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Abstract

Erdős, Ginzburg and Ziv proved that any sequence of 2n−1 integers contains a subsequence of

cardinality n the sum of whose elements is divisible by n. We present several proofs of this result,

illustrating various combinatorial and algebraic tools that have numerous other applications in

Combinatorial Number Theory. Our main new results deal with an analogous multi dimensional

question. We show that any sequence of 6n − 5 elements of Zn ⊕ Zn contains an n-subset the

sum of whose elements is the zero vector and consider briefly the higher dimensional case as

well.

1 Introduction

The following theorem was proved in 1961 by Erdős, Ginzburg and Ziv.

Theorem 1.1 ([18]) For any sequence a1, a2, . . . , a2n−1 of (not necessarily distinct) members of

the cyclic group Zn there is a set I ⊂ {1, 2, . . . , 2n − 1} of cardinality |I| = n so that
∑
i∈I ai = 0

(in Zn).

This theorem has motivated the recent study of certain Ramsey type problems for graphs

initiated by Bialostocki and Dierker in [8], [9] and studied by various researchers; see, e.g., [21],

[32], [3]. The original proof of Theorem 1.1 is short and elementary. Somewhat surprisingly,

this result can be proved in numerous distinct ways, which combine combinatorial and algebraic

ideas. Here we present five proofs, which illustrate several powerful tools in Combinatorial Number

Theory, some of which have other applications as well. We have been unable to modify any of

these proofs and establish the following conjecture of Kemnitz [25], suggested, independently, by

N. Zimmerman and Y. Peres, which deals with a two dimensional extension of the above theorem.
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Conjecture 1.2 For any sequence a1, a2, . . . , a4n−3 of (not necessarily distinct) members of the

group Zn ⊕ Zn there is a set I ⊂ {1, 2, . . . , 4n − 3} of cardinality |I| = n so that
∑
i∈I ai = 0 (in

Zn ⊕ Zn).

The sequence consisting of n − 1 copies of each of the four vectors (0, 0), (0, 1), (1, 0) and (1, 1)

shows that the above conjecture, if true, is best possible. Similarly, the sequence consisting of n−1

copies of 0 and n− 1 copies of 1 shows that Theorem 1.1 is tight. Our methods enable us to prove

the following weaker version of the conjecture.

Theorem 1.3 For any sequence a1, a2, . . . , a6n−5 of (not necessarily distinct) members of the group

Zn⊕Zn there is a set I ⊂ {1, 2, . . . , 6n−5} of cardinality |I| = n so that
∑
i∈I ai = 0 (in Zn⊕Zn).

The above questions can be extended to higher dimensions. For two positive integers n and d, let

s(n, d) denote the smallest number s such that any sequence of s elements in (Zn)d contains a 0-sum

n-subsequence. By Theorem 1.1 s(n, 1) = 2n−1, and if Conjecture 1.2 holds then s(n, 2) = 4n−3.

To the best of our knowledge, Harborth [24] was the first researcher who studied the function

s(n, d). His motivation was geometric; it is easy to see that s(n, d) is the smallest integer s such

that any set of s distinct lattice points in Zd contains an n-subset whose centroid is also a lattice

point. Several estimates for s(n, d) appear in [24], [14], [25] and [26], and the best known general

bounds for this function are given in the following inequality, whose simple proof appears in [24]:

(n− 1)2d + 1 ≤ s(n, d) ≤ (n− 1)nd + 1.

Here we are interested mainly in the case of small values of the dimension d and large n. In

particular, we can show that

s(n, d) ≤ c(d)n, (1)

where c(d) is a constant depending only on d.

The rest of this paper is organized as follows. In Section 2 we describe five proofs of Theorem

1.1. The proof of Theorem 1.3, as well as a proof of a stronger assertion for the case of large primes

n are presented in Section 3. In this section we also include a sketch of a simpler proof of a slightly

weaker version of the theorem. The final Section 4 contains some concluding remarks, together

with a summary of the known estimates for the function s(n, d) and a very brief outline of the

methods used in our proof of the estimate (1). This proof combines combinatorial arguments with

a Harmonic Analysis approach. Its detailed description will appear somewhere else.
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2 Five proofs of the original theorem

As observed already in [18], it suffices to prove Theorem 1.1 for the case of prime n. To see

this suppose the assertion of the theorem holds for prime n, and let us prove the general case by

induction on the number of primes in the prime factorization of n. Put n = pm where p is a prime,

and let a1, . . . , a2n−1 be the given sequence. By the result for the prime case, each subset of 2p− 1

members of the sequence contains a p-subset whose sum is 0 modulo p. Therefore, by repeatedly

omitting from our sequence p-subsets of sum divisible by p, we can find 2m − 1 pairwise disjoint

subsets I1, . . . , I2m−1 of {1, . . . , 2pm−1}, where |Ii| = p for each i and the sum
∑
j∈Ii aj ≡ 0(mod p)

for each 1 ≤ i ≤ 2m−1. (This is because as long as at most 2m−2 such subsets have been chosen,

the number of elements left is still at least 2pm − 1 − (2m − 2)p = 2p − 1.) Define a sequence

a′1, . . . , a
′
2m−1, where a′i =

∑
j∈Ii aj/p. By the induction hypothesis this new sequence has a subset

of m elements whose sum is divisible by m, and the union of the corresponding sets Ii supplies the

desired n-subset whose sum is divisible by n. Therefore, the main step in the proof of Theorem 1.1

is the proof of the following proposition.

