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The discovery, demonstrated in the early work of Paley, Zygmund, Erdős, Kac, Turán, Shannon,
Szele and others, that deterministic statements can be proved by probabilistic reasoning, led already
in the first half of the century to several striking results in Analysis, Number Theory, Combinatorics
and Information Theory. It soon became clear that the method, which is now called the probabilis-
tic method, is a very powerful tool for proving results in Discrete Mathematics. The early results
combined combinatorial arguments with fairly elementary probabilistic techniques, whereas the de-
velopment of the method in recent years required the application of more sophisticated tools from
probability. The books [10], [54] are two recent texts dealing with the subject.

Most probabilistic proofs are existence, non-constructive arguments. The rapid development of
theoretical Computer Science, and its tight connection to Combinatorics, stimulated the study of the
algorithmic aspects of these proofs. In a typical probabilistic proof, one establishes the existence of a
combinatorial structure satisfying certain properties by considering an appropriate probability space
of structures, and by showing that a randomly chosen point of this space is, with positive probability,
a structure satisfying the required properties. Can we find such a structure efficiently, that is, by
a (deterministic or randomized) polynomial time algorithm ? In several cases the probabilistic
proof provides such a randomized efficient algorithm, and in other cases the task of finding such an
algorithm requires additional ideas. Once an efficient randomized algorithm is found, it is sometimes
possible to derandomize it and convert it into an efficient deterministic one. To this end, certain
explicit pseudo-random structures are needed, and their construction often requires tools from a wide
variety of mathematical areas including Group Theory, Number Theory and Algebraic Geometry.

The application of probabilistic techniques for proving deterministic theorems, and the applica-
tion of deterministic theorems for derandomizing probabilistic existence proofs, form an interesting
combination of mathematical ideas from various areas, whose intensive study in recent years led to
the development of fascinating techniques. In this paper I survey some of these developments and
mention several related open problems.
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1 Probabilistic methods

The applications of probabilistic techniques in Discrete Mathematics, initiated by Paul Erdős who
contributed to the development of the method more than anyone else, can be classified into three
groups. The first one deals with the study of certain classes of random combinatorial objects, like
random graphs or random matrices. The results here are essentially results in Probability Theory,
although most of them are motivated by problems in Combinatorics. The second group consists of
applications of probabilistic arguments in order to prove the existence of combinatorial structures
which satisfy a list of prescribed properties. Existence proofs of this type often supply extremal
examples to various questions in Discrete Mathematics. The third group, which contains some of
the most striking examples, focuses on the application of probabilistic reasoning in the proofs of
deterministic statements whose formulation does not give any indication that randomness may be
helpful in their study.

The above classification is, of course, somewhat arbitrary, and there are results that can fit more
than one of the above groups. Most of the combinatorial results obtained by applying probabilistic
arguments belong, however, naturally to one of these groups.

There has been recent interesting progress in all three groups. This chapter contains a brief
description of several typical results in each of them.

1.1 Random structures

Although there have been several papers by various researchers in the late 50’s that deal with the
statistical aspects of graphs, the systematic study of Random Graphs was initiated by Erdős and
Rényi whose first two papers on the subject are [21], [22]. Formally, G(n, p) denotes the probability
space whose points are graphs on a fixed set of n labelled vertices, where each pair of vertices forms
an edge, randomly and independently, with probability p. The term “the random graph G(n, p)”
means, in this context, a random point chosen in this probability space. Each graph property A

(that is, a family of graphs closed under graph isomorphism) is an event in this probability space,
and one may study its probability Pr[A], that is, the probability that the random graph G(n, p) lies
in this family. In particular, we say that A holds almost surely if the probability that G(n, p) satisfies
A tends to 1 as n tends to infinity. There are numerous papers dealing with random graphs, and the
book of Bollobás [13], is an excellent extensive account of the known results in the subject proved
before its publication in 1985.

One of the most important discoveries of Erdös and Rényi was the discovery of threshold functions.
A function r(n) is called a threshold function for a graph property A, if when p(n)/r(n) tends
to 0, then G(n, p(n)) does not satisfy A almost surely, whereas when p(n)/r(n) tends to infinity,
then G(n, p(n)) satisfies A almost surely. Thus, for example, it is shown in [21] that the function
r(n) = lnn/n is a threshold function for the property “G is connected. ” (In fact, a much more
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precise estimate follows from the results in [21]: if p(n) = lnn
n + c

n , then, as n tends to infinity, the
probability that G(n, p(n)) is connected tends to e−e

−c
).

