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Abstract. Consider a graph and a collection of (not necessarily edge-disjoint) con-
nected spanning subgraphs (factors) of the graph. We consider the problem of coloring
the vertices of the graph so that each color class of the vertices dominates each factor.
We find upper and lower bounds on α(t, k), which we define as the minimum radius
of domination d such that every graph with a collection of k factors can be vertex
colored with t colors so that each color class d-dominates each factor. It is perhaps
surprising that the upper bound is finite and does not depend on the order of the
graph. We obtain similar results for a variant of the problem where the number of
colors is equal to the number of factors and each color class must d-dominate only the
corresponding factor rather than all factors.

1. Introduction

Factor domination was introduced by Brigham and Dutton [?]. In their paper, a

decomposition of a graph into k edge-disjoint spanning factors is called a k-factoring.

A subset of the vertices of the graph is a factor dominating set if it is a dominating

set for each of the factors. Brigham and Dutton studied the minimum cardinality

of factor dominating sets. A similar concept, global domination, was introduced by

Sampathkumar [?]. A summary of results in this area appears in a paper by Brigham

and Carrington [?].

A comprehensive survey of results on domination can be found in the books of Haynes,

Hedetniemi, and Slater [?, ?]. Following the work on distance domination, a natural

generalization of factor domination is to allow the factor dominating set to be a d-

dominating set for each of the factors rather than a 1-dominating set (For a survey of

results on distance domination the reader is referred to [?]). Rather than simply study-

ing the cardinality of these factor d-dominating sets, one could study the equivalent

notion of the domatic number: how many such sets can be packed into the graph?

Date: 22nd February 2002.
Key words and phrases. domination, factor, coloring, distance, all-factor, matched-factor.
At present, the last author is on a PIMS postdoc fellowship at School of Computing Science, Simon
Fraser University, Burnaby BC, V5A 1S6 Canada.

1



In this paper, we study this domatic number problem from a slightly different angle.

First, we will require that each of the factors is connected. Second, rather than fixing

d and finding the maximum number of factor d-dominating sets, we fix the number of

such sets and find the minimum d for that number of sets. Third, we do not require

the factors to be edge-disjoint. Allowing edges to appear in more than one factor is

necessary for some of the applications mentioned by Brigham and Carrington [?]. We

also investigate a variation of this problem in which the number of sets is equal to the

number of factors and each set is required to d-dominate a single corresponding factor

rather than all factors.

We now introduce some definitions in order to formalize these notions. LetG = (V,E)

denote a connected graph with vertex set V and edge set E. By a factor of G, we mean

any connected spanning subgraph of G. We use the term k-factorization of G to denote

a set of k factors S1, S2, . . . , Sk of G whose union is G. (Note that usually factorization

implies that the factors are edge-disjoint.) The k-factorization of G can also be viewed

as a multi-coloring of the edges with k colors.

We use dG(u, v) to denote the distance from vertex u to vertex v in graph G. The

neighborhood of a vertex v in graph G is {x ∈ V : dG(v, x) ≤ 1}. More generally, the

d-neighborhood of v in G is {x ∈ V : dG(v, x) ≤ d}.
A d-dominating set of vertices in graph G is a set S ⊆ V such that every vertex

in V is in the d-neighborhood of some element of S. A d-domatic coloring of G is

an assignment of colors to the vertices of G such that each color class constitutes a

d-dominating set of G. Note that a d-domatic coloring (and all colorings in this paper)

need not be a proper vertex coloring; we allow adjacent vertices to be assigned the same

color. The maximum number of colors in any d-domatic coloring of a fixed graph G is

called the d-domatic number of G. Our 1-domatic number is known more commonly

as simply the domatic number.

Let G be a graph and let S1, S2, . . . , Sk be a k-factorization of G. A vertex coloring

of G is called an all-factor d-domatic coloring of G with respect to S1, S2, . . . , Sk if the

vertices of each color constitute a d-dominating set in each Sj for 1 ≤ j ≤ k. Note that

an all-factor d-domatic coloring of G is also a d-domatic coloring of G. In contrast, a

vertex coloring of G with k colors is called a matched-factor d-domatic coloring of G

with respect to S1, S2, . . . , Sk if the vertices of each color i constitute a d-dominating

set of the factor Si. Note that a matched-factor d-domatic coloring of G is again a

d-domatic coloring of G.