Proposition 2.1 For a prime p and for any sequence a1, . . . , a2p−1 of 2p− 1 elements in Zp there

is an I ⊂ {1, . . . , 2p− 1} such that |I| = p and
∑
i∈I ai = 0 (in Zp).

In the rest of this section we present five proofs of this proposition.

2.1 The original proof

The original proof of Proposition 2.1 given in [18] is based on (a special case of) the Cauchy-

Davenport Lemma. This Lemma, stated below, has many additional applications in Additive

Number Theory.

Lemma 2.2 ([16]) If p is a prime, and A,B are two nonempty subsets of Zp, then |A + B| ≥
Min{p, |A|+ |B| − 1}.

This lemma can be proved quickly by induction on |B|. For |B| = 1 it is trivial. Assuming it holds

for every A′ and B′ with |B′| < |B|, and given A and B, with |A| < p and |B| ≥ 2, suppose, first,

that A∩B is a nonempty proper subset of B. In this case, one can apply the lemma to A′ = A∪B
and B′ = A ∩ B and obtain the desired result, since A′ + B′ ⊂ A+ B and |A′|+ |B′| = |A|+ |B|.
In case A ∩ B is not a nonempty, proper subset of B it is not too difficult to show that there is

a c ∈ Zp so that B ∩ (A + c) is a nonempty proper subset of B and hence the result follows, as

|B + (A+ c)| = |B +A|. 2
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To prove Proposition 2.1, let us first renumber the elements a1, . . . , a2p−1 so that 0 ≤ a1 ≤ a2 ≤
. . . ≤ a2p−1. If ai = ai+p−1 for some i ≤ p−1, then ai+ai+1 + . . .+ai+p−1 = pai = 0 (in Zp) and the

desired result follows. Otherwise, define Ai = {ai, ai+p−1} for 1 ≤ i ≤ p−1. By repeated application

of the Cauchy-Davenport Lemma (Lemma 2.2), we conclude that |A1 +A2 + . . .+Ap−1| = p, and

hence every element of Zp is a sum of precisely p − 1 of the first 2p − 2 elements of our sequence.

In particular, −a2p−1 is such a sum, supplying the required p-subset whose sum is 0 in Zp. 2

2.2 The Chevalley Warning Theorem

The classical theorem of Chevalley and Warning, stated below, deals with the number of solutions

of a system of polynomials with many variables over a finite field.

Theorem 2.3 (cf., [13], [33]) For j = 1, 2, . . . , n let Pj(x1, . . . , xm) be a polynomial of degree rj
over a finite field F of characteristic p. If

∑n
j=1 rj < m then the number N of common zeros of

P1, . . . , Pn (in Fm) satisfies

N ≡ 0(mod p) .

In particular, if there is one common zero, then there is another one.

The proof is very short; clearly, if F has q elements then

N ≡
∑

x1,...,xm∈F

n∏
j=1

(1− Pj(x1, . . . , xm)q−1)(mod p). (2)

By expanding the right hand side we get a linear combination of monomials of the form
∏m
i=1 x

ki
i

with
∑m
i=1 ki ≤ (q − 1)

∑n
j=1 rj < (q − 1)m. Hence, in each such monomial there is an i with

ki < q − 1. But then in F = GF (q),
∑
xi∈F x

ki
i = 0, implying that the contribution of each

monomial to the sum (2) is 0(mod p) and completing the proof. 2

As shown in [1], Proposition 2.1 (and hence Theorem 1.1) is an easy consequence of The Cheval-

ley Warning Theorem. Given a sequence a1, . . . , a2p−1 consider the following system of two poly-

nomials in 2p− 1 variables xi over the finite field Zp:

2p−1∑
i=1

aix
p−1
i = 0,

2p−1∑
i=1

xp−1
i = 0.

Since 2(p − 1) < 2p − 1 and x1 = x2 = . . . = x2p−1 = 0 is a solution, Theorem 2.3 implies the

existence of a nontrivial solution (y1 . . . y2p−1). Since by Fermat’s little theorem, in Zp yp−1 = 1 if
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y 6= 0 and 0p−1 = 0, the set I = {i : yi 6= 0} satisfies
∑
{ai : i ∈ I} = 0 and |I| = p, completing the

proof. 2

A similar, though slightly different derivation of Proposition 2.1 from the Chevalley Warning The-

orem appears in [10].

