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Abstract

Two results dealing with the relation between the smallest eigenvalue of a graph and its

bipartite subgraphs are obtained. The first result is that the smallest eigenvalue µ of any non-

bipartite graph on n vertices with diameter D and maximum degree ∆ satisfies µ ≥ −∆+ 1
(D+1)n .

This improves previous estimates and is tight up to a constant factor. The second result is the

determination of the precise approximation guarantee of the Max Cut algorithm of Goemans and

Williamson for graphs G = (V,E) in which the size of the max-cut is at least A|E|, for all A

between 0.845 and 1. This extends a result of Karloff.

1 Introduction

The smallest eigenvalue of (the adjacency matrix of) a graph G is closely related to properties of its

bipartite subgraphs. In this paper we obtain two results based on this relation.

In [8], Problem 11.29 it is proved that if G is a d-regular, non-bipartite graph on n vertices with

diameter D, then its smallest eigenvalue µ satisfies µ+ d > 1
2dDn . Our first result here improves this

bound as follows.

Theorem 1.1 Let G = (V,E) be a graph on n vertices with diameter D, maximum degree ∆ and

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. If G is non-bipartite then

λn ≥ −∆ +
1

(D + 1)n
.

If G = (V,E) is an undirected graph, and S is a nonempty proper subset of V , then (S, V − S)

denotes the cut consisting of all edges with one end in S and another one in V − S. The size of the
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cut is the number of edges in it. The MAX CUT problem is the problem of finding a cut of maximum

size in G. This is a well known NP-hard problem (which is also MAX-SNP hard as shown in [9]- see

also [6], [2]), and the best known approximation algorithm for it, due to Goemans and Williamson

[5], is based on semidefinite programming and an appropriate (randomized) rounding technique. It

is proved in [5] that the approximation guarantee of this algorithm is at least the minimum of the

function h(t)/t in (0, 1], where h(t) = 1
π arccos(1 − 2t). This minimum is attained at t0 = 0.844..

and is roughly 0.878. Karloff [7] showed that this minimum is indeed the correct approximation

guarantee of the algorithm, by constructing appropriate graphs. The authors of [5] also proved that

their algorithm has a better approximation guarantee for graphs with large cuts. If A ≥ t0, with t0

as above, and the maximum cut of G = (V,E) has at least A|E| edges, then the expected size of

the cut provided by the algorithm is at least h(A)|E|, showing that in this case the approximation

guarantee is at least h(A)/A (which approaches 1 as A tends to 1). Here we apply the relation

between the smallest eigenvalue of G and the maximum size of a cut in it to show that this result

is tight for every such A, that is, the precise approximation guarantee of the Goemans-Williamson

algorithm for graphs in which the maximum cut is of size at least A|E| is h(A)/A for all A between

t0 and 1. This extends the result of Karloff, who proved the statement for A = t0. The technical

result needed for this purpose is the following.

Theorem 1.2 For any rational η satisfying −1 < η < 0, there exists a graph H = (V,E), V =

{1, . . . , n} and a set of unit vectors w1, . . . , wn in Rk, 1 ≤ k ≤ n, such that wtiwj = η for all i 6= j

with {i, j} ∈ E and the size of a maximum cut in H is equal to

max
‖vi‖2=1,vi∈Rn

∑
{i,j}∈E

1− vtivj
2

=
∑
{i,j}∈E

1− wtiwj
2

=
∑
{i,j}∈E

1− η
2

.

The rest of this short paper is organized as follows. In Section 2 we prove Theorem 1.1 and present

examples showing that its statement is optimal, up to a constant factor. In Section 3 we prove

Theorem 1.2 by constructing appropriate graphs. Our construction resembles the one in [7], but is

more general and its analysis is somewhat simpler. The main advantage of the new construction is

that unlike the one in [7], it is a Cayley graph of an abelian group and therefore its eigenvalues have a

simple expression, and can be compared with each other without too much efforts. The construction

in [7] is an induced subgraph of one of our graphs. We also discuss in Section 3 the relevance of the

construction to the study of the approximation guarantee of the algorithm of [5]. The final Section

4 contains some concluding remarks.
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2 Non-bipartite graphs

In this section we prove Theorem 1.1 and show that its estimate is best possible up to a constant

factor.

