U0, are of the same weight a modulo q. The set L0 = {`(u) : u ∈ U0}
fulfills then the requirement of the lemma.

Now we treat the complementary case ∆(T ) ≤ (k − 1)q + 1. Let t be the maximal

number of vertices of degree at least three on a path from r to a leaf x ∈ L. Since every

x ∈ L is uniquely determined by the sequence of edges leaving the vertices of degree at

least three on the unique path from r to x in T , and the number of such sequences is

obviously at most (∆(T ))t, we obtain: |L| ≤ (∆(T ))t, implying t ≥ (k − 1)q2 + 1. Let

P be a path from r to a leaf of T with t vertices of degree at least three in T along
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it, and let U1 ⊂ V (P ) be these vertices, |U1| = t ≥ (k − 1)q2 + 1. By the pigeonhole

principle, there is a subset U2 ⊂ U1 of cardinality |U2| = d |U1|
q e ≥ (k − 1)q + 1 such that

all subpaths of P from r to u ∈ U2 have the same weight modulo q. This implies that for

every u1 6= u2 ∈ U2 the subpath of P between u1 and u2 has weight 0 modulo q. By the

minimality of T , every vertex u ∈ U2 contains a leaf `(u) ∈ L in its subtree Tu, where all

these leaves are distinct. Applying the pigeonhole principle again, we derive the existence

of a subset U3 ⊂ U2 of cardinality |U3| = k such that every path between u ∈ U3 and the

corresponding leaf `(u) ∈ Tu has the same weight a modulo q. Set L0 = {`(u) : u ∈ U3}.
We claim that L0 meets the requirement of the lemma. Indeed, let u1, u2, u3 be distinct

vertices in U3 ordered in the order of their appearance along P . Then the paths from u2

to `(ui), i = 1, 2, 3, are all disjoint outside of u2 and have total weight a modulo q (the

part along P has weight 0 modulo q, and the appended part from ui to `(ui) has weight

a(mod q)).

We can now prove Theorem 1, making no attempt to optimize the estimate for f . Let

Γ be a Ramsey graph in q colors for the (q− 1)-subdivision of H. Assume that the vertex

set of Γ is [N ], denote k = 2|E(Γ)|. Let M = f1(k, q), with f1(k, q) from Lemma 2.1.

Finally, set:

f = M + (N − 1)q + 1 .

Assume G is a minor of Kf with supernodes X1, . . . , X(N−1)q+1, Y1, . . . , YM . For a pair of

supernodes Xi, Yj , if e = (x, y) is an edge connecting Xi to Yj then split e by a vertex z,

assign weights w((x, z)) = 0, w((z, y)) = 1, and append (x, z) to Xi. We assign weight 1

to all remaining edges of G.

Let Ti be a spanning tree of Xi and let Li be a set of M = f1(q, k) distinct leaves

of Ti, each connected to a different supernode Yj . Apply Lemma 2.1 to (Ti, Li) to get a

subset L′i of cardinality |L′i| = k and a residue ai ∈ Zq with the properties guaranteed by

the lemma. Invoking the pigeonhole principle with respect to the multiset of residues {ai}
we conclude that there exists a subset I ⊂ [(N − 1)q + 1] of cardinality |I| = N with all

residues ai, i ∈ I, taking the same value a. By renumbering if necessary we can assume

I = [N ].

Now we go sequentially over all edges e = (i1, i2) ∈ E(Γ) and connect the correspond-

ing supernodes Xi1 , Xi2 as follows: choose a previously unused supernode Yj1 having a

neighbor in L′i1 , choose a distinct and previously unused supernode Yj2 having a neighbor

in L′i2 , and then connect Yj1 and Yj2 . Concatenating, we obtain a path Pe in G from a

leaf x1 ∈ L′i1 to a leaf x2 ∈ L′i2 , where all these paths are vertex disjoint for different edges
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e = (i1, i2) ∈ E(Γ).