Given integers t and k, we are interested in the minimum d(t, k) such that every

k-factorization of every graph on at least t vertices admits an all-factor d(t, k)-domatic

2



coloring with t colors. We let α(t, k) denote this minimum d(t, k). Similarly, given

an integer k, we let µ(k) denote the minimum d(k) such that every k-factorization of

every graph on at least k vertices admits a matched-factor d(k)-domatic coloring. The

notations α and µ are intended to be mnemonic, indicating all-factor and matched-

factor, respectively.

The focus of this paper is to establish bounds on α(t, k) and on µ(k). For α, we give

two upper bounds and a lower bound. For µ, we obtain more precise bounds, showing

that k ≤ µ(k) ≤ d3(k − 1)/2e, when k ≥ 2.

Our interest in these problems was incited by an application of matched-factor d-

domatic colorings to the construction of spanners in cross products of graphs [?].

2. All-factor d-domatic Colorings

We begin with a lemma that we will use in all of the upper bounds.

Lemma 1. For any tree T on vertex set V , |V | = n ≥ k ≥ 1, there exists a partition

of V into V1, V2, . . . , Vp such that for every 1 ≤ i ≤ p, Vi contains a subset Bi such that

|Bi| = k, and for every u ∈ Vi and v ∈ Bi , dT (u, v) ≤ d3(k − 1)/2e.

Proof. The proof is by induction on the diameter of T . In the base step we consider all

trees with the diameter at most 2k− 2. Let r be a vertex from the center of T , and let

u and v be two vertices of maximum distance in T chosen such that dT (r, v) ≤ dT (r, u).

For any vertex x ∈ V , it holds that dT (r, x) ≤ dT (r, u) ≤ k − 1. We let V1 = V , and

B∗1 = {x : x ∈ V1 and dT (r, x) ≤ d(k − 1)/2e}. We claim that |B∗1 | ≥ k. This is

obviously true if dT (r, u) ≤ d(k − 1)/2e. Otherwise, since dT (r, v) ≥ dT (r, u) − 1, the

subset B∗1 contains d(k− 1)/2e vertices ( 6= r) of the unique r− u path, and d(k− 1)/2e
vertices ( 6= r) of the unique r − v path. This together with the vertex r guarantees at

least k vertices in B∗1 . The distance from any vertex y ∈ V1 to any vertex z ∈ B∗1 is at

most dT (y, r) + dT (r, z) ≤ k − 1 + d(k − 1)/2e = d3(k − 1)/2e. Let B1 be any size-k

subset of B∗1 . Thus V1 with B1 is a partition satisfying the lemma.

Now assume that the diameter of T is at least 2k − 1. It follows that T contains an

edge e such that both subtrees T1 and T2 of T − e have at least k vertices and both T1

and T2 have diameter smaller than T . Hence, we can apply induction and partition the

vertex set of T1 into subsets V1, V2, . . . , Vm (and corresponding Bi’s) with the desired

properties, and the vertex set of T2 into subsets Vm+1, Vm+2, . . . , Vp (and corresponding

Bi’s) with the desired properties. It follows that V1, V2, . . . , Vp with B1, B2, . . . , Bp

satisfy the lemma.

The upper bound in the previous lemma is tight as shown by the path of length 2k− 2.
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In the following theorem, we combine Lemma 1 with Hall’s theorem [?] to obtain a

general upper bound on α(t, k).

Theorem 1. For every k ≥ 2 and t ≥ k, α(t, k) ≤ d3(kt− 1)/2e.

Proof. Let S1, S2, . . . , Sk be a k-factorization of a graph G on n ≥ t vertices. If n < kt,

each Si has diameter at most kt − 2 ≤ d3(kt − 1)/2e, and any coloring with t colors

will work. Now consider the case when n ≥ kt. For i = 1, 2, . . . , k, let Ti be a

spanning subtree of Si. By Lemma 1, each Ti, and hence each Si, can have its vertices

partitioned into pi subsets Vi,1, Vi,2, . . . , Vi,pi where each Vi,j (1 ≤ j ≤ pi) contains Bi,j

such that |Bi,j| = kt and for every x ∈ Vi,j and y ∈ Bi,j, dSi(x, y) ≤ d3(kt − 1)/2e.
For every 1 ≤ i ≤ k and 1 ≤ j ≤ pi, partition the set Bi,j into t blocks (subsets) Bi,j,l

(l = 1, 2, . . . , t) each of cardinality k. Now we can define the bipartite graph H with

bipartition B and W as follows. The class B contains all the blocks Bi,j,l, 1 ≤ i ≤ k,

1 ≤ j ≤ pi, and 1 ≤ l ≤ t. The class W contains all the vertices of G. Both classes

have at most n elements. The edges of H are defined as follows. Each Bi,j,l ∈ B is

joined to a vertex v ∈ W , if and only if v ∈ Bi,j,l. Obviously, degH(Bi,j,l) = k, for each

Bi,j,l ∈ B, and degH(v) ≤ k, for each v ∈ W . So we can use Hall’s theorem to find a

matching that saturates the partition B.