2.3 A counting argument

Redmond and Ryavec [31] and, independently, Blokhuis [12], Gao [22] and Zimmerman ([34])

found the following short proof of Proposition 2.1. Let a1, . . . , a2p−1 be the given sequence. Put

J = {1, . . . , 2p− 1} and consider the sum

S =
∑

I⊂J,|I|=p
(
∑
i∈I

ai)p−1

over the integers. It is obvious that S can be written as a sum of monomials of the form c
∏
i∈J a

ki
i ,

where
∑
ki = p−1. In each such monomial, the number of positive numbers ki is some j satisfying

1 ≤ j ≤ p− 1. Therefore, the number of distinct p-subsets I of J that contribute to the coefficient

of this monomial in the sum S is
(2p−1−j

p−j
)

which is easily seen to be congruent to 0 modulo p.

Since each such I contributes the same, this implies that the sum S is congruent to 0 modulo p.

On the other hand, by Fermat’s little theorem, if there is no subset I ⊂ J of cardinality p so that∑
i∈I ai ≡ 0(mod p), then each of the

(2p−1
p

)
sets I contributes 1(mod p) to the sum S, showing

that in fact

S ≡
(

2p− 1
p

)
≡ 1(mod p).

This contradiction establishes the required assertion. 2

2.4 Davenport’s constant and group rings

For a finite abelian group G, define its Davenport’s constant s = s(G) to be the smallest positive

integer s such that, for any sequence g1, g2, . . . , gs of (not necessarily distinct) elements of G, there

is an φ 6= I ⊂ {1, . . . , s} such that
∑
{gi : i ∈ I} = 0. The problem of determining s(G) was

proposed by H. Davenport in 1966, and is related to the study of the maximal number of prime

ideals in the decomposition of an irreducible integer in an algebraic number field whose class group

is G. Olson [29] determined s(G) for every p-group G = Zpe1 ⊕ . . .⊕ Zper . Clearly

s(G) ≥ 1 +
r∑
i=1

(pei − 1) .
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To see this let x1 . . . xr be a basis for G, where xi has order pei , and consider the sequence of length∑r
i=1(pei − 1) in which each xi occurs pei − 1 times. No subsequence here has sum 0. Olson gave a

beautiful proof of the following.

Theorem 2.4 s(Zpe1 ⊕ . . .⊕ Zper ) = 1 +
∑r
i=1(pei − 1).

The elegant proof, described below, is based on the fact that the ideal of nilpotent elements in

the group-ring of a p-group over Zp is nilpotent. Here are the details.

Proof. Let G be the finite abelian p-group with invariants pe1 , pe2 , . . . , per , and let us use multi-

plicative notation for G. Let R be the group ring of G over Zp. Suppose k ≥ 1 +
∑r
i=1(pei − 1) and

let g1, g2, . . . , gk be a sequence of k members of G. We claim that in R

(1− g1) · (1− g2) · . . . · (1− gk) = 0 (3)

Indeed, let x1, x2, . . . , xr be the standard basis for G, where the order of xi is pei . Since each gj

can be written as a product of the elements xi, a repeated application of the identity 1 − uv =

(1− u) + u(1− v) enables us to express each expression of the form 1− gj as a linear combination

(with coefficients in R) of the elements 1 − xi. Substituting into (3) and applying commutativity

we conclude that the left hand side is a linear combination of elements of the form
∏r
i=1(1− xi)ki ,

where
∑r
i=1 ki = k >

∑r
i=1(pei − 1). Hence, there is an i with ki ≥ pei and since in R, (1− xi)p

ei =

1− xp
ei

i = 0 this implies that (3) holds as claimed.

By interpreting (3) combinatorially we conclude that there is some nontrivial subsequence of

g1, . . . , gk that has product 1, since otherwise, the coefficient of 1 in the above product will be

nonzero. Hence s(G) = 1 +
∑r
i=1(pei − 1), as needed.2

There are many additional known results concerning the numbers s(G). See [11], [17], [30], [27],

[23] and their references. For our purposes here, a very special case of Theorem 2.4 suffices.

Proof of Proposition 2.1. By Theorem 2.4 any sequence of 2p−1 elements of the group Zp⊕Zp
has a nonempty subset whose sum is 0. The desired result follows by considering the sequence

(a1, 1), (a2, 1) . . . , (a2p−1, 1)

in this group. 2

2.5 Permanents and vector sums

In this subsection we present another proof of Proposition 2.1, which will be useful in the the proof

of Theorem 1.3 as well. The basic method here follows the argument in [7] and [5].
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Lemma 2.5 Let

P = P (x1, . . . , xm) =
∑

U⊂{1,...,m}
bU ·

∏
i∈U

xi

be a multilinear polynomial over a commutative ring with identity. If P (x1, . . . , xm) = 0 for each

(x1, . . . , xm) ∈ {0, 1}m then P ≡ 0, that is, bU = 0 for all U ⊂ {1, . . . ,m}.

