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Abstract

We show that the minimum possible size of an ε-net for point objects and line (or rectangle)-
ranges in the plane is (slightly) bigger than linear in 1/ε. This settles a problem raised by Matoušek,
Seidel and Welzl in 1990.

1 Introduction

A range space S is a pair (X,R), where X is a (finite or infinite) set and R is a (finite or infinite)
family of subsets of X. The members of X are called points and those of R are called ranges. If A is a
subset of X then PR(A) = {r∩A : r ∈ R} is the projection of R on A. In case this projection contains
all subsets of A we say that A is shattered. The Vapnik-Chervonenkis dimension (or VC-dimension) of
S, denoted by V C(S), is the maximum cardinality of a shattered subset of X. If there are arbitrarily
large shattered subsets then V C(S) =∞.

For a finite set of points A in a range space, a subset N ⊂ A is an ε-net for A if any range
r ∈ R satisfying |r ∩ A| ≥ ε|A| contains at least one point of N . The theory of VC-dimension
and ε-nets has played a central role in discrete and computational geometry, and has been used
in a variety of applications including range searching, geometric partitions, and bounds on various
incidence problems, as well as in other mathematical areas such as statistics, computational learning,
discrepancy theory and combinatorics.

A well known result of Haussler and Welzl [19], following earlier work of Vapnik and Chervonenkis
[32], asserts that for any n and ε > 0, any set of size n in a range space of VC-dimension d contains an
ε-net of size at most O(dε log(1/ε)). See also [20] for a proof of a (1 + o(1))(dε log(1/ε)) upper bound,
and [22], [25], [5] for more details.

As shown in [20] there are known constructions in which for fixed d the size of the smallest possible
ε-net for a given set cannot be linear in 1/ε. In fact, the O(dε log(1/ε)) bound may be tight already for
dimension d = 2, as shown in [20] (see also [4] for another construction). Despite the existence of these
constructions, there is no known natural geometric example demonstrating this phenomenon. Indeed,
there is no known lower bound, better than the trivial Ω(1/ε) bound, in any concrete geometric
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situation. The problem, raised and addressed 20 years ago in [23], whether or not in all natural
geometric scenarios of V C-dimension d, there always exists an ε-net of size O(d/ε), is still wide open,
and has been considered in a substantial number of papers over the years. Besides being interesting in
its own right, this question has an algorithmic motivation, since as shown in [7] and [13] the existence
of smaller nets supplies improved approximation algorithms for the set cover problem and the hitting
set problem in the corresponding geometric scenarios.

A linear (in 1/ε) upper bound for the size of ε-nets has been established for several special geometric
cases, such as point objects and halfspace ranges in two and three dimensions, and point objects and
disk or pseudo-disk ranges in the plane; see [11], [1], [27], [10], [23],[21] and the survey [14] for some
earlier results on the subject, as well as [12], [18], [30] and [6] for more recent results. As mentioned in
many of these papers, the prevailing conjecture so far has been that in all geometric scenarios, there
always exists an epsilon-net of size O(d/ε).

1.1 The new results

In the present short paper we show that the linear bound does not hold, and the smallest possible size
of an ε-net in a very simple geometric situation (with VC-dimension 2) is not linear. Unfortunately
our lower bound is only barely non-linear, providing planar geometric examples in which the minimum
size of an ε-net is at least Ω(1

εw(1/ε)), where w is (a version of) the inverse Ackermann function. It is
worth noting that if the VC-dimension is d = 1 there are always ε-nets of size O(1/ε). This follows, for
example, from the result in [3] that assert that any range space of VC-dimension 1 can be embedded
in a range space of halfspaces in dimension at most 3. Therefore, the dimension 2 in our example is
optimal.

For convenience, we state in the following two theorems the main results demonstrating the non-
linear behavior of the functions, without specifying the precise bounds obtained.

Theorem 1.1 For every (large) positive constant C there exist n and ε > 0 and a set X of n points
in the plane, so that the smallest possible size of an ε-net for lines for X is larger than C · 1

ε

A fat line in the plane is the set of all points within distance µ from a line in the plane. Equivalently,
this is the intersection of two half planes with parallel supporting lines. Our construction implies the
following.