Proof of Theorem 1.1. Let A be the adjacency matrix of G = (V,E) and let V = {1, . . . , n}.
Denote by di the degree of the vertex i in G. Let x = (x1, . . . , xn) be an eigenvector, satisfying

‖x‖ = 1, corresponding to the smallest eigenvalue λn of A. Then

λn = λn‖x‖2 = xtAx =
∑
i,j

ai,jxixj = 2
∑
{i,j}∈E

xixj . (1)

The fact that the maximum degree of G is ∆, together with the inequality ∆ = ∆‖x‖2 ≥
∑
i dix

2
i

implies that

∆ + λn ≥
∑
i

dix
2
i + 2

∑
{i,j}∈E

xixj =
∑
{i,j}∈E

(xi + xj)2.

Partition the vertices of the graph into two parts by taking the first part to be the set of all vertices

with negative coordinates and the second one to be the set of all remaining vertices. Although it

is not difficult to show, using the Perron-Frobenius theorem, that both parts are nonempty, this

fact is not needed in what follows. Since G is non-bipartite one of the parts must contain an edge.

Therefore there exists an edge {i, j} of G such that either both coordinates xi, xj are non-negative

or both of them are negative.

Without loss of generality we can assume that x1 is positive and has maximum absolute value

among all entries of x. First consider the case that {i, j} ∈ E and xi ≥ 0, xj ≥ 0. Since the diameter

of G is D, we can assume that i ≤ D + 1, that 1, 2, . . . , i − 1, i is a shortest path from 1 to the set

{i, j} and that j = i+ 1. Therefore, either the path 1, . . . , i or the path 1, . . . , i, i+ 1 has odd length

and this length is bounded by D+ 1. Let 1, . . . , k be such a path with xk ≥ 0, k even and k ≤ D+ 2.

Then, by the Cauchy-Schwartz inequality

∆ + λn ≥
∑
{i,j}∈E

(xi + xj)2 ≥
k−1∑
i=1

(xi + xi+1)2 ≥ 1
k − 1

(
k−1∑
i=1

|xi + xi+1|
)2

≥ 1
k − 1

((x1+x2)+(−x2−x3)+(x3+x4)+(−x4−x5)+. . .+(xk−1+xk))
2

=
1

k − 1
(x1+xk)2 ≥ x2

1

D + 1
.

Finally, since
∑
i x

2
i = 1 and x1 has maximum absolute value we conclude that

∆ + λn ≥
x2

1

D + 1
≥

∑
i x

2
i

n(D + 1)
=

1
n(D + 1)

.

Next consider the case that both coordinates xi, xj , {i, j} ∈ E, are negative. Using the reasoning

above it follows that there exists a path 1, . . . , k such that xk < 0, k is odd and k ≤ D+ 2. Thus we

have
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∆ + λn ≥
∑
{i,j}∈E

(xi + xj)2 ≥
k−1∑
i=1

(xi + xi+1)2 ≥ 1
k − 1

(
k−1∑
i=1

|xi + xi+1|
)2

≥ 1
k − 1

((x1 + x2) + (−x2 − x3) + (x3 + x4) + (−x4 − x5) + . . .+ (−xk−1 − xk))
2

=
1

k − 1
(x1 − xk)2

≥ x2
1

D + 1
≥

∑
i x

2
i

n(D + 1)
=

1
n(D + 1)

.

This completes the proof. 2

As a corollary we obtain the following result for d-regular graphs.

Corollary 2.1 Let G = (V,E) be a d-regular graph on n vertices with diameter D and eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λn. If G is non-bipartite then

λ1 + λn = d+ λn ≥
1

(D + 1)n
.