Define a coloring c : E(Γ) → Zq as follows: for e = (i1, i2) ∈ E(Γ), its color c(e) is

equal to the weight modulo q of the path Pe between Xi1 and Xi2 . By the choice of Γ, the

so obtained coloring c induces a monochromatic copy H∗ of the (q − 1)-subdivision of H,

say in color b ∈ Zq. Let I0 ⊂ [N ] be the subset of supernodes corresponding to the vertices

of H in this subdivision. By construction, for each edge f = (i1, i2) ∈ E(H), i1, i2 ∈ I0,
the graph G contains a path Qf from Xi1 to Xi2 passing through a sequence of q − 1

intermediate supernodes Xi, with the intermediate supernodes being distinct for distinct

edges. Each such path enters and leaves Xi through vertices of L′i; by the definition of

L′i and the choice of a, the entrance and departure point in Xi can be connected by a

path of length 2a modulo q. The weight of Qf between two consecutive intermediate

supernodes Xi, and also between Xi1 and the first intermediate supernode, and between

the last intermediate supernode and Xi2 is b modulo q. Finally, for each supernode Xi,

i ∈ I0, the (at most three) paths Qf leaving Xi all depart from the vertices of L′i, hence

we can choose a vertex vi ∈ Xi connected to the departure points by disjoint paths of

weight a each. Collecting all weights, we conclude that for each edge f = (i1, i2) ∈ E(H),

the path between vi1 and vi2 in G has total weight:

2a+ (q − 1) · 2a+ q · b = (2a+ b)q ≡ 0(mod q) .

We have thus obtained the required subdivision of H, completing the proof. �

3 Cycles

In this section we prove Theorem 2. In the lemma below and later, a complete digraph

is a digraph in which every pair of vertices is connected by one edge in each of the two

directions.

Lemma 3.1. Let q ≥ 2 be an integer, and let Γ = (V,E) be a complete digraph on d2q ln qe
vertices with weights w(e) ∈ Zq on its edges. Then Γ contains a directed cycle C of total

weight divisible by q.

Proof. The proof borrows its main idea from the argument in [1]. Here though we are in a

more favorable situation dealing with the complete digraph and can thus allow ourselves

to employ a simpler probabilistic tool for the proof – the union bound (instead of the

Local Lemma used in [1]).

Let c : V → Zq be a random labeling of V by the elements of Zq. For a vertex u ∈ V
denote by Au the event “u has an outneighbor v satisfying c(v) = c(u) +w(uv)”. In order
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to estimate Pr[Au] observe that by conditioning on the label c(u), the probability that

none of the outneighbors v of u satisfies c(v) = c(u) + w(uv) is (1 − 1/q)|V |−1 < 1/|V |.
Hence by the union bound there is a choice of c for which all of the events Au hold.

Fix such a choice, and for every vertex u ∈ V choose an outgoing edge (u, v) so that

c(v) = c(u) + w(uv). In the subgraph of Γ obtained this way every outdegree is 1 and

hence it has a directed cycle C = (u1, . . . , u`, u1). Summing all weights along the edges of

C and denoting u`+1 = u1 we obtain:

∑̀
i=1

w(uiui+1) =
∑̀
i=1

(c(ui+1)− c(ui)) ≡ 0(mod q),

as required.

If q is a prime number then the logarithmic term in the above lemma can be omitted,

thus giving an asymptotically optimal order of magnitude.

Lemma 3.2. Let q ≥ 2 be a prime, and let Γ = (V,E) be a complete digraph on 2q − 1

vertices with weights w(e) ∈ Zq on its edges. Then Γ contains a directed cycle C of total

weight divisible by q.

Proof. If there are two vertices u, v so that w(u, v) = −w(v, u) (modulo q) then there is a

directed cycle consisting of two edges satisfying the requirement, hence we may and will

assume that there is no such pair of vertices. In this case we proceed to prove that for

every k < q there are distinct vertices x0, x1, y1, x2, y2, . . . xk, yk in Γ and a set S of k + 1

distinct residues modulo q so that for every s ∈ S there is a directed path Ps from x0 to

xk of total weight s modulo q. Each path Ps consists of k subpaths p1, p2, . . . , pk, in this

order, where each pi is either the single edge xi−1xi or the two-edge path xi−1yixi. This

is proved by induction on k. For k = 0 the required path is the trivial path with no edges

and S = {0}. Assuming the result holds for k < q−1 we prove it for k+1. Let u, v be two

vertices of Γ that are not in the set {x0, x1, x2, . . . , xk, yk}. If w(xk, u) = w(xk, v)+w(v, u)

and w(xk, v) = w(xk, u) + w(u, v) then w(u, v) = −w(v, u) contradicting the assumption.