A graph property is monotone if it is closed under the addition of edges. Note that many
interesting graph properties, like hamiltonicity, non-planarity, connectivity or containing at least 10
vertex disjoint triangles are monotone.

Bollobás and Thomason [15] proved that any monotone graph property has a threshold function.
Their proof applies to any monotone family of subsets of a finite set, and relies on the Kruskal-
Katona Theorem that describes the possible number of subsets of each cardinality in a monotone
family. By viewing a monotone graph property as a family of subsets of the set of all potential edges,
this yields the result for random graphs. Their theorem shows that for any monotone property
A, if the probability that a random graph G(n, p) satisfies A exceeds ε, then for q ≥ C(ε)p, the
probability that G(n, q) satisfies A is at least 1− ε. This result applies even without the assumption
that the property A is closed under graph isomorphism. In fact, if one is not interested in the precise
behaviour of C(ε) this can be deduced simply by observing that if (1− ε)k < ε then the probability
that at least one of k graphs Gi chosen independently according to the distribution G(n, p) satisfies
A is more than 1− ε, and hence so is the probability that their union satisfies A.

Friedgut and Kalai showed that the symmetry of graph properties can be applied to obtain a
sharper result, as follows.

Theorem 1.1 ([24]) For any monotone graph property A, if G(n, p) satisfies A with probability at
least ε, then G(n, q) satisfies A with probability at least 1− ε, for q = p+O(log(1/2ε)/ log n).

The proof follows by combining two results. The first is a simple but fundamental lemma of Margulis
[41] and Russo [51], which is useful in Percolation Theory. This lemma can be used to express the
derivative with respect to p of the probability that G(n, p) satisfies A as a sum of contributions
associated with the single potential edges. The second result is a theorem of [17] that asserts that
at least one such contribution is always large. The symmetry implies that all contributions are the
same and the result follows.

Another interesting early discovery in the study of Random Graphs was that of the fact that many
interesting graph invariants are highly concentrated. A striking result of this type was first proved by
Matula [40] and strengthened by various researchers; for fixed values of p almost all graphs G(n, p)
have the same clique number. The clique number of a graph is the maximum number of vertices
in a clique of it, that is , in a subgraph in which any two vertices are adjacent. It turns out that
for every fixed positive value of p < 1 and every n, there is a real number r0 = r0(n, p) which is
roughly 2 log n/ log(1/p), such that the clique number of G(n, p) is either br0c or dr0e almost surely.
Moreover, r0(n, p) can be chosen to be an integer for most values of n and p. The proof of this result
is not difficult, and is based on the second moment method. One estimates the expectation and the
variance of the number of cliques of a given size contained in G(n, p) and applies the inequalities of
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Markov and Chebyshev.
An independent set of vertices in a graph G is a set of vertices no two of which are adjacent.

The chromatic number χ(G) of G is the minimum number of independent sets needed to cover all
its vertices. This is a more complicated quantity than the clique number, and its behaviour for
the random graph G(n, p) is much less understood than the corresponding behaviour of the clique
number.

Answering a problem suggested by Erdős and Rényi, Bollobás [14] showed that the chromatic
number of G(n, 0.5) is almost surely (1 + o(1))n/2 log2 n. His proof applies a Martingale Inequality
to show that almost surely, every set of at least, say, n/ log2 n vertices of G(n, 0.5) contains an
independent subset of size nearly as large as the maximum independent set in the whole graph,
implying that a greedy approach of omitting maximum independent sets from the graph one by one
yields a nearly optimal coloring.

How concentrated is the chromatic number of G(n, p)? Shamir and Spencer [53] proved that
there is always a choice of an interval I = I(n, p) of length roughly

√
n, such that the chromatic

number of G(n, p) lies, almost surely, in I. More surprisingly, if p(n) < n−5/6−ε, then there is always
such an interval containing only four distinct values. This was improved by  Luczak [38], who showed
that for such values of p(n) the chromatic number is actually, almost surely, one of two consecutive
values. In a very recent joint work of the author and Krivelevich it is shown that this is the case
whenever p(n) ≤ n−1/2−ε. This implies the following.