Theorem 1.2 For every (large) positive constant C there exists a sequence εi of positive reals tending
to zero, so that for every ε = εi in the sequence and for all n > n0(εi) there exists a set Yn of n points
in general position in the plane, so that the smallest possible size of an ε-net for fat lines for Yn is
larger than C · 1

ε

It is not difficult to check that the VC-dimension of the range space considered in the first theorem is
2, while that of the space considered in the second is 5.

2



1.2 Weak ε-nets

Our bounds hold for weak ε-nets as well. For a finite set of points X in Rm and a (possibly infinite)
family of subsets F of Rm, a set Y ⊂ Rm is a weak ε-net for X with respect to F if any F ∈ F that
satisfies |F ∩X| ≥ ε|X| contains at least one point of Y . The difference between this notion and that
of a (strong) ε-net considered in the previous subsection is that here Y does not have to necessarily
be a subset of X. Indeed, this makes the task of finding a small net much easier, and unlike the case
of strong nets it is known that there is a function f(ε,m) depending only on ε and m so that for every
finite set X (of any size) in Rm, there is a weak ε-net Y for X with respect to the set of all convex sets
in Rm, where |Y | ≤ f(ε,m). This was first proved in [2], see also [9] and [24] for improved bounds,
and [4] and its references for several extensions. The corresponding assertion for strong nets is easily
seen to be false (and indeed the VC-dimension of the family of all convex sets is infinite, in every fixed
dimension m ≥ 2). The best known upper bound for the function f(ε, 2) is O( 1

ε2
), proved in [2], and

until recently there was no known lower bound exceeding Ω(1/ε). Such a bound (of Ω(1
ε log(1

ε )) was
proved in [8] using an elegant technique based on a notion the authors call stair convexity.

The results in Theorem 1.1 and in Theorem 1.2 can be extended to weak nets as well. Although
this provides much weaker lower bounds than the above mentioned Ω(1

ε log(1
ε )) bound of [8], these

bounds are still non-linear in 1/ε and hold for a very restricted collection of convex sets: lines, fat
lines, rectangles or triangles, all having bounded VC-dimension. In this respect this is stronger than
the results in [8]. For convenience, as done for the case of strong nets, we state the non-linear lower
bound for the size of weak nets too without specifying the precise estimate the proof provides.

Theorem 1.3 For every (large) positive constant C there exist n and ε > 0 and a set X of n points
in the plane, so that the smallest possible size of a weak ε-net for lines for X is larger than C · 1

ε

The analog of Theorem 1.2 for weak nets holds as well.

1.3 Organization

The rest of this short paper is organized as follows. In Section 2 we describe the proofs of Theorems
1.1 and 1.2. The proofs are short and simple, but are based on a deep result of Furstenberg and
Katznelson. Indeed, the main contribution here is to point out the connection of this theorem to the
questions about ε-nets. The proof of Theorem 1.3 is described in Section 3. It is similar to that of
the previous two theorems, but requires an additional ingredient. The final section contains some
concluding remarks and open problems.

2 Strong nets

We need a powerful combinatorial result of Furstenberg and Katznelson [15], [16], known as the density
Hales-Jewett Theorem. For an integer k ≥ 2, put [k] = {1, 2, . . . , k} and let [k]d denote the set of all
vectors of length d with coordinates in [k]. A combinatorial line is a subset L ⊂ [k]d so that there is
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a set of coordinates I ⊂ [d] = {1, 2, . . . , d}, I 6= [d], and values ki ∈ [k] for all i ∈ I for which L is the
following set of k members of [k]d:

L = {`1, `2, . . . , `k}

where
`j = {(x1, x2, . . . , xd) : xi = ki for all i ∈ I and xi = j for all i ∈ [d] \ I}.

Thus a combinatorial line is a set of k vectors all having some fixed values in the coordinates in I, where
the jth vector has the value j in all other coordinates. In this notation, the Furstenberg-Katznelson
Theorem is the following.

Theorem 2.1 ([16]) For any fixed integer k and any fixed δ > 0 there exists an integer d0 = d0(k, δ)
so that for any d ≥ d0, any set Y of at least δkd members of [k]d contains a combinatorial line.