Next we give examples of graphs which show that the estimate of Corollary 2.1 (and therefore

also that of Theorem 1.1) is best possible up to a constant factor. In case d = 2 consider the cycle

Cn of length n = 2D + 1. Clearly the diameter of C2D+1 is D and it is well known (see, e.g., [8])

that its maximum eigenvalue is λ1 = 2 and the minimum one equals λn = 2 cos( 2Dπ
2D+1). Thus

λ1 + λn = 2 + 2 cos
(

2Dπ
2D + 1

)
= 2

(
1− cos(

π

2D + 1
)
)
≤ π2

(2D + 1)2
≤ π2

2Dn
.

To generalize the previous example and show that our estimate is tight even if G has diameter

D and more vertices and/or larger degrees, we construct for d ≥ 3 a graph HD,d which is essen-

tially a blow up of the cycle of odd length by complete bipartite graphs. Let HD,d = (V,E) be

the graph on the set of vertices V = {vi,j , ui,j |1 ≤ i ≤ 2D + 1, 1 ≤ j ≤ d} whose set of edges

includes all edges {vi,j , ui,k} for all j, k except the cases j = k = 1, j = k = d and the edges

{vi,d, vi+1,1}, {ui,d, ui+1,1} where i+ 1 is reduced modulo 2D+ 1. Note that by definition, the graph

HD,d is d-regular, has n = (2D + 1)2d vertices and is non-bipartite, since it contains, for example,

the odd cycle v1,1, u1,d, u2,1, v2,d, . . . , u1,1, v1,2, u1,2, v1,1 of length 2(2D + 1) + 3. Thus to show that

the estimate of Theorem 1.1 is tight it is enough to prove the following proposition.

Proposition 2.2 The graph HD,d has diameter 2D + 2 and its largest and smallest eigenvalues

λ1, λn satisfy

λ1 + λn = O(
1
nD

).
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Proof. The diameter is easily computed. To prove the estimate on λ1 +λn, let AH be the adjacency

matrix of HD,d and let λ1 = d ≥ . . . ≥ λn be the eigenvalues of AH . By the variational definition of

the eigenvalues of AH (see, e.g., [10], pp. 99–101) we have that

λn = min
x∈Rn,‖x‖=1

xtAHx = min
x∈Rn,‖x‖=1

2
∑

{u,v}∈E(H)

xuxv. (2)

Therefore, since HD,d is d regular, for any x ∈ Rn, ‖x‖ = 1 we obtain

λ1 + λn = d+ λn ≤ d
∑

v∈V (H)

x2
v + 2

∑
{u,v}∈E(H)

xuxv =
∑

{u,v}∈E(H)

(xu + xv)2. (3)

We complete the proof by constructing a particular vector x for which the last sum is O( 1
nD ). Denote

by y = (y1, . . . , y2D+1) an eigenvector of the cycle C2D+1 corresponding to the smallest eigenvalue

2 cos( 2Dπ
2D+1) and satisfying

∑
i y

2
i = 1. Then (1) implies that 2(y1y2+y2y3+. . . y2D+1y1) = 2 cos( 2Dπ

2D+1)

and hence
2D+1∑
i=1

(yi + yi+1)2 + (y1 + y2D+1)2 = 2 + 2 cos
(

2Dπ
2D + 1

)
≤ π2

(2D + 1)2
.

Let x = (xv, v ∈ V (H)) be the vector defined as follows

xvi,j =
yi√
2d
, xui,j = − yi√

2d
∀i, j.

Then ‖x‖2 =
∑
i 2d( yi√

2d
)2 =

∑
i y

2
i = 1. Substituting the vector x into (3) and noticing that the only

edges {u, v} ∈ E(H) for which xu +xv 6= 0 are the edges of the form {vi,d, vi+1,1} or {ui,d, ui+1,1} we

obtain that

λ1 + λn ≤
∑

{u,v}∈E(H)

(xu + xv)2 = 2

(
2D+1∑
i=1

(
yi + yi+1√

2d
)2 + (

y1 + y2D+1√
2d

)2

)

=
1
d

(
2D+1∑
i=1

(yi + yi+1)2 + (y1 + y2D+1)2

)
≤ π2

d(2D + 1)2
≤ π2

Dn
.