Now, for each i (1 ≤ i ≤ k) and for each j (1 ≤ j ≤ pi) we color the vertices

matched to Bi,j,l (1 ≤ l ≤ t) with color l. All remaining vertices of G are colored by

any of the t colors. It follows from the properties of the blocks that the coloring is an

all-factor d3(kt − 1)/2e-domatic coloring of G with respect to S1, S2, . . . , Sk. Hence,

α(t, k) ≤ d3(kt− 1)/2e.

When k is large, we can obtain a better bound using a probabilistic argument; we use

the following symmetric version of Lovsz’ Local Lemma [?].

Lemma 2. (Lovsz’ Local Lemma) Let A1, A2, . . . , An be events in a probability space.

Let H be a graph with vertices A1, A2, . . . , An such that for each i = 1, 2, . . . , n, the

event Ai is independent of any combination of events that are not neighbors of Ai in

H. Suppose that the maximum degree of H is d, the probability P [Ai] ≤ p for all i, and

that 4dp < 1. Then P [∧i=1,...,nAi] > 0.

In the proof of the following theorem, we use the notation log x to denote the base-2

logarithm of x; we follow the same convention throughout the remainder of the paper.

Theorem 2. For every k ≥ 1 and t ≥ 1, α(t, k) ≤ O(t · log(kt)).
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Proof. Let S1, S2, . . . , Sk be a k-factorization of G = (V,E), where |V | ≥ t. Ran-

domly color the vertices of G with colors 1, 2, . . . , t such that P [col(v) = i] = 1/t

(i = 1, 2, . . . , t) for any vertex v ∈ V . If |V | < 4t log(kt), then any coloring using

all t colors will be an all-factor O(t · log(kt))-domatic coloring of G with respect to

S1, S2, . . . , Sk. Otherwise |V | ≥ 4t log(kt), and by Lemma 1, each spanning subtree of

Si, and hence each Si, can have vertices partitioned into pi subsets Vi,1, Vi,2, . . . , Vi,pi
where each Vi,j (1 ≤ j ≤ pi) contains a subset Bi,j of size 4t log(kt) and for every

x ∈ Vi,j and y ∈ Bi,j, dSi(x, y) ≤ 6t log(kt).

For every subset Bi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ pi, define the event Ai,j that some color is

missing on the vertices of Bi,j. It is not difficult to see that A1,1 ∧ ... ∧ A1,p1 ∧ A2,1... ∧
Ak,pk is the event that G has an all-factor 6t log(kt)-domatic coloring with respect to

S1, S2, . . . , Sk. To prove that P [A1,1 ∧ ... ∧ A1,p1 ∧ A2,1... ∧ Ak,pk ] > 0 we will make

use of Lovsz’ Local Lemma. Define a graph H as follows. Vertices of H are all events

Ai,j. Two vertices/events of H are adjacent if the corresponding vertex sets have non-

empty intersection. Clearly, each event Ai,j is independent of events which are not its

neighbors in H.

Let us estimate the maximum degree in H. For fixed i, every vertex appears in at

most one vertex set corresponding to an event of the form Ai,j, 1 ≤ j ≤ pi. Since each

event corresponds to a set of 4t log(kt) vertices, it follows that the maximum degree

in H is at most 4t log(kt)(k − 1). Finally, it is not hard to observe that P [Ai,j] ≤
t(1− 1/t)|Bi,j | ≤ t/(kt)4.

The inequality in Lovsz’ Local Lemma is implied by 16t2(k − 1) log(kt)/(kt)4 < 1,

which is satisfied for all k ≥ 1 and t ≥ 1. Hence Lemma 2 guarantees that P [A1,1∧ ...∧
A1,r1 ∧A2,1...∧Ak,pk ] > 0. This in turn means that there exists an all-factor 6t log(kt)-

domatic coloring of G with respect to S1, S2, . . . , Sk. Hence α(t, k) ≤ O(t · log(kt)).

Corollary 1. For k ≥ 1, α(k, k) ≤ O(k log k).

Since µ(k) ≤ α(k, k), the above corollary provides a simple upper bound on µ(k). We

can also show a lower bound on α(t, k) when t ≥ 2 and k ≥ 4.

Lemma 3. For every integer k ≥ 4 and p ≥ 1, let n = p · blog kc. Then there are k

permutations of 1, 2, . . . , n such that every set of
⌊

1
2
blog kc

⌋
elements appears in the left

half of at least one permutation.