This can be easily proved by induction on m, as shown in [4]. The following consequence of the

above lemma is proved in [5] in a similar context.

Lemma 2.6 Let A = (aij) be an m by m matrix over Zp and suppose that the permanent Per(A) 6=
0 (in Zp.) Then, for any c1, . . . , cm ∈ Zp there are ε1, . . . , εm ∈ {0, 1} such that

∑m
j=1 εjaij 6= ci for

all 1 ≤ i ≤ m.

Proof. Suppose the lemma is false and there are no ε1, . . . , εm as above. Consider the poly-

nomial P = P (x1, . . . , xm) =
∏m
i=1(

∑m
j=1 aijxj − ci). By assumption, P (x1, . . . , xm) = 0 for all

(x1, . . . , xm) ∈ {0, 1}m. Let P = P (x1, . . . , xm) be the multilinear polynomial obtained from the

standard representation of P as a sum of monomials by replacing each monomial of the form

aU
∏
i∈U x

δi
i with all δi > 0, by aU

∏
i∈U xi. Clearly P (x1, . . . , xm) = P (x1, . . . , xm) = 0 for all

(x1, . . . , xm) ∈ {0, 1}m. Therefore, by Lemma 2.5, P ≡ 0. But this is impossible, since the coeffi-

cient of
∏m
i=1 xi in P (which equals the coefficient of this product in P ) is Per(A) 6= 0. Therefore,

the assertion of the lemma holds. 2

Proof of Proposition 2.1. As in subsection 2.1, renumber the elements a1, . . . , a2p−1 such that

0 ≤ a1 ≤ . . . ≤ a2p−1. If there is an i ≤ p− 1 such that ai = ai+p−1 then I = {i, i+ 1, . . . , i+ p− 1}
satisfies the assertion of the proposition. Otherwise, define bi = ai−ai+p−1 (6= 0) for all 1 ≤ i ≤ p−1,

and let c1, . . . , cp−1 be the set of all elements of Zp besides the sum −ap − ap+1 − . . .− a2p−1. Let

A = (aij) be the p − 1 by p − 1 matrix defined by aij = bj for all 1 ≤ i, j ≤ p − 1. Clearly,

Per(A) = (p− 1)! ·
∏p−1
j=1 bj 6= 0. Therefore, by Lemma 2.6, there are ε1, . . . , εp−1 ∈ {0, 1} such that

the sum
∑p−1
j=1 εjbj differs from each ci and is thus equal to −ap− ap+1− . . .− a2p−1. Hence, in Zp,

a2p−1 +
p−1∑
i=1

[ai+p−1 + εi(ai − ai+p−1)] = 0,

and since each term ai+p−1 + εi(ai − ai+p−1) is either ai+p−1 or ai, this gives a p-subset of the

sequence ai the sum of whose elements is 0, as required. 2

3 The two dimensional case

In this section we prove Theorem 1.3. We start by observing that just like in the one dimensional

case it suffices to prove the theorem for prime n. Indeed, knowing the theorem holds for prime
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n we prove the general case by induction on the number of primes in the prime factorization of

n. Suppose n = pm, where p is a prime, and let a1, . . . , a6pm−5 be a sequence of two dimensional

integral vectors. By the result for the prime case any set of 6p−5 members of the sequence contains

a p-subset with sum divisible by p in each coordinate. By repeatedly deleting such subsets, and

since (6pm− 5)− (6m− 6)p = 6p− 5 we can find 6m− 5 pairwise disjoint subsets I1, . . . , I6m−5 of

{1, . . . , 6n−5}, where |Ii| = p for each i and where each of the two coordinates of each sum
∑
j∈Ii aj

is divisible by p. We can now apply the induction hypothesis to the sequence a′i =
∑
j∈Ii aj/p and

complete the proof. Therefore, just like in the one dimensional case, the main step in the proof of

Theorem 1.3 is the following.

Proposition 3.1 For a prime p and for any sequence a1, . . . a6p−5 of elements of Zp ⊕Zp there is

an I ⊂ {1, . . . , 6p− 5} satisfying |I| = p and
∑
i∈I ai = 0 (in Zp ⊕ Zp.)

We start with the following simple consequence of the Chevalley Warning Theorem.

Lemma 3.2 Let a1 = (a1,1, a1,2), a2 = (a2,1, a2,2), . . . , a3p = (a3p,1, a3p,2) be 3p elements of Zp⊕Zp,
where p is a prime, and suppose

∑3p
i=1 ai = (0, 0). Then there is a p-subset I ⊂ {1, . . . , 3p} such

that
∑
i∈I ai = (0, 0).

Proof. Consider the following system of 3 polynomial equations in the 3p−1 variables xi over the

finite field Zp:
3p−1∑
i=1

ai,1x
p−1
i = 0,

3p−1∑
i=1

ai,2x
p−1
i = 0,

3p−1∑
i=1

xp−1
i = 0.