Proposition 1.2 For every α < 1/2 and every integer valued function r(n) < nα, there exists a
function p(n) such that the chromatic number of G(n, p(n)) is precisely r(n) almost surely.

Therefore, for such values of p(n), almost all graphs G(n, p(n)) have the same chromatic number !
The proofs of all these results start by applying a Martingale Inequality to show that if δ > 0 is an
arbitrarily small real, and t is the smallest integer for which the chromatic number of G(n, p(n)) is
at least t with probability that exceeds δ, then one can omit, with probability at least 1− δ, a set of
at most C(δ)

√
n vertices from G(n, p(n)) to get a t-colorable subgraph. This can be combined with

several additional combinatorial and probabilistic tools to deduce the above results.

1.2 Probabilistic constructions

The Ramsey number R(k, t) is the minimum number n such that every graph on n vertices contains
either a clique of size k or an independent set of size t. By a special case of the celebrated theorem
of Ramsey (cf., e.g., [28]), R(k, t) is finite for every positive integers k and t, and satisfies R(k, t) ≤(k+t−2
k−1

)
. In particular, R(k, k) < 4k. The problem of determining or estimating the numbers R(k, t)

received a considerable amount of attention, and seems to be very difficult in general.
In one of the first applications of the probabilistic method in Combinatorics, Erdős [18] proved

that if
(n
k

)
21−(k2) < 1 then R(k, k) > n, that is, there exists a graph on n vertices containing neither
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a clique of size k nor an independent set of size k. The proof is extremely simple; Every fixed set of
k vertices in the random graph G(n, 0.5) is a clique or an independent set with probability 21−(k2).
Thus

(n
k

)
21−(k2) (< 1) is an upper bound for the probability that the random graph G(n, 0.5) contains

a clique or an independent set of size k. Despite the simplicity of this proof, there is no constructive
version of it in the sense that there is no known deterministic algorithm that constructs a graph
on n > (1 + ε)k vertices with neither a clique nor an independent set of size k, in time which is
polynomial in n, where ε > 0 is any positive absolute constant.

Ajtai, Komlós and Szemerédi [1] showed that R(3, t) ≤ O(t2/ log t). Their proof is probabilistic
(and can thus fit the next subsection). In a recent paper, Kim [33] proves that this is tight, up to a
constant factor. This provides the correct asymptotic behaviour of R(3, t):

Theorem 1.3 ([1], [33]) There are two positive constants c1, c2 such that

c1
t2

log t
≤ R(3, t) ≤ c2

t2

log t
,

for every t.

The proof of Kim is based on a clever “semi-random” construction and proceeds in stages. Starting
from the empty graph on n vertices, in each stage choose every potential edge which does not
form a triangle with two of the edges picked so far, randomly and independently, with probability
1/(
√
n log2 n). If triangles are formed, omit a maximal collection of pairwise edge disjoint triangles,

thus completing the stage. The process, which clearly generates a triangle-free graph, terminates after
some nδ stages. It is shown in [33], by combining subtle combinatorial and probabilistic arguments,
that with positive probability this process produces a graph whose independence number does not
exceed t = c

√
n log n for an appropriate choice of an absolute positive constant c. Therefore, R(3, t) >

n = Ω(t2/ log t), as needed. As is the case with the Ramsey numbers R(k, k), there is no known
deterministic efficient algorithm that constructs a triangle-free graph on n vertices which contains
no independent sets of size n1/2+o(1).

The above mentioned semi-random approach for constructing the required combinatorial struc-
ture in stages, where in each stage some correction may be applied, is influenced by a method
developed by Rödl in [51], following some similar ideas that appeared already in [1]. This technique,
which is sometimes called the “Rödl Nibble”, was initiated by Rödl in order to solve a packing
and covering problem of Erdős and Hanani [19]. His result forms another interesting example of a
probabilistic construction. It asserts that for every fixed k ≥ l ≥ 2, there is a collection of at most(n
l

)
/
(k
l

)
+o(nl) subsets of cardinality k of an n-element set, so that each l-element subset is contained

in at least one k-tuple. Note that this means that most l-subsets are covered precisely once, that is,
are contained in exactly one of the k-tuples in the collection. The proof is by repeatedly picking a
small random subset of the k-tuples that do not intersect any of the ones picked already by more
than l−1 points. By a careful analysis it can be shown that this produces, with positive probability,
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a collection of at most
(n
l