We will also use the following simple lemma.

Lemma 2.2 For every positive integer d there are d vectors v1, v2, . . . , vd in the plane so that for
every two nontrivial sequences of integers (k1, k2, . . . , kd) and (k′1, k

′
2, . . . , k

′
d), with |ki|, |k′i| < k for

all i, the two vectors
∑

i kivi and
∑

i k
′
ivi have the same direction if and only if (k1, k2, . . . , kd) and

(k′1, k
′
2, . . . , k

′
d) have the same direction (that is, one is a multiple of the other). Moreover, there are

such vectors vi in which all coordinates are integers of absolute value at most (2k − 1)2d.

Proof: We show that if vi = (xi, yi) and each of the 2d numbers xi, yi is chosen randomly, uniformly
and independently among the set of integers of absolute value at most (2k − 1)2d, then with positive
probability the vectors obtained satisfy the desired properties. To prove this is indeed the case, fix two
sequences (k1, k2, . . . , kd) and (k′1, k

′
2, . . . , k

′
d), with |ki|, |k′i| < k and assume they are not proportional.

The two vectors
∑

i ki(xi, yi) and
∑

i k
′
i(xi, yi) have the same direction iff

(
∑
i

kixi)(
∑
i

k′iyi) = (
∑
i

kiyi)(
∑
i

k′ixi),

that is, iff ∑
i,j

(kik′j − kjk′i)xiyj = 0.

As the two vectors (k1, k2, . . . , kd) and (k′1, k
′
2, . . . , k

′
d) are not proportional, the polynomial in the

left hand side of the last equality is nontrivial and has degree 2. It thus follows, by the Schwartz-
Zippel Lemma ([31], [33]) that the probability it vanishes in the random assignment to the variables
xi, yi does not exceed 2

2·(2k−1)2d+1
< 1

(2k−1)2d . Since there are less than (2k − 1)2d choices for the
two sequences (k1, k2, . . . , kd) and (k′1, k

′
2, . . . , k

′
d) it follows that with positive probability none of the

relevant polynomials vanishes, completing the proof. 2

Proof of Theorem 1.1: Given a large positive constant C, fix an integer k satisfying k > 2C, let
d = d0(k, 1/2) be as in Theorem 2.1 and define n = kd, ε = k

kd . Let v1, v2, . . . , vd be d vectors in R2

satisfying the assertion of Lemma 2.2.
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Let X be the following set of kd points in the plane.

X = {m1v1 +m2v2 + . . .+mdvd : 1 ≤ mi ≤ k for all i}.

Note that for every combinatorial line L in [k]d, the set of k points

{m1v1 +m2v2 + . . .mdvd : (m1,m2, . . . ,md) ∈ L}

lies on a (geometric) line containing exactly k points of X. Indeed, if the combinatorial line is
determined by the set of coordinates I ⊂ [d], then the direction of the corresponding geometric line is∑

i∈[d]−I vi, and the generic choice of the vectors vi ensures that this geometric line does not contain any
additional points of X. Indeed, if m1v1 +m2v2 + . . .+mdvd is one of the points of the line, then for any
other point m′1v1+m′2v2+. . .+m′dvd on it, the difference (m1−m′1)v1+(m2−m′2)v2+. . .+(md−m′d)vd
must have the same direction as

∑
i∈[d]−I vi. This implies, by the choice of the vectors vi, that the

vector (m1−m′1,m2−m′2, . . . ,md−m′d) is proportional to the characteristic vector of the set [d]− I,
implying that the vector (m′1,m

′
2, . . . ,m

′
d) also lies in the combinatorial line L and showing that there

are exactly k points of X on the corresponding geometric line, as claimed.
It thus follows, by Theorem 2.1 and the choice of d, that any set of half the points of X fully

contains one of these lines and thus its complement is not an ε-net for lines for the set X, by the
definition of ε. Therefore, the smallest possible size of such an ε-net is bigger than

1
2
kd =

k

2
1
ε
> C · 1

ε
.