Since x1 = x2 = . . . = x3p−1 = 0 is a solution, there is another one, by Theorem 2.3, as the number

of variables exceeds the sum of the degrees. Let J ⊂ {1, . . . , 3p− 1} be the set of all indices of the

nonzero entries of such a solution. Then
∑
i∈J ai = (0, 0) in Zp⊕Zp and either |J | = p or |J | = 2p.

In the first case take I = J and in the second define I = {1, . . . , 3p} \ J . In both cases I satisfies

the assertion of the lemma. 2

Our basic approach here follows the one in [5]. For a two dimensional (column) vector v = (d, e)

in Zp⊕Zp let v∗ = v∗(p) denote the 2(p−1) dimensional (column) vector whose first p−1 coordinates

are d and whose last p− 1 coordinates are e. The next lemma is a simple corollary of Lemma 2.6.
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Lemma 3.3 Let v1, v2, . . . , v2p−2 be 2p − 2 vectors in Zp ⊕ Zp and let A be the 2p − 2 by 2p − 2

matrix whose columns are the vectors v∗1, v
∗
2, . . . , v

∗
2p−2. If in Zp, Per(A) 6= 0, then for any vector

b = (d, e) in Zp ⊕ Zp there are ε1, . . . ε2p−2 ∈ {0, 1} such that b =
∑2p−2
i=1 εivi.

Proof. Let c = (c1, . . . , c2p−2) be a vector whose first p− 1 coordinates are all the elements of Zp
different from d and whose last p − 1 coordinates are all the elements of Zp different from e. By

Lemma 2.6 there are ε1, . . . , ε2p−2 ∈ {0, 1} such that for every 1 ≤ i ≤ 2p − 2, the ith coordinate

of
∑2p−2
j=1 εjv

∗
j differs from ci. These inequalities, for 1 ≤ i ≤ p − 1, show that the first coordinate

of
∑2p−2
i=1 εjvj is d, as it differs from all the other elements of Zp. Similarly, the inequalities for

p ≤ i ≤ 2p− 2 show that the second coordinate of that sum is e, as required. 2

A line in Zp⊕Zp is the set of all vectors {x+ ty : t ∈ Zp}, where x and y are some fixed vectors

in Zp ⊕ Zp. It is easy to see that if a subset of Zp ⊕ Zp is not contained in a line then it contains

three vectors u, v and w such that the set u− w, v − w forms a basis of Zp ⊕ Zp.

Lemma 3.4 Let S be a sequence of 6p − 7 vectors in Zp ⊕ Zp and suppose that no line contains

more than 2p − 2 members of S. Then there is a subsequence of 4p − 4 members of S, which we

denote by a1, a2, . . . , a4p−4, so that if bi = a2i − a2i−1 for 1 ≤ i ≤ 2p − 2, and A is the 2p − 2 by

2p− 2 matrix whose columns are the vectors b∗i , then in Zp, Per(A) 6= 0.

Proof. Let e1 and e2 be the standard basis of Zp ⊕ Zp and let A0 be the 2p− 2 by 2p− 2 matrix

each of whose first p − 1 columns is e∗1 and each of whose last p − 1 columns is e∗2. Trivially,

Per(A0) = ((p − 1)!)2 6= 0(mod p). We next define the elements a1, a2, . . . , a4p−4 sequentially, so

that after defining a1, . . . , a2i and bj = a2j − a2j−1 for 1 ≤ j ≤ i, the following holds. Let Ai be

the matrix obtained from A0 by replacing its first i columns by the columns b∗1, . . . , b
∗
i , then in Zp,

Per(Ai) 6= 0. The desired result is just the existence of A2p−2. Suppose 0 ≤ i < 2p−2 and suppose

a1, . . . , a2i, b1, . . . bi and Ai have already been defined as above such that Per(Ai) 6= 0. Our objective

is to define a2i+1, a2i+2, bi+1 and Ai+1 with the required properties. Put S′ = S \ {a1, . . . , a2i}.
Clearly |S′| ≥ 6p − 7 − (2p − 3)2 = 2p − 1. Therefore, S′ is not contained in a line and it thus

contains three vectors u, v and w so that u−w, v−w is a basis. It follows that the column number

i + 1 of the matrix Ai is a linear combination of the two column vectors (u − w)∗ and (v − w)∗.

By the multilinearity of the permanent this implies that Per(Ai) is a linear combination of the

permanents of the two matrices obtained from it by replacing its i+ 1 column by (u−w)∗ and by

(v − w)∗. Hence at least one of these two permanents, say the first, is non-zero modulo p. We can

now define a2i+2 = u and a2i+1 = w, completing the proof. 2

Proof of Proposition 3.1. Let S be a sequence of 6p − 5 elements of Zp ⊕ Zp. Suppose, first,

that there are 2p− 1 members of S on the line {x+ ty : t ∈ Zp}, where x, y ∈ Zp⊕Zp. Let x+ tiy,
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(1 ≤ i ≤ 2p − 1) be these elements. By Proposition 2.1 there is an I ⊂ {1, . . . 2p − 1}, |I| = p,

so that
∑
i∈I ti ≡ 0(mod p). Hence in Zp ⊕ Zp,

∑
i∈I(x + tiy) = 0, completing the proof in this

case. Therefore, we may assume that there is no line containing more than 2p − 2 elements of S.