)
/
(k
l

)
+ o(nl) k-tuples that cover all but at most o(nl) l-subsets. Covering

the uncovered l-subsets by additional k-sets, one obtains a collection with the desired properties.
The main part of the proof here, as well as in [33], is to maintain certain regularity properties of

the combinatorial structure which is being constructed in stages, during the whole process.
This technique has been developed by several researchers, who applied it to prove various inter-

esting results about packing, covering and coloring problems for hypergraphs. Some of these results
are mentioned in the next subsection.

Probabilistic constructions have been used extensively in Combinatorial Geometry and Combi-
natorial Number Theory. A recent geometric example, answering a question of Füredi and Stanley
[27], appears in [11], where it is shown that for every k and d there are collections of at least
dΩ(log(k+2)/ log log(k+2)) nonzero vectors in Rd, in which any k + 1 members contain an orthogonal
pair.

1.3 Proving deterministic theorems

A hypergraph H is a pair (V,E), where V is a finite set whose members are called vertices and E

is a finite collection of subsets of V , called edges. If every edge contains precisely k vertices, the
hypergraph is k-uniform. Thus, 2-uniform hypergraphs are graphs. A matching in H is a subset of
its edges no two of which share a vertex. A proper coloring of the edges of H is an assignment of
colors to the edges of H so that each color class forms a matching. The chromatic index of H is the
smallest number of colors used in a proper edge coloring of it.

Several researchers noticed that the Nibble technique developed in [51] can be applied for tackling
various packing, covering and coloring problems for hypergraphs. See [25], [47] and [32] for some
interesting examples. The results in all these papers are deterministic theorems about hypergraphs,
and therefore belong to this subsection. The strongest result of this type, due to Kahn, deals with
proper edge colorings of hypergraphs.

Theorem 1.4 ([32]) For every ε > 0 and every k there is a finite D0 = D0(k, ε) with the following
property. Let H be a k-uniform hypergraph with maximum degree D, where D > D0. If no two
vertices of H share more than εD common edges, then for any assignment of a list of at least
D(1 + ε) colors for each edge of H, there is a proper edge coloring of H assigning to each edge a
color from its list.

In particular, this implies that the chromatic index of H does not exceed (1+ ε)D, as proved already
in [47].

The proofs in the above mentioned papers and in several related ones are based on the Nib-
ble technique, and usually combine it with several martingale inequalities or other large deviation
inequalities like the one of Talagrand in [58].

6



A proper k-coloring of a graph is an assignment of a color from a set of k colors to each of its
vertices so that adjacent vertices get distinct colors. Such a coloring is acyclic if there is no two-
colored cycle. The acyclic chromatic number of a graph is the minimum number of colors in an
acyclic coloring of it. The Four Color Theorem, which is the best known result in Graph Theory,
asserts that the chromatic number of every planar graph is at most 4. Answering a problem of
Grünbaum and improving results of various authors, Borodin [16] showed that every planar graph
has an acyclic 5-coloring. He conjectured that for any surface but the plane, the maximum possible
chromatic number of a graph embeddable on the surface, is equal to the maximum possible acyclic
chromatic number of a graph embeddable on it. The Map Color Theorem (see [50]) determines
precisely the maximum possible chromatic number of any graph embeddable on a surface of genus g
and shows this maximum is

b7 +
√

1 + 48g
2

c = Θ(g1/2).

The following result shows that the maximum possible acyclic chromatic number of a graph on such
a surface is asymptotically different.

Theorem 1.5 ([9]) The acyclic chromatic number of any graph embeddable on a surface of genus g
is at most O(g4/7). This is nearly tight in the sense that for every g > 0 there is a graph embeddable
on a surface of genus g whose acyclic chromatic number is at least Ω(g4/7/(log g)1/7).