This completes the proof of Theorem 1.1. 2

Proof of Theorem 1.2: The construction is a simple modification of the previous one. Given C, pick
an integer k > 3C. Let d0 = d0(k, 1/2) be as in Theorem 2.1. For each d ≥ d0 define ε = ε(d) = 0.9 k

kd

and let X be a set of kd points in the plane defined as in the previous proof. Thus, any ε-net for lines
for X contains at least 1

2k
d points of X. For each n > 20 ·kd, let Yn be a set of n points obtained from

X by replacing each point x of X by a set Sx of either bn/|X|c or dn/|X|e points, all very close to
x. The points in each such set Sx are chosen sufficiently close to x to ensure that for every collection
of k sets that replace the points corresponding to those of a combinatorial line, there is a fat line
containing all the points in these sets, and no other points of Yn. Any subset of less than 1

2k
d of the

points in Yn must completely miss at least half of the sets Sx, and hence, by Theorem 1.1, does not
intersect at least one fat line corresponding to a combinatorial line. As each such fat line is of relative
size at least

kbn/|X|c
n

> 0.9
k

|X|
= ε,

this completes the proof. 2
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3 Weak nets

As mentioned in the introduction, the results in Theorem 1.1 and in Theorem 1.2 can be extended to
weak nets as well. The proofs are similar to the case of strong nets but require an additional argument.
We proceed with the details.

Proof of Theorem 1.3:
Given a large positive C, fix an integer k satisfying k > 4C, let d = d0(k, 1/2) be as in Theorem

2.1, and let n = kd, ε = k
kd be as in the proof of Theorem 1.1. We need the following simple fact.

Claim: Consider the set [k]d as a subset of the d-dimensional Euclidean space. Call a (geometric)
line L in Rd special if it contains all k points of a combinatorial line, as defined in Section 2. Then
the only points of Rd that belong to at least two distinct special lines are the members of [k]d.

Proof (of claim): Let

L1 = {(x1, x2, . . . , xd) + tχJ1 : t ∈ (−∞,∞) }

and
L2 = {(y1, y2, . . . , yd) + tχJ2 : t ∈ (−∞,∞) }

be two distinct intersecting special lines, where (x1, x2, . . . , xd), (y1, y2, . . . , yd) ∈ [k]d, J1, J2 are
nonempty subsets of [d], χJi is the characteristic vector of Ji, xj = 1 for all j ∈ J1 and yj = 1
for all j ∈ J2. As the lines are intersecting, there are two reals t1, t2 so that

(x1, x2, . . . , xd) + t1χJ1 = (y1, y2, . . . , yd) + t2χJ2 . (1)

Since the lines are distinct and intersecting, they are not parallel, and hence the two sets J1, J2

determining their directions differ. Without loss of generality, there is an index j ∈ J1 \ J2. Equating
the values in coordinate number j of the two vectors in (1) we conclude that xj + t1 = 1 + t1 = yj ,
implying that 1+t1 ∈ [k]. This implies that each coordinate of the common point (x1, x2, . . . , xd)+t1χJ1

of the two lines is in [k], proving the claim.
Returning to the proof of the theorem, let v1, v2, . . . , vd be random vectors (in the continuous

square [0, 1]2, for example), and define X as in the proof of Theorem 1.1. Call a planar line special
if it is the image of a special geometric line in Rd under the linear transformation that maps the ith
unit vector in Rd to vi, for all i.

It is not difficult to check that the assertion of the last claim and the random choice of the vectors
vi imply that with probability 1 every special planar line contains exactly k points of X, and the only
points in the plane that lie in more than two special planar lines are the points of X. This enables one
to replace any weak ε-net Y that intersects all those special planar lines (ignoring all other lines) by a
strong ε-net for these lines, of size at most 2|Y |. Therefore, by the argument in the proof of Theorem
1.1, 2|Y | ≥ 1

2k
d, implying that |Y | ≥ 1

4k
d = k

4
1
ε > C · 1

ε , as needed. This completes the proof. The
derivation of the analog of Theorem 1.2 for weak nets from the result for lines follows by essentially
repeating the arguments used in the proof of Theorem 1.2. 2
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4 Concluding remarks