By Lemma 3.4 we can renumber the elements of S by a1, . . . , a6p−5 so that if bi = a2i − a2i−1 for

1 ≤ i ≤ 2p− 2 then the permanent of the 2p− 2 by 2p− 2 matrix A whose columns are the vectors

b∗i is not zero modulo p. Therefore, by Lemma 3.3, every vector is a 0, 1-linear combination of the

vectors bi. In particular, there are ε1, . . . , ε2p−2 ∈ {0, 1} so that

2p−2∑
i=1

εibi = −a1 − a3 − . . .− a4p−5 − a4p−3 − a4p−2 − a4p−1 − . . .− a5p−2.

By the definition of the vectors bi this gives that in Zp ⊕ Zp

a4p−3 + a4p−2 + a4p−1 + . . .+ a5p−2 +
2p−2∑
i=1

[a2i−1 + εi(a2i − a2i−1) = 0.

Therefore, there is a 3p-subset of S the sum of whose elements is 0, and by Lemma 3.2 it contains

a zero-sum p-subset, completing the proof of Proposition 3.1 and establishing Theorem 1.3. 2

Note that the above proof actually establishes a slightly stronger version of Proposition 3.1,

as it shows that the 6p − 5 term in its statement can be reduced to 6p − 7. By modifying the

above proof it is possible to improve the assertion of the Proposition further and show that for all

sufficiently large primes p, any sequence of 5p−2 elements of Zp⊕Zp contains a zero-sum p-subset.

Since this still does not yield a proof of Conjecture 1.2 we only sketch the argument. The new idea

is that by a more careful proof of Lemma 3.4 one can establish the following version of it.

Lemma 3.5 Let S be a sequence of 5p−2 vectors in Zp⊕Zp, where p is a large prime, and suppose

that no line contains more than 2p−2 members of S. Then there is a subsequence of 4p−4 members

of S, which we denote by a1, a2, . . . , a4p−4, so that if bi = a2i − a2i−1 for 1 ≤ i ≤ 2p− 2, and A is

the 2p− 2 by 2p− 2 matrix whose columns are the vectors b∗i , then in Zp, Per(A) 6= 0.

Proof (sketch). Let δ > 0 be a fixed small constant. Split S into two random subsets S1 and S2

by choosing each element of S, randomly and independently, to be a member of S1 with probability

(1 + δ)/2 and a member of S2 with probability (1− δ)/2. By the standard estimates for Binomial

distributions (see, e.g., [6], Appendix A), if p is sufficiently large as a function of δ then the following

two conditions hold with high probability. (For the proof of the second condition the fact that the

total number of lines is O(p2) has to be used.)

(i) |S1| ≤ (1
2 + δ)(5p− 2) (and hence |S2| ≥ (1

2 − δ)(5p− 2).)

(ii) Every line in Zp ⊕ Zp contains at most p+ 2δp members of S1 and at most p members of S2.
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Fix a partition S = S1 ∪ S2 satisfying (i) and (ii). We can now repeat the proof of Lemma 3.4,

where we start choosing the triples of non-collinear vectors u, v and w among the members of S1,

as long as this is possible. Since no line contains more than p + 2δp members of S1 this can be

done until at most that many elements of S1 are left. Now we start choosing the required triples

u, v, w in the next steps by always taking w from the remaining elements of S1 and u and v from

S2. Observe that this can be done as long as there are elements left in S1. To see this, note that

by (i) and (ii) when j elements are left in S1, then the number of elements in S2 is still at least

(
1
2
− δ)(5p− 2)− (p+ 2δp− j) > p,

(provided δ is small and p is large enough). However, no line contains more than p elements among

the remaining ones in S2, and hence the required choices can be completed. Finally, only some of

the elements of S2 are left, and we can choose non-collinear triples u, v, w among those until only

p+2 elements are left, since no line contains more than p elements of S2. This completes the proof.

2

The last lemma, together with the arguments in the proof of Proposition 3.1, clearly show that

for large primes p we can replace the 6p− 5 in the statement of the proposition by 5p− 2.

We conclude this section with a sketch of a rather simple proof of a slightly weaker version of

Proposition 3.1.

Lemma 3.6 Let B ⊂ Zp ⊕ Zp be a set of cardinality |B| = m < p2/2. Suppose u, v and w is

a non-collinear triple of vectors in Zp ⊕ Zp. Then, there is a subset C consisting of two of the

elements u, v and w, so that |B + C| ≥ m+ d
√
me.