This completes the proof. 2

3 Max Cut

3.1 The Goemans-Williamson algorithm and its performance

We first describe the algorithm of Goemans and Williamson. For simplicity, we consider the un-

weighted case. More details appear in [5].

The MAX CUT problem is that of finding a cut (S, V − S) of maximum size in a given input

graph G = (V,E), V = {1, . . . , n}. By assigning a variable xi = +1 to each vertex i in S and
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xi = −1 to each vertex i in V − S, it follows that this is equivalent to maximizing the value of∑
{i,j}∈E

1−xixj
2 , over all xi ∈ {−1, 1}. This problem is well known to be NP-hard, but one can relax

it to the polynomially-solvable problem of finding the maximum

max
‖vi‖2=1

∑
{i,j}∈E

1− vtivj
2

,

where each vi ranges over all n-dimensional unit vectors. Note that all our vectors are considered

as column vectors and hence vtu is simply the inner product of v and u. This is a semidefinite

programming problem which can be solved (up to an exponentially small additive error) in polynomial

time. The last expression is a relaxation of the max cut problem, since the vectors vi = (xi, 0, . . . , 0)

form a feasible solution of the semidefinite program. Therefore, the optimal value z∗ of this program

is at least as large as the size of the max cut of G, which we denote by OPT (G).

Given a solution v1, . . . , vn of the semidefinite program, Goemans and Williamson suggested the

following rounding procedure. Choose a random unit vector r and define S = {i|rtvi ≤ 0} and

V − S = {i|rtvi > 0}. This supplies a cut (S, V − S) of the graph G. Let W denote the size of

the random cut produced in this way and let E[W ] be its expectation. By linearity of expectation,

the expected size is the sum, over all {i, j} ∈ E, of the probabilities that the vertices i and j lie in

opposite sides of the cut. This last probability is precisely arccos(vtivj)/π. Thus the expected value

of the weight of the random cut is exactly∑
{i,j}∈E

arccos(vtivj)
π

.

However the optimal value z∗ of the semidefinite program is equal to

z∗ =
∑
{i,j}∈E

1− vtivj
2

.

Therefore the ratio between E[W ] and the optimal value z∗ satisfies

E[W ]
z∗

=
∑
{i,j}∈E arccos(vtivj)/π∑
{i,j}∈E(1− vtivj)/2

≥ min
{i,j}∈E

arccos(vtivj)/π
(1− vtivj)/2

.

Denote α = 2
π min0<θ≤π

θ
1−cos θ . An easy computation gives that the minimum α is attained at θ =

2.3311.., the nonzero root of cos θ+θ sin θ = 1, and that α ∈ (0.87856, 0.87857). Thus, E[W ] ≥ α ·z∗,
and since the value of z∗ is at least as large as the weight OPT of the maximum cut, we conclude that

E[W ] ≥ α · OPT . It follows that the Goemans-Williamson algorithm supplies an α-approximation

for MAX CUT. Moreover, by the above discussion, the expected size of the cut produced by the

algorithm is not better than αOPT in case OPT = z∗ and for an optimal solution v1, . . . , vn for the

semidefinite programming problem, arccos(vtivj)/π

(1−vtivj)/2
= α for all {i, j} ∈ E.
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In case the value of the semidefinite program is a large fraction of the total number of edges of

G, the above reasoning together with a simple convexity argument is used in [5] to show that the

performance of the algorithm is better. Put h(t) = arccos(1 − 2t)/π and let t0 be the value of t for

which h(t)/t attains its minimum in the interval (0, 1]. Then t0 is approximately 0.84458. Define

A = z∗/|E|. If A ≥ t0 then, as shown in [5], E[W ] ≥ h(A)
A z∗ ≥ h(A)

A OPT . Here, as before, the actual

expected size of the cut produced by the algorithm is not better than h(A)
A OPT in case OPT = z∗

and for an optimal solution v1, . . . , vn for the semidefinite programming problem, vtivj = 1− 2A for

all {i, j} ∈ E.