Thus at least one of these equalities does not hold; by renaming u and v if needed we

may assume that w(xk, u) 6= w(xk, v) + w(v, u). Define xk+1 = u and yk+1 = v. Let T

be the set of the two distinct residues w(xk, u) = w(xk, xk+1) and w(xk, v) + w(v, u) =

w(xk, yk+1) +w(yk+1, xk+1). Clearly, for every residue s ∈ S + T , there is a path from x0

to xk+1 of total weight s in Γ. By the Cauchy-Davenport theorem (for the easy special

case in which one of the sets is of size 2), |S + T | ≥ |S|+ |T | − 1 = k + 1 establishing the

induction step. Taking k = q − 1, the result shows that for every residue class s modulo
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q there is a directed simple path from x0 to xq−1 of weight s. Choosing s = −w(xq−1, x0)

and adding the edge xq−1x0 gives the required cycle.

We can now prove Theorem 2. If q is not a prime define N = d2q log qe and g = 2N ,

if it is a prime define N = 2q − 1 and g = 2N . Given a Kg-minor on the 2N supernodes

X+
i and X−i for 1 ≤ i ≤ N , assume without loss of generality that the induced subgraph

on each supernode is a tree and that there is exactly one edge connecting each pair of

supernodes. For each i let bi be the weight of the unique edge, x−i x
+
i connecting X−i and

X+
i (1 if there are no weights). For each i 6= j let w′(ij) be the total weight modulo q of

the unique path in the induced tree on the vertices X+
i ∪X

−
j from the vertex x+i to the

vertex x−j . By the two lemmas above applied to the auxiliary complete directed graph on

the vertices {1, 2, . . . , N} with the weights w(ij) = bi + w′(ij) there is a directed cycle

of total weight 0 modulo q in this auxiliary digraph. This gives the required cycle in the

original graph. �

4 Concluding remarks

• There are several ways to improve the bound for f(H, q) in the proof of Theorem

1. In particular, one can use the constructions of Ramsey graphs for subdivisions

given in [8, 5]. In addition, it is possible to take k = ∆(Γ), where Γ is the Ramsey

graph used, and M = 2|E(Γ)| + f1(q, k). Then we first choose N supernodes Xi

with the same value of ai as in the present proof, fix a bijection between these N

nodes and the vertex set of Γ, and then for each i = 1, ..., N , look at the leaves of Xi

connected to previously unused supernodes Yj (altogether we use at most 2|E(Γ)|
such supernodes Yj , two per each edge of Γ throughout the proof). There are at

least f1(q, k) of them, this would be our set Li. Next apply to it Lemma 2.1 to get

a set of cardinality k (in fact here the degree of vertex i in Γ suffices), and then put

aside the supernodes Yj to which the edges from this k-set of leaves in Li lead. This

gives some improvement, but as is frequently the case with Ramsey-type results, the

bound obtained is still huge, surely far from being optimal. It may be interesting to

try to determine or to estimate the asymptotic behavior of the best possible bound

for f(H, q).

• An α-expander is a graph on n vertices in which every set X of at most n/2 vertices

has at least α|X| neighbors outside X, see [9] for a general discussion. It is easy to

see that any such graph has no sublinear separators and thus contains a Kf -minor
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for f ≥ c(α)
√
n by [7]. Our results thus apply to such graphs and in particular imply

that any such graph contains cycles of length divisible by q for any q ≤ Õ(n1/2).

This settles a question posed explicitly in [6]. See [6] for further results about cycle

lengths in α-expanders.

• There is a substantial amount of research on Ramsey-type problems for structures

labelled by elements of an abelian group. Questions of this type are called zero-sum

problems, see [4] for a survey of the subject (until the mid 90s). A typical problem in

the subject is to determine or estimate the smallest number f so that any complete

graph with edges labelled by the elements of Zq contains a subgraph of a prescribed

type in which the total weight of the edges is 0 modulo q. This problem for complete

directed graphs, where the desired subgraph is a directed cycle, is addressed in

Lemma 3.1 and Lemma 3.2. It seems plausible to believe that the first lemma is not

tight and that the function g(q) in Theorem 2 is linear in q for any integer q.
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