Proof. By applying an affine transformation to B and to {u, v, w} we may assume that {u, v, w}
is simply the set {(0, 0), (1, 0), (0, 1)}. We next show that either C = {(0, 0), (1, 0)} or C =

{(0, 0), (0, 1)} will do. Let B1 be the projection of B on the x-axis, and let B2 be the projection on

the y-axis. Since |B| ≤ |B1| · |B2| either B1 or B2 contain at least
√
m elements. Assume, without

loss of generality, that |B1| ≥
√
m. If B contains no full vertical line, then clearly, C = {(0, 0), (0, 1)}

will complete the proof. Otherwise, |B2| = p and again the conclusion follows unless B contains

more than p−
√
m full horizontal lines. But then |B1| = p as well, and we may assume that B con-

tains more than p−
√
m full vertical lines as well. Therefore, |B| > 2p(p−

√
m)−(p−

√
m)2 = p2−m,

contradicting the assumption that |B| = m < p2/2. 2

Corollary 3.7 If p is a prime, then any sequence S of at least 8dp/
√

2e + 2p − 11 elements of

Zp ⊕ Zp contains a zero-sum p-subset.
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Proof (sketch). Define j = dp/
√

2e. If 2p − 1 elements of S lie on a line, the result follows

immediately, by Proposition 2.1. Otherwise, starting with a two element subset of S, we can

repeatedly apply Lemma 3.6 to obtain 2j − 2 pairwise disjoint subsets S1, . . . , S2j−2 of S, where

|Si| = 2 for all i and |S1 + S2 + . . . + S2j−2| ≥ j2 > p2/2. In the same manner there are another

2j − 2 pairwise disjoint subsets T1, . . . , T2j−2 of cardinality 2 each among the remaining elements

of S so that |T1 + T2 + . . . + T2j−2| ≥ j2 > p2/2. (Here we used the fact that during the whole

process, before the last subset T2j−2 has been chosen there have still been at least 2p−1 remaining

elements of S, which are not all on a line. Again, the estimates can be somewhat improved for large

p by applying the argument in the proof of Lemma 3.5.) Therefore, every element of Zp ⊕ Zp is in

S1 + . . .+S2j−2 +T1 + . . .+T2j−2. Since 4j−4 < 3p we can conclude, as in the proof of Proposition

3.1, that there are 3p elements of S whose sum is 0, and complete the proof by applying Lemma

3.2. 2

4 Concluding remarks

The derivation of Theorem 1.3 from Proposition 3.1 can be easily extended to a proof of the

following more general result, whose simple detailed proof is omitted.

Proposition 4.1 Let G and H be two finite abelian groups, where |G| = |H| = n. Then any

sequence of 6n − 5 elements in the group G ⊕H contains an n-subset the sum of whose elements

in G⊕H is 0.

It is natural to try to extend Conjecture 1.2 and Theorem 1.3 to higher dimensions. Recall

that s(n, d) denotes the smallest number s such that any sequence of s elements in (Zn)d contains

a 0-sum n-subsequence. By the Erdős Ginzburg Ziv Theorem, s(n, 1) = 2n − 1 and if Conjecture

1.2 holds then s(n, 2) = 4n− 3. It is easy to see ([24]) that s(n, d) ≥ 2d(n− 1) + 1, as the sequence

consisting of n−1 copies of each of the 2n 0, 1-vectors of length d contains no 0-sum n-subsequence.

Trivially s(n, d) ≤ (n − 1)nd + 1, since any sequence of (n − 1)nd + 1 elements of (Zn)d must

contain the same vector n times. Thus, s(2, d) = 2d + 1. An easy argument of [24] shows that

s(n1n2, d) ≤ s(n1, d) + n1(s(n2, d) − 1) and since as shown by Kemnitz ([25]) s(p, 2) = 4p − 3 for

p = 2, 3, 5, 7 this implies that s(n, 2) = 4n− 3 for all n = 2a3b5c7d. Similarly, since s(2, d) = 2d + 1

it follows that s(2a, d) = (2a − 1)2d + 1.

Various researchers observed that s(3, 3) ≥ 19 (> 8 · 2 + 1). Examples appear in [24], [14], [25]

and [26], where it is also shown that in fact s(3, 3) = 19. In [25] it is shown that s(3, 4) = 41; this

has also been observed more recently by Doyle, Pemantle and Schwartz (private communication

from Y. Peres). It is worth noting that by the main result in [15], [20], s(3, d) = o(3d), but it seems
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very difficult to show that there exists some absolute constant δ > 0 such that s(3, d) ≤ (3− δ)d for

all sufficiently large d. The problem of determining s(n, d) precisely for all n and d seems extremely

difficult.

As mentioned in inequality (1) in the introduction we can prove that for every fixed d, s(n, d)

grows linearly with n. The proof of this fact combines the basic method of [19] (see also [28], [2])

with a Harmonic Analysis approach. Here is a very brief outline of the argument.