Karloff [7] proved that the approximation ratio of the algorithm is exactly α. To do so, he

constructed, for any small δ > 0, a graph G and vectors v1, . . . , vn which form an optimal solution of

the semidefinite program whose value is z∗(G), such that OPT (G) = z∗(G) and arccos(vtivj)/π

(1−vtivj)/2
< α+ δ

for all {i, j} ∈ E. Theorem 1.2 is a generalization of his result, and shows that the analysis of

Goemans and Williamson is tight not only for the worst case, but also for graphs in which the size

of the maximum cut is a larger fraction of the number of edges. Applying the above analysis to the

graph H from Theorem 1.2 together with the vectors wi as the solution of the semidefinite program

we obtain that in this case A = 1−η
2 and the approximation ratio is precisely

E[W ]
z∗(H)

=
E[W ]

OPT (H)
= min
{i,j}∈E(H)

arccos(wtiwj)/π
(1− wtiwj)/2

=
2
π

arccos η
1− η

=
h(A)
A

.

3.2 The proof of Theorem 1.2

Our construction is based on the properties of graphs arising from the Hamming Association Scheme

over the binary alphabet. Let V = {v1, . . . , vn}, n = 2m be the set of all vectors of length m over the

alphabet {−1,+1}. For any two vectors x, y ∈ V denote by d(x, y) their Hamming distance, that is,

the number of coordinates in which they differ. The Hamming graph H = H(m, 2, b) is the graph

whose vertex set is V in which two vertices x, y ∈ V are adjacent if and only if d(x, y) = b. Here we

consider only even values of b which are greater than m/2. We show that for any rational η there

exists an appropriate Hamming graph which satisfies the assertion of Theorem 1.2. We may and will

assume, whenever this is needed, that m is sufficiently large.

Note that by definition, H(m, 2, b) is a Cayley graph of the multiplicative group Zm2 = {−1,+1}m

with respect to the set U of all vectors with exactly b coordinates equal to −1. Therefore (see, e.g.,

[8], Problem 11.8 and the hint to its solution) the eigenvectors of H(m, 2, b) are the multiplicative

characters χI of Zm2 , where χI(x) =
∏
i∈I xi, I ranges over all subsets of {1, . . . ,m}. The eigenvalue

corresponding to χI is
∑
x∈U χI(x). The eigenvalues of H are thus equal to the so called binary
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Krawtchouk polynomials (see [3]),

Pmb (k) =
k∑
j=0

(−1)j
(
k

j

)(
m− k
b− j

)
, 0 ≤ k ≤ m. (4)

The eigenvalue Pmb (k) corresponds to the characters χI with |I| = k and thus has multiplicity
(m
k

)
.

Consider any two adjacent vertices of H(m, 2, b), vi and vj . By the definition of H, the inner

product vtivj is m − 2b. Choose m and b such that b > m/2 is even and m−2b
m = η. This is always

possible since η is a rational number, −1 < η < 0. Let wi = 1√
m
vi for all i; thus ‖wi‖2 = 1 and

wtiwj = η for any pair of adjacent vertices. We claim that for such choice of m and b the Hamming

graph H(m, 2, b) together with the set of vectors wi, 1 ≤ i ≤ n, satisfy the assertion of Theorem 1.2.

To prove this we first need to establish a connection between the smallest eigenvalue of a graph and

the semidefinite relaxation of the max cut problem.

Proposition 3.1 Let G = (V,E) be a graph on the set V = {1, 2, . . . , n} of n vertices, with adjacency

matrix A = (aij), and let λ1 ≥ . . . ≥ λn be the eigenvalues of A. Then

∑
i<j

aij
1− vtivj

2
≤ 1

2
|E| − 1

4
λn · n,

for any k > 0 and any set v1, . . . , vn of unit vectors in Rk.