Therefore, the above mentioned conjecture of Borodin is false for all surfaces with large genus.
The proof of the O(g4/7) upper bound is probabilistic, and combines some combinatorial ar-

guments with the Lovász Local Lemma. This Lemma, first proved in [20], is a tool for proving
that under suitable conditions, with positive probability, none of a large finite collection of nearly
independent, low probability events in a probability space holds. This positive probability is of-
ten exponentially small, and yet the Local Lemma can be used to show it is positive. The proof
of the Ω(g4/7/(log g)1/7) lower bound is also probabilistic, and is based on an appropriate random
construction.

Among the deterministic theorems proved by probabilistic arguments, there are examples of prob-
ability theorems. An interesting example of this type is a derivation of a large deviation inequality
of Janson ([30], [29], see also [10]). Another example is the 123-theorem proved in [12]; For every
two independent identically distributed real random variables X and Y

Pr[|X − Y | ≤ 2] < 3Pr[|X − Y | ≤ 1].

2 Pseudo-randomness

The rapid development of theoretical Computer Science and its tight connection to Discrete Math-
ematics motivated the study of the algorithmic aspects of probabilistic techniques. Can a combi-
natorial structure whose existence is proved by probabilistic means be constructed explicitly (that
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is, by an efficient deterministic algorithm)? Can the algorithmic problems corresponding to exis-
tence probabilistic proofs be solved by efficient procedures? The area of randomized algorithms has
been developed tremendously during the last decade, when it has been realized that for numerous
computational problems, the simplest and fastest algorithms are often randomized ones. Can such
algorithms be derandomized, that is, can they be converted into efficient deterministic ones? The
investigation of these questions in recent years led to fascinating techniques which are often related
to other branches of Mathematics. In this section I briefly describe some of the highlights.

2.1 Expanders

An (n, d, c)-expander is a d-regular graph on n vertices, such that every set X of at most n/2 of its
vertices has at least c|X| neighbors outside the set. Infinite families of such graphs with fixed positive
values of d and c and growing number of vertices have numerous applications in Combinatorics and
Theoretical Computer Science. The simplest way of proving the existence of such families is by a
probabilistic construction first described by Pinsker [46]; For every d ≥ 3 there is some c = c(d) > 0
such that a random bipartite graph obtained by choosing d random permutations between the two
parts is a (2n, d, c)-expander almost surely.

The problem of constructing such families of graphs explicitly is more complicated. Most known
constructions rely on the tight relationship between the expansion properties of a graph and the
ratio between its largest and second largest eigenvalues. The adjacency matrix of a graph G = (V,E)
is the matrix A = (au,v : u, v ∈ V ) in which au,v is the number of edges between u and v. This
is a symmetric matrix, and thus it has real eigenvalues and an orthonormal basis of eigenvectors.
If the graph is d-regular, then the largest eigenvalue is d, and the second largest eigenvalue, which
is denoted by λ(G), is strictly smaller than d iff the graph is connected. It is not too difficult to
see that any d regular graph with n vertices and second eigenvalue λ is an (n, d, c)-expander for
c = (d − λ)/(2d). This (in a slightly stronger form) has been proved, independently, by Tanner in
[57] and by the author and Milman in [8]. The proof is simple and applies the variational definition
of the second eigenvalue to an appropriate test function.

The converse is more complicated, but is also true, and has been proved in [6].

Theorem 2.1 For any (n, d, c)-expander G, λ(G) ≤ d− c2

4+2c2
.

Therefore, a d regular graph is highly expanding iff its second eigenvalue is far from the first. Com-
bining this fact with some known results about Kazhdan’s Property T of group representations,
it is possible to give some explicit families of expanders. These are not, however, the best known
constructions.

It is known (see [6]) that for any infinite family of d-regular graphs, the limsup of the second largest
eigenvalue is at least 2

√
d− 1. Lubotzky, Phillips and Sarnak [37], and independently, Margulis [42],

constructed, for every d = p+ 1 where p is a prime congruent to 1 modulo 4, explicit infinite families
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of d-regular graphs in which the second largest eigenvalue is at most 2
√
d− 1. Thus, at least in

terms of the second eigenvalue, these expanders are best possible. Moreover, in these graphs all the
eigenvalues, besides the first, are bounded in absolute value by 2

√
d− 1. This fact implies certain

strong pseudo-random properties, which are useful for some of the applications.
The graphs of [37] and [42] are Cayley graphs of factor groups of the group of all 2 by 2 matrices

over a finite field. Their spectral properties are proved by applying results of Eichler and Igusa on
the Ramanujan conjectures concerning the number of ways an integer can be represented as a sum
of four squares of some special form. Eichler’s proof is based on Weil’s famous theorem known as
the Riemann Hypothesis for curves. More details can be found in [36].