• The proof of [16] applies topological arguments and is not effective, providing no explicit bounds.
Subsequent proofs, and in particular the one in [28], do provide some (very weak) estimates, and
we can thus write some (extremely slowly), explicit growing function w so that the assertions
of Theorems 1.1 and 1.2 hold when C is replaced by w(d1/εe). Indeed, the proof in [28] gives
roughly the bound Ak(1/δ) for the function d0(k, δ) defined in Theorem 2.1, where Ak is the
kth function in the Ackermann hierarchy defined recursively as follows: Ak(1) = 2 and Ak(n) =
Ak−1(Ak(n − 1)), with A1(n) = 2n. Thus, the kth function is obtained by iterating the (k-1)st
function, so A2(n) is the exponential function 2n and A3(n) is the tower function. Plugging in
the proof of Theorems 1.1, 1.2 or 1.3 we conclude that the lower bound they provide is of the
form Ω(1

εw(d1/εe)), where w(s) is the minimum number k so that kAk(2) > s.

• The density Hales-Jewett Theorem of Furstenberg and Katznelson is a far reaching strengthening
of the Hales-Jewett Theorem [17], that asserts that for any fixed k and `, there exists a d0 =
d0(k, `), so that for any d ≥ d0, any coloring of [k]d by ` colors contains a monochromatic
combinatorial line. The Hales-Jewett Theorem is applied in [26], using a similar construction to
the one described here, to prove the existence of an infinite collection of lines in the plane so that
each point in the plane is covered by at least k lines, and yet in any partition of the lines into two
disjoint sets, there is always a point that is not covered by the lines in one of these sets. Note
that this only requires the original Hales-Jewett Theorem, and not its stronger density version.

• The example described in Theorem 1.2 clearly implies the same lower bound for several similar
range spaces, like the one in which the objects are points in the plane and the ranges are planar
rectangles or triangles.

• An equivalent concise way of describing the proof of Theorem 1.1 is the following. Consider
the set Z = [k]d as a subset of the Euclidean space Rd. As in the proof of Theorem 1.3 call a
(geometric) line in this space special if it contains all k points of one of the combinatorial lines
defined in Section 2. Put ε = k

kd . The Furstenberg-Katznelson result (Theorem 2.1) implies
that if d is sufficiently large, then the minimum possible size of an ε-net for Z with respect to
the range space consisting of all special lines is at least 1

2k
d. Now map Z by a random linear

transformation to the plane R2, and note that with probability 1 no two points of Z are mapped
to the same point, and every special line is mapped to a line containing exactly k points of the
image of Z. (This is proved algebraically in Lemma 2.2.) Let X be the image of Z. The smallest
size of an ε-net for X is at least 1

2k
d, as the set of points of Z mapped to any such net intersects

all special lines.

The result for weak nets (Theorem 1.3) follows in a similar way. As shown in the Claim appearing
in the proof of this theorem, the only points in Rd that are common to at least two special lines
are the points of Z, and thus any weak net for these lines in Rd can be converted into a strong
net of the same cardinality, which has to be large, by Theorem 2.1. A random projection to
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R2 maps Z to a set of points X and maps each special line to a line we call a special planar
line. Moreover, with probability 1 the only points of the plane that belong to more than 2 of
the special planar lines are the points of X. Thus for any weak ε-net Y for X in the plane with
respect to the special planar lines, its inverse image in the set of all points belonging to at least
one special line in Rd is of size at most 2|Y | and forms a weak ε-net for Z with respect to the
set of all special lines. This shows that if d is sufficiently large, then 2|Y | ≥ 1

2k
d, providing the

required estimate.

• It may be a bit better in terms of the estimates obtained to consider Moser numbers rather than
Hales-Jewett numbers (c.f. [29] for the definition of Moser numbers). This will still provide very
poor (and yet non-linear) lower bounds.

• The problem of deciding whether or not there are natural geometric range spaces of VC-dimension
d in which the minimum possible size of an ε-net is Ω(dε log(1/ε)) remains open. It seems plausible
to conjecture that there are such examples, and even to speculate that this is the case for the
range space of lines in the plane, for appropriately defined planar sets of points.
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