The proof is by induction on the dimension d, where Theorem 1.1 provides the beginning of the

induction as it shows that c(1) = 2. It is convenient to prove the result for prime n, and this clearly

suffices. Suppose we already know that c(d− 1) exists and try to prove that c(d) ≤ c′(d) · c(d− 1)

for an appropriately defined c′(d). Let S be a sequence of at least c′(d)c(d− 1)n elements of (Zn)d.

If there are at least c(d − 1)n of them on a hyperplane, i.e., there is a vector v in (Zn)d so that

its scalar product (modulo n) with at least c(d− 1)n members of S is a constant, then the desired

result follows, by the induction hypothesis. Thus we may assume that this is not the case. Define

the width w(T ) of any sequence T of elements of (Zn)d as follows. For each vector v ∈ (Zn)d

let wv(T ) be the minimum length of a cyclic interval in Zn that contains all the scalar products

of members of T with v. The width w(T ) is simply the minimum of wv(T ) over all the nonzero

vectors v ∈ (Zn)d. Observe that since no hyperplane contains c(d − 1)n elements of S, the width

of any subsequence T of, say, more than half the elements of S, exceeds c′(d)/2. We next show

that this implies that there is an l ≤ p so that every element of (Zn)d is a sum of a subsequence

of cardinality l (and hence also a sum of a subsequence of cardinality p) of S. To do so we define,

repeatedly, pairwise disjoint subsequences S1, S2, . . . of S, so that each Si is of cardinality 2, and

|S1 + . . . + Si| grows sufficiently fast. We stop once the size of this subset of (Zn)d exceeds nd/2,

do it again with sets Ti and obtain the desired result as in the proof of Corollary 3.7. The main

difficulty is to show that after S1, . . . , Si−1 have been defined, we can still choose a set Si among

the remaining elements of S so that if S∗ denotes the set of all members of (Zn)d which belong

to S1 + . . . Si−1 then |S∗ + Si| is sufficiently large. To this end we apply the simple (and clever)

combinatorial method of [19]. This method implies the following. Let S∗ and T be two subsets of

an Abelian group, and let T (k) denote the set of all elements of the group which can be written as

a sum of at most k members of T ∪ (−T ). Then, there is an element t of T so that

|(t+ S∗) \ S∗| ≥ |S∗|1
k

(1− |S∗|
|T (k)|

). (4)

Suppose, now, that S1, . . . , Si−1 have already been defined and S∗ is the set of all members of

(Zn)d that belong to S1 + . . . + Si−1. Let T be the set of all the remaining members of S. Our

objective is to define Si so that |S∗+Si| will be sufficiently large. Observe that T contains (much)
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more than half the members of S and hence has a large width. By an affine transformation we

may assume that T contains the 0 vector and the standard basis of (Zn)d. The crucial point now

is to show that since T has a large width, T (k/2) is rather “dense” in the cube (Zn)d. This is done

by defining appropriate “bump” functions and by analysing their Fourier transforms and that of

the characteristic function of various subsets of T (k). Once the asserted density is proved, the unit

vectors in T can be used to show that |T (k)| is sufficiently large. This can be applied to establish,

using (4), the required lower bound for |S1 + . . . + Si| and complete the proof. The details are

somewhat lengthy and will not appear here.

Finally we remark that the Chevalley Warning theorem supplies easy proofs for some (seemingly)

minor variations of Conjecture 1.2 and its higher dimensional analogues. For example, it is easy

to show that for any prime p and any integer d, any sequence of (d+ 1)(p− 1) + 1 terms in (Zp)d

contains a zero-sum subset whose cardinality is divisible by p. The problem of obtaining a zero-sum

subset of cardinality p precisely seems much more difficult.
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[9] A. Bialostocki and P. Dierker, On the Erdős Ginzburg Ziv theorem and the Ramsey numbers

for stars and matchings, Discrete Math. 110 (1992), 1-8.

[10] C. Bailey and R. B. Richter, Sum zero (mod n), size n subsets of integers, Amer. Math.

Monthly 96 (1989), 240-242.

[11] R. C. Baker and W. Schmidt, Diophantine problems in variables restricted to the values 0 and

1, J. Number Theory 12 (1980), 460-486.

[12] A. Blokhuis, Polynomials in finite geometries and combinatorics, Proc. 14th British Combi-

natorial Conference, London Mathematical Society Lecture Notes Series 187, edited by K.

Walker, Cambridge University Press, 1993, 35-52.

[13] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.

[14] J. L. Brenner, Problem 6298, Amer. Math. Monthly 89 (1982), 279-280.

[15] T. C. Brown and J. C. Buhler, A density version of a geometric Ramsey theorem, J. Combi-

natorial Theory, Ser. A 32 (1982), 20-34.

[16] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32.

[17] P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups III, Z.

W. 1969-008 (Math. Centrum- Amsterdam).
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[20] P. Frankl, R. L. Graham and V. Rödl, On subsets of Abelian groups with no 3-term arithmetic

progression, J. Combinatorial Theory Ser. A 45 (1987), 157-161.
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