Proof. If p = 1, then we have n = blog kc. It follows that k ≥ 2n >
(

n
bn/2c

)
, and we can

choose k permutations such that every set of
⌊

1
2
blog kc

⌋
=
⌊
n
2

⌋
elements appear in the

left half of at least one of them, as claimed.
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If p > 1, then we have n > blog kc. We can split 1, 2 . . . , n into blog kc blocks of size

p. Now we choose k permutations of 1, 2, . . . , blog kc as in the first case applying these

permutations to the blocks of size p. These k permutations have the property that

every set of
⌊

1
2
blog kc

⌋
blocks appears in the left half of at least one permutation. By

replacing each block with its corresponding elements in these permutations, we obtain

k permutations of 1, 2, . . . , n for which every set of
⌊

1
2
blog kc

⌋
elements appears in the

left half of at least one permutation. Indeed, every element belongs to exactly one

block, and thus
⌊

1
2
blog kc

⌋
elements appear in at most

⌊
1
2
blog kc

⌋
blocks.

Note that the restriction k ≥ 4 in the previous lemma is required in order to ensure

that
⌊

1
2
blog kc

⌋
≥ 1.

Theorem 3. If t ≥ 2 and k ≥ 4, then α(t, k) ≥ Ω(t · log k).

Proof. Since α(t, k) ≥ α(t − 1, k), we may assume that t is even in order to show an

asymptotic lower bound. We will construct a graph on n = 1
2
t · blog kc ≥ blog kc

vertices. Let S be a collection of k Hamiltonian paths on these vertices chosen so that

for each set of
⌊

1
2
blog kc

⌋
vertices there is a Hamiltonian path in S in which they all

appear in the left half. The existence of S is guaranteed by Lemma 3.

Let G be the union of all the Hamiltonian paths in the collection S, and note that

the collection forms a factorization of G. Let φ be an all-factor d-domatic coloring of

G with respect to this factorization, where d is as small as possible. By the Pigeonhole

principle, in any coloring of G by t colors, at least one color class, say i, does not appear

more than
⌊
n
t

⌋
=
⌊

1
2
blog kc

⌋
times. Consider a Hamiltonian path of S in which all the

vertices of color i appear in the left half. In this path, the distance from any vertex

of color i to the rightmost vertex of the path is at least
⌊

1
4
t · blog kc

⌋
. Since k ≥ 4,

n = t
2
blog kc ≥ t showing that the graph G is in the domain of α(t, k). The theorem

follows.

3. Matched-factor d-domatic Colorings

As noted above, Corollary 1 provides an upper bound of O(k log k) on µ(k). Again,

by applying Lemma 1 and Hall’s theorem, we can substantially improve on this bound.

Theorem 4. For every k ≥ 2, µ(k) ≤ d3(k − 1)/2e.

Proof. Let S1, S2, . . . , Sk be a k-factorization of a graph G on n ≥ k vertices. We may

assume that they are trees. By Lemma 1, each Si can be partitioned into pi subsets

Vi,1, Vi,2, . . . , Vi,pi where each Vi,j (1 ≤ j ≤ pi) contains a subset Bi,j such that |Bi,j| = k

and for every x ∈ Vi,j and y ∈ Bi,j, dSi(x, y) ≤ d3(k − 1)/2e.
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Figure 1. Case k = 4 in the proof of Theorem 5

Construct the bipartite graph H with bipartition B and W as follows. The class B

contains all the subsets Bi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ pi. The class W contains all the

vertices of G. Both classes have at most n elements. The edges of H are defined as

follows. Each Bi,j ∈ B is joined to a vertex v ∈ W , if and only if v ∈ Bi,j. Obviously,

degH(Bi,j) = k, for each Bi,j ∈ B, and degH(v) ≤ k, for each v ∈ W . So we can use

Hall’s theorem to find a matching that saturates the partition B.

Now, for each i (1 ≤ i ≤ k) we color the vertices matched to Bi,j (1 ≤ j ≤ pi) with

color i. All remaining vertices of G are colored by any of the k colors. It follows from

the properties of the blocks that the coloring is a matched-factor d3(k− 1)/2e-domatic

coloring of G with respect to S1, S2, . . . , Sk. Hence, µ(k) ≤ d3(k − 1)/2e.

The lower bound µ(k) ≥ k − 1 can be established by considering the graph G that is

simply a path on k vertices, with each of the k factors equal to G. As our final result,

we improve this bound by one. Our proof has the added feature that the collection of

factors that we construct is edge-disjoint.