Proof. Let B = (bij) be the n×k matrix whose rows are the vectors vt1, . . . , v
t
n. Denote by u1, . . . , uk

the columns of B. By definition we have
∑k
i=1 ‖ui‖2 =

∑
ij b

2
ij =

∑n
i=1 ‖vi‖2 = n. Therefore

∑
i<j

aij
1− vtivj

2
=

1
2
|E| − 1

2

∑
i<j

aijv
t
ivj =

1
2
|E| − 1

4

k∑
i=1

utiAui

By the variational definition of the eigenvalues of A (see equation (2)), for any vector z ∈ Rn,

ztAz ≥ λn‖z‖2 and equality holds if and only if Az = λnz. This implies that

∑
i<j

aij
1− vtivj

2
≤ 1

2
|E| − 1

4
λn

k∑
i=1

‖ui‖2 =
1
2
|E| − 1

4
λn · n.

Note that in the last expression equality holds if and only if each ui is an eigenvector of A with

eigenvalue λn. 2

As we show later, the smallest eigenvalue of the adjacency matrix AH = (aij) of the graph H(m, 2, b)

is Pmb (1). By the above discussion it has multiplicity
(m

1

)
= m and eigenvectors u1, . . . , um with

±1 coordinates, where for each vertex vj = (vj1, . . . , vjm), ui(vj) = vji. Therefore, the columns of

8



the matrix, whose rows are the vectors wi, are the eigenvectors 1√
m
ui of AH corresponding to the

eigenvalue Pmb (1). By the last sentence in the proof of Proposition 3.1 it follows that

max
‖vl‖2=1,∀l

∑
i<j

aij
1− vtivj

2
=

1
2
|E(H)| − 1

4
Pmb (1) · n =

∑
i<j

aij
1− wtiwj

2
.

On the other hand, ui is a vector with ±1 coordinates. Thus the coordinates of ui correspond to a

cut in H(m, 2, b) of size equal to

∑
k<j

akj
1− ui(vk)ui(vj)

2
=

1
2
|E(H)| − 1

4
utiAHui =

1
2
|E(H)| − 1

4
Pmb (1)‖ui‖2 =

1
2
|E(H)| − 1

4
Pmb (1) · n.

Thus the size of a maximum cut in H(m, 2, b) is equal to the optimal value of the semidefinite

program (see Proposition 3.1). To complete the proof of Theorem 1.2 it remains to prove the

following statement.

Proposition 3.2 Let Pmb (k), 0 ≤ k ≤ m be the binary Krawtchouk polynomials and let b be an

even integer satisfying b = 1−η
2 m for some fixed −1 < η < 0. Then Pmb (1) ≤ Pmb (k) for all

0 ≤ k ≤ m,m > m0(η).

Proof. We need the following well known properties of the Krawtchouk polynomials (see, e.g., [3]),

(m− k)Pmb (k + 1) = (m− 2b)Pmb (k)− kPmb (k − 1), (5)

Pmb (k) = (−1)bPmb (m− k), Pmb (k) =

(
m

b

)
Pmk (b)

(
m

k

)−1

. (6)

By (4) we have that Pmb (1) = m−2b
m

(m
b

)
< 0 < Pmb (0) =

(m
b

)
and Pmb (k) = Pmb (m− k) since b is even.

Therefore it is enough to prove the statement of the proposition only for 1 ≤ k ≤ m/2. First assume

that k is at most 1+η
2 m. Then the equality (5) implies that

|Pmb (k + 1)| = 1
m− k

|(m− 2b)Pmb (k)− kPmb (k − 1)| ≤ 2b−m
m− k

|Pmb (k)|+ k

m− k
|Pmb (k − 1)|

≤ 2b−m+ k

m− k
max(|Pmb (k)|, |Pmb (k − 1)|).

Since b is equal to 1−η
2 m and k ≤ 1+η

2 m, it follows that 2b−m+k
m−k = 2 b

m−k − 1 ≤ 1. Therefore, arguing

by induction on k we obtain that |Pmb (k + 1)| ≤ max(|Pmb (1)|, |Pmb (2)|). By calculation from (4),

|Pmb (2)| = | (m−2b)2−m
m(m−1)

(m
b

)
| < |Pmb (1)|. This proves that |Pmb (1)| ≥ |Pmb (k)| for all k ≤ 1+η

2 m.