Expanders have numerous applications. They form the basic building blocks of various inter-
connection and sorting networks, including the sorting network of Ajtai, Komlós and Szemerédi [2]
that sorts n elements in O(log n) parallel steps. They are useful for parallel sorting, merging and
selection, and for various variants of the sorting problem, like the “nuts and bolts sorting problem”
considered in several papers including [4], [34]. Expanders have recently been used in the construc-
tion of Spielman [55] of linear time encodable and decodable error-correcting codes which correct a
linear number of errors. Considered as (finite) metric spaces, such graphs cannot be embedded in the
Banach spaces `p with low distortion, as shown by Matoušek [39]. They are also useful in amplifica-
tion of probabilities, as the random walks on them converge quickly to a uniform distribution. The
connection between the expansion properties of graphs and the rate of convergence of random walks
on them forms the basis for several algorithms for approximating difficult combinatorial quantities
using rapidly mixing Markov chains, developed by Jerrum and Sinclair, see, e.g., [56].

2.2 Derandomization

The tremendous recent development of randomized algorithms, described, among other places, in
the comprehensive recent book of Motwani and Raghavan [43], motivated the study of the possibility
to convert such algorithms into deterministic ones. Although this is not known in many cases, there
are several general techniques that often supply the desired derandomization.

One of the general techniques is the method of conditional probabilities. An early instance of this
method is implicit in a paper of Erdős and Selfridge [23], but the explicit description of the method
is due to Spencer (see, e.g., [54] or [10]), and further developments are due to Raghavan [49]. The
basic approach is the following; given a random variable X defined on a finite probability space, the
objective is to find deterministically and efficiently a point s of the sample space in which the value
of X does not exceed its expectation E(X). To do so, assume the points of the sample space are
represented by binary vectors, and try to determine the bits of an appropriate point s one by one,
where each bit is chosen in a way that ensures that the conditional expectation of X given the bits
chosen so far does not exceed E(X). This process, which can be viewed as a variant of binary search,
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is possible only when the required conditional expectations can be computed efficiently. In some
cases precise computation is difficult, and one may use estimates that satisfy certain requirements.
These estimates, introduced in [49] and called pessimistic estimators, are often useful in applications
of this method. Several illustrations of the method appear, among other places, in [49], [10], [54].

Another general technique relies on the fact that many randomized algorithms run successfully
even when the random choices they utilize are not fully independent. For the analysis some limited
amount of independence, like k-wise independence for some fixed k, often suffices. In these cases,
it is possible to replace the appropriate exponentially large sample spaces required to simulate all
random choices of the algorithms by ones of polynomial size. The algorithms can then be converted
into deterministic ones, by searching the relatively small sample spaces deterministically.

A simple construction of small sample spaces supporting k-wise independent random variables,
appears in [31]. For the case of binary, uniform random variables this is treated under the name
orthogonal arrays in the Coding Theory literature, see, e.g., [44]. These constructions, as well as
some others, are based on some simple properties of polynomials over a finite field or on certain
explicit error correcting codes.

Several researchers realized that constructions of this type are useful for derandomizing parallel
algorithms, since one may simply check all points of the sample space in parallel. The following simple
result supplies a lower bound for the size of any sample space supporting n k-wise independent
nonconstant random variables.

Proposition 2.2 Let S be a sample space supporting n nontrivial k-wise independent random vari-
ables. Then, if k is even, S has at least

∑k/2
i=0

(n
i

)
points, and if k is odd S has at least

∑(k−1)/2
i=0

(n
i

)
+( n−1

(k−1)/2

)
points.

Note that this implies that for fixed k and large n, the size of S is Ω(nbk/2c). For the binary uniform
case this proposition is essentially the Rao bound [48], whereas for the general case it is shown in
[3], where it is also observed that this is nearly tight in several cases including the binary uniform
one. It follows that polynomial size sample spaces suffice only for handling k-wise independence for
fixed k. There are, however, several ways to achieve a higher amount of independence. The most
promising way, initiated by Naor and Naor in [45] and improved in [5], constructs sample spaces that
support random variables any k of which are nearly independent. The constructions here are based
on certain error-correcting codes together with some simple properties of the Fourier transform of a
distribution on an Abelian group.