Theorem 5. For all k ≥ 2, µ(k) ≥ k.

Proof. We exhibit a graph G with a decomposition S1, S2, . . . , Sk into edge-disjoint

factors such that G has no matched-factor (k − 1)-domatic coloring with respect to

S1, S2, . . . , Sk. Each of S1, S2, . . . , Sk is a tree. Since S1, S2, . . . , Sk are edge-disjoint, we

will speak of an edge of Si as having color i.

The graph G consists of k subgraphs H1, H2, . . . , Hk all having a common vertex a,

and some extra connecting structure. Each Hi is designed so that its decomposition

prohibits a from having color i in a matched-factor (k − 1)-domatic coloring.

We will now describe the construction of the subgraph H1. The construction of any

other Hi is identical except that the colors are permuted so that color i is mapped to

color 1 in H1. The subgraph H1 has k(k−1)+2 vertices, including the shared vertex a,

another distinguished vertex b1, and a set T = {vx,y : 0 ≤ x ≤ k−1 and 0 ≤ y ≤ k−2}.
The vertices a and b1 are the only vertices of H1 that have edges to vertices outside of

H1. Inside of H1, the edges of each color j, 2 ≤ j ≤ k, form a tree consisting of k paths

of length k − 1 with common vertex a, using all of the vertices of H1 except b1. Also

inside H1, the edges of color 1 form a tree consisting of k − 1 paths of length k with

common vertex b1, using all of the vertices of H1 except a.

Before proceeding with the details of how to achieve this structure, we show that if

we can achieve this structure, then the theorem follows.
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Suppose, by way of contradiction, that a has color 1 in such a coloring. Consider the

tree of color i in H1. Each leaf of this tree must be within distance k − 1 of a vertex

of color i in Si. Since a has color 1 and a and b1 are the only vertices connecting H1

with the rest of G, it follows that each leaf is dominated by a distinct vertex of color i.

Thus, there are at least k vertices of each color 2, 3, . . . , k in T . This accounts for all

of the vertices of T and so no vertex of T is colored 1. However, this is a contradiction

as, even if b1 is colored 1, the leaves of the color 1 tree have no vertex of color 1 within

distance k− 1 in S1. Thus, H1 ensures that a may not have color 1 in a matched-factor

(k − 1)-domatic coloring of G with respect to S1, S2, . . . , Sk.

Similarly, each Hi ensures that a may not have color i. It follows that there is no

matched-factor (k − 1)-domatic coloring of G with respect to S1, S2, . . . , Sk.

It remains to show that we can construct H1, H2, . . . , Hk, and G as described above.

Again, rather than giving the construction for all Hi, we give the construction only for

H1.

The edges of color 1 are {b1vk−1,y : 0 ≤ y ≤ k − 2} ∪ {vx,yvx+1,y : 0 ≤ x ≤
k − 2, 0 ≤ y ≤ k − 2}. The edges of color j, 2 ≤ j ≤ k are {avx,j−2 : 0 ≤ x ≤ k − 1} ∪
{vx,yvx+(j−2) (mod k),(y+1) (mod k−1) : 0 ≤ x ≤ k−1, 0 ≤ y ≤ k−2, y 6= (j−3) (mod k−1)}.

It is easy to check that these edge colorings constitute edge-disjoint forests as de-

scribed above.

In order to connect each forest of given edge color into a tree, we must add some

additional structure. In particular, add k − 1 new vertices c1, c2, . . . , ck−1, and k edge-

disjoint paths (one in each Si) connecting the vertices {a, b1, b2, . . . , bk, c1, c2, . . . , ck−1}.
For k ≥ 3, this is possible because K2k can be decomposed into k Hamiltonian cycles.

For k = 2, K4 can be decomposed into two Hamiltonian paths. This completes the

proof.

Trivially, µ(1) = 0. Theorem 4 and Theorem 5 provide exact values for µ(2) and µ(3).

Corollary 2. µ(2) = 2 and µ(3) = 3.

4. Conclusion

We defined all-factor and matched-factor d-domatic colorings of graphs with factor-

izations. We introduced α(t, k) to denote the minimum d such that every graph with

a factorization into k factors has an all-factor d-domatic vertex coloring with t colors.

Similarly, we introduced µ(k) to denote the minimum d such that every graph with

a factorization into k factors has a matched-factor d-domatic vertex coloring with k
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colors. We established upper and lower bounds on both α and µ. Surprisingly, these

bounds do not depend on the number of vertices in the graph.

Our bounds for µ are fairly close but our bounds for α are not. Tightening these

bounds remains an open problem.
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