From now on, till the end of the proof, c1, c2, c3, . . . always denote positive constants depending

only on η. Whenever needed we use the assumption that m is sufficiently large as a function of η.
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To complete the proof we show, next, that for 1+η
2 m ≤ k ≤ m/2 the value of |Pmb (k)| is at most

c1m
−1/3

(m
b

)
. This would imply that |Pmb (1)| = 2b−m

m

(m
b

)
≥ |Pmb (k)|, since by our assumptions about

b, 2b−m
m = −η is a constant, bounded away from zero. By the equality (6)

Pmb (k)(m
b

) =
Pmk (b)(m

k

) =
b∑

j=0

(−1)j
(
b

j

)(
m− b
k − j

)(
m

k

)−1

= S1 + S2,

where

S1 =
∑
r≤j≤q

(−1)j
(
b

j

)(
m− b
k − j

)(
m

k

)−1

,

S2 contains all the remaining summands, and r = (b/m − m−1/3)k + c2 as well as q = (b/m +

m−1/3)k + c3 are chosen so that S1 contains an even number of terms. Note that S1 is a sum of

at most c4m
2/3 summands tj = (−1)j

(m
k

)−1(
(b
j

)(m−b
k−j

)
−
( b
j+1

)( m−b
k−j−1

)
), where j runs over all integers

equal to r modulo 2 in an appropriate interval. Therefore to bound the absolute value |S1| of S1 it

is enough to bound |tj | for r ≤ j ≤ q. A simple calculation shows that

|tj | =
(
m

k

)−1(
b

j + 1

)(
m− b

k − j − 1

) ∣∣∣∣(jm− bk) + (m− b− k + 2j + 1)
(b− j)(k − j)

∣∣∣∣ .
From the assumption about j we have that jm− bk ≤ c5m

2/3k ≤ c5m
5/3 and that b− j > k − j ≥

k(1 − b/m −m−1/3) − c6 ≥ k/c7 ≥ m/c8. Thus |tj | ≤ c9m
−1/3

(m
k

)−1( b
j+1

)( m−b
k−j−1

)
. Hence we obtain

the following inequality,

|S1| ≤
q∑
j=r

|tj | ≤ c9m
− 1

3

(
m

k

)−1 +∞∑
j=−∞

(
b

j + 1

)(
m− b

k − j − 1

)
= c9m

− 1
3 ,

where here we used the fact that
∑+∞
j=−∞

( b
j+1

)( m−b
k−j−1

)
=
(m
k

)
. Next we obtain an upper bound on

|S2|. Let t = 2m−1/3 and p = b/m; by definition

|S2| ≤
(p−t)k∑
j=1

(
m

k

)−1(
b

j

)(
m− b
k − j

)
+

k∑
j=(p+t)k

(
m

k

)−1(
b

j

)(
m− b
k − j

)
.

Note that the right hand side in the last inequality is exactly the probability that a hypergeometric

distribution with parameters (m, b, k) deviates by tk from its expectation. By the result of [1], the

probability of this event is bounded by 2e−2t2k ≤ 2e−m
1/3/c10 . This implies that |S2| ≤ c11m

−1/3.

Therefore ∣∣∣∣∣Pmb (k)(n
b

) ∣∣∣∣∣ ≤ |S1|+ |S2| ≤ c1m
− 1

3 ≤ 2b−m
m

=

∣∣∣∣∣Pmb (1)(m
b

) ∣∣∣∣∣ .
It follows that |Pmb (1)| ≥ |Pmb (k)| for all 1 ≤ k ≤ m/2. Since the value of Pmb (1) is negative,

Pmb (1) = −|Pmb (1)| ≤ −|Pmb (k)| ≤ Pmb (k). This completes the proof of the proposition. 2

10



4 Concluding remarks

1. The examples described in Section 2 can be easily extended to similar examples with other

values of the degree d, the diameter D and the number of vertices n, by replacing the complete

bipartite graphs substituted in these examples with other regular bipartite graphs.