The above techniques have been applied in numerous papers dealing with derandomization of
parallel as well as sequential algorithms and I make no attempt to include a comprehensive list of
references here.

There are several additional derandomization techniques, including ones that rely on crypto-
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graphic assumptions to generate pseudo-random sequences and including more specific methods,
that are not described here.

2.3 Explicit constructions

There have been many attempts to convert some known probabilistic proofs of existence of combina-
torial structures into explicit constructions. To consider these problems systematically, the notion of
an explicit construction should first be defined precisely. There are several definitions of this notion
and the most natural one is probably the existence of an algorithm for constructing the desired
structure in time which is polynomial in its size.

Since the early work of Shannon it has been known that randomly chosen codes have powerful
error correcting properties. A major part of the work in the theory of error correcting codes is
focused on attempts to try and construct explicit codes that are (nearly) as good as random ones.
The basic, simply stated problem of determining or estimating the maximum number of vectors of
length n over an alphabet of size q so that the Hamming distance between any two vectors is at
least d, is still wide open. Let Aq(n, d) denote this maximum. There is, of course, a large number
of known upper and lower bounds for Aq(n, d) (cf., e.g., [44]), but even the correct asymptotic
behaviour of its logarithm in the binary case is not known. The problem of finding explicit large
collections of vectors providing lower bounds for Aq(n, d) is also very difficult, and there are several
explicit constructions that rely on some simple properties of polynomials over finite fields as well
as on certain deep estimates of character sums. The most exciting explicit constructions are the
Algebraic-Geometric codes introduced by Goppa in 1981. Tsfasman, Vladut and Zink proved in [59]
that for alphabets that are even powers of primes and exceed 49, these codes yield explicit collections
of vectors providing lower bounds for Aq(n, d) which are exponentially better than the best bounds
obtained by a random construction (or, equivalently, by the Gilbert-Varshamov bound). Therefore,
in coding theory there are interesting cases where explicit constructions beat the best known random
ones.

Another example of explicit constructions which are better than the best known random ones is
the construction of dense graphs without short cycles- see, e.g., [37]. A more recent example, due to
Kollár, Rónyai and Szabó [35], is a construction of dense bipartite graphs that do not contain some
fixed complete bipartite subgraph. The properties of these graphs are proved by applying some basic
tools from Algebraic Geometry.

The best known problem of finding an explicit construction of a combinatorial structure is prob-
ably that of constructing explicit Ramsey graphs. As described in subsection 1.2, it is very simple to
prove, by a probabilistic argument, the existence of graphs with at least 2k/2 vertices which contain
neither a clique nor an independent set of size k. Yet, the largest known explicit graphs with this
property contain only 2Ω(log2 k/ log log k) vertices. These graphs have been constructed by Frankl and

11



Wilson [26], using certain results on intersections of finite sets, which are proved by applying some
linear algebra techniques.

Another Ramsey-type question mentioned in subsection 1.2 deals with the existence of large
triangle-free graphs with no large independent sets. Kim [33] proved by an appropriate random
construction that there are triangle-free graphs on n vertices whose largest independent sets are
of size O(

√
n
√

log n). There is no known explicit construction of such a graph. The best known
explicit construction, described in [7], gives explicit triangle-free graphs on n vertices whose largest
independent set is of size O(n2/3). The properties of these graphs, which are Cayley graphs of Abelian
groups, are deduced from their spectral properties, which are proved by applying some estimates on
character sums.

Combinatorial examples like the last two, in which random constructions give much better results
than explicit ones, seem to be much more frequent than examples in which the constructive approach
wins. This could be viewed as a victory of the probabilistic method and a sign for its power in the
study of problems in Discrete Mathematics, or as a sign for our lack of imagination and ability
to find more constructive solutions. In any case, I am convinced that the study and application
of probabilistic arguments, and the related study of pseudo-random structures, will keep playing a
crucial role in the development of Combinatorics and Theoretical Computer Science in the future.
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[21] P. Erdős and A. Rényi, On random graphs I, Publ. Math. Debrecen 6 (1959), 290-297.
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