2. In [8], Problem 11.29 it is shown that the difference between the first and second largest

eigenvalues of d-regular graphs with n vertices and diameter D is always bigger than 1
Dn . This

is essentially tight, as the examples in Section 2 also show that there are d-regular graphs

with n vertices and diameter D for which the difference between the largest and second largest

eigenvalues is O( 1
Dn). Indeed, consider the graph H = HD,d. Denote by y = (y1, . . . , y2D+1)

an eigenvector of the cycle C2D+1 corresponding to the eigenvalue 2 cos( 2π
2D+1) and satisfying∑

i y
2
i = 1. Let x = (xv, v ∈ V (H)) be the vector such that xvi,j = xui,j = yi√

2d
. By definition

x satisfies
∑
v∈V (H) xv =

√
2d
∑
i yi = 0, ‖x‖2 = 1, and a computation similar to the one in

Section 2 shows that the second eigenvalue of H satisfies λ2(H) ≥ xtAHx ≥ d− O( 1
Dn). This

implies that λ1(H)−λ2(H) = d−λ2(H) = O( 1
Dn). It is worth noting that the hidden constant

in the O( 1
Dn) bound above can be improved by a factor of two in several ways, for example, by

replacing the complete bipartite graphs with complete graphs in the construction of the graph

H.

3. Let aij , 1 ≤ i < j ≤ n, and b be reals. We call a constraint

∑
i<j

aij(vtivj) ≥ b

valid if it is satisfied whenever each vi is an integer in {−1, 1}. Feige, Goemans and Williamson

(see [4],[5]) proposed adding to the semidefinite program a family of valid constrains, in the

hope of narrowing the gap between the optimal value of the semidefinite program and the

weight of the max cut. It is easy to see that, as observed in [7], since the vectors w1, . . . , wn

from Section 3 have all their coordinates equal to ±1/
√
m they satisfy any valid constraint.

Therefore the proof of Theorem 1.2 shows that the addition of any family of valid constraints

cannot improve the performance ratio of the Goemans-Williamson algorithm even for graphs

containing large cuts.

4. Very recently we determined, together with U. Zwick, the precise approximation guarantee of

the Goemans Williamson algorithm for graphs G = (V,E) in which the size of the max cut is

at least A|E| for all values of A ( ≥ 1/2). It turns out that this approximation guarantee is

h(t0)/t0 for all A between 1/2 and t0, where t0 is as in Section 1 (note that for A close to 1/2

11



this gives a cut of size less than half the number of edges!). The examples demonstrating this

fact are based on the ones constructed here, but require several additional ideas. The details

will appear somewhere else.
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[1] V. Chvátal, The tail of the hypergeometric distribution, Discrete Math. 25 (1979), 285–287.

[2] P. Crescenzi, R. Silvestri and L. Trevisan, To Weight or not to Weight: Where is the Question?

Proc. of the 4th Israeli Symposium on Theory of Computing and Systems (ISTCS’96), IEEE

(1996), 68–77.

[3] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland, Amsterdam,

1997.

[4] U. Feige and M. Goemans, Approximating the value of two prover proof systems, with applica-

tions to MAX 2SAT and MAX DICUT, Proc. Third Israel Symposium on Theory of Computing

and Systems, Israel, 1995.

[5] M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming, J. ACM 42 (1995), 1115–1145.

[6] J. H̊astad, Some optimal inapproximability results, Proc. of the 29th ACM STOC, ACM Press

(1997), 1–10. (Full version available as E-CCC Report number TR97-037.)

[7] H. Karloff, How good is the Goemans-Williamson MAX CUT algorithm?, Proc. of the 28th

ACM STOC, ACM Press (1996), 427–434.

[8] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1993.

[9] C.H. Papadimitriou and M. Yannakakis, Optimization, Approximation, and Complexity Classes,

JCSS 43 (1991), 425–440.

[10] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, 1965.

12


