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ABSTRACT
We study the ε-rank of a real matrix A, defined for any
ε > 0 as the minimum rank over matrices that approxi-
mate every entry of A to within an additive ε. This pa-
rameter is connected to other notions of approximate rank
and is motivated by problems from various topics includ-
ing communication complexity, combinatorial optimization,
game theory, computational geometry and learning theory.
Here we give bounds on the ε-rank and use them for algo-
rithmic applications. Our main algorithmic results are (a)
polynomial-time additive approximation schemes for Nash
equilibria for 2-player games when the payoff matrices are
positive semidefinite or have logarithmic rank and (b) an
additive PTAS for the densest subgraph problem for similar
classes of weighted graphs. We use combinatorial, geometric
and spectral techniques; our main new tool is an algorithm
for efficiently covering a convex body with translates of an-
other convex body.
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1. INTRODUCTION

1.1 Background
A large body of work in theoretical computer science deals

with various ways of approximating a matrix by a simpler
one. The motivation from the design of approximation algo-
rithms is clear. When the input to a computational problem
is a matrix (that may represent a weighted graph, a payoff
matrix in a two-person game or a weighted constraint sat-
isfaction problem), the hope is that it is easier to solve or
approximately solve the computational problem for the ap-
proximating matrix, which is simpler. If the notion of ap-
proximation is suitable for the problem at hand, then the
solution will be an approximate solution for the original in-
put matrix as well.

A typical example of this reasoning is the application of
cut decomposition and that of regular decomposition of ma-
trices. The cut-norm of a matrix A with a set of rows R and
a set of columns C is

max
S⊂R,T⊂T

|
∑

i∈S,j∈T

Aij |.

A cut matrix B(S, T ; r) is a matrix B for which Bij = r
iff i ∈ S, j ∈ T and Bij = 0 otherwise. Frieze and Kannan
showed that any n by m matrix B with entries in [−1, 1]
can be approximated by a sum of at most 1

ε2
cut matrices,

in the sense that the cut norm of the difference between B
and this sum is at most εmn. Such an approximation can
be found efficiently and leads to several approximation algo-
rithms for dense graphs—see [20]. Similar approximations of
matrices can be given using variants of the regularity lemma
of Szemerédi. These provide a more powerful approximation
at the expense of increasing the complexity of the approx-
imating matrix, and supply approximation algorithms for
additional problems see [6, 19, 7].



All these methods, however, deal with global properties,
as the approximation obtained by all these variants of the
regularity lemma are not sensitive to local changes in the
matrix. In particular, these methods cannot provide ap-
proximate solutions to problems like that of finding an ap-
proximate Nash equilibrium in a two person game, or that of
approximating the maximum possible density of a subgraph
on, say,

√
n vertices in a given n vertex weighted graph. Mo-

tivated by applications of this type, it is natural to consider
a stronger notion of approximation of a matrix, an approx-
imation in the infinity norm, by a matrix of low rank. This
motivates the following definition.

Definition 1.1. For a real n×n matrix A, the ε-rank of
A is defined as follows:

ε-rank(A) = min{rank(B) : B ∈ <n×n, ‖A−B‖∞ ≤ ε}.

We will usually assume that the matrix A has entries in
[−1, 1], but the definition holds for any real matrix. Define
the density norm of a matrix A to be

den(A) = max
x,y∈<n

+

|xTAy|
‖x‖1‖y‖1

.

It is easy to verify that the following definition of ε-rank is
equivalent to Definition 1.1:

ε-rank(A) = {min rank(B) : B ∈ <n×n, den(A−B) ≤ ε}.

The investigation of notions of simple matrices that ap-
proximate given ones is motivated not only by algorithmic
applications, but by applications in complexity theory as
well. Following Valiant [45] call a matrix A (r, s)-rigid if for
any matrix B of the same dimensions as A and rank at most
r, A−B contains a row with at least s nonzero entries. Here
the notion of simple matrix is thus a matrix of low rank, and
the notion of approximation is to allow a limited number of
changes in each row. Valiant proved that if an n by n matrix
is (Ω(n), nΩ(1))-rigid, then there is no arithmetic circuit of
linear size and logarithmic depth that computes Ax for any
given input x. Therefore, the main problem in this context
(which is still wide open) is to give an explicit construction
of such a rigid matrix.

Another notion that received a considerable amount of
attention is the sign-rank of a real matrix. For a matrix
A, rank±(A) is defined as the minimum rank over matrices
each of whose entries has the same sign as the correspond-
ing entry in the original matrix. The notion of approxima-
tion here refers to keeping the signs of the entries, while the
simplicity of the approximating matrix is measured by its
rank. The sign rank has played a useful role in the study of
the unbounded error communication complexity of Boolean
functions (see, e.g., [5, 21] and their references), in establish-
ing lower bounds in learning theory and in providing lower
bounds for the size of threshold-of-majority circuits com-
puting a function in AC0 (see [37]). It is clear that for −1, 1
matrices or matrices with entries of absolute value exceeding
ε, ε-rank(A) ≥ rank±(A), and simple examples show that in
many cases the ε-rank is far larger than the sign-rank.

Another line of work on ε-rank is motivated by commu-
nication complexity [17, 29, 36]. The ε-error private-coin
communication complexity of a Boolean function is bounded
from below by the logarithm of the ε-rank of the correspond-
ing communication matrix (see [28]). In addition, the ε-
error private-coin quantum communication complexity of a

Boolean function is bounded from below by log ε-rank(A)/2
where A is the communication matrix of the function. Using
this connection, it has been proven that for fixed ε the 2n

by 2n set-disjointness matrix has ε-rank 2Θ(
√
n), using the

quantum protocol of Aaronson and Ambainis [1] for disjoint-
ness, and Razborov’s lower bound for the problem (see [36],
where there is a lower bound for the trace-norm of any ma-
trix that ε-approximates the disjointness matrix restricted
to the sets of size n/4.) In another work, Lee and Shraib-
man [29] have given algorithmic bounds on ε-rank via the γ2

norm. The γ2-norm of a real matrix A, denoted by γ2(A), is
the minimum possible value of the product c(X)c(Y ), where
c(Z) is the maximum `2-norm of a column of a matrix Z,
and the minimum is taken over all factorizations of A of the
form A = XtY . For a sign matrix A and for α ≥ 1, let
γα2 (A) denote the minimum possible value of γ2(B), where
B ranges over all matrices of the same dimension as A that
satisfy 1 ≤ Aij ·Bij ≤ α for all admissible i, j. Let rankα(A)
denote the minimum possible rank of such a matrix B. Note
that for α = 1 + ε this is (roughly) the ε/2-rank of A. In
[29] it is shown that rankα(A) and γα2 (A) are polynomially
related for any sign matrix A, up to a poly-logaritmic fac-
tor in the dimension of A. Since γα2 (A) can be computed
efficiently using semi-definite programming, this provides a
(rough) approximation algorithm for the ε-rank of a given
sign matrix.

For the special case of the n by n identity matrix the
ε-rank has been studied and provided several applications.
In [2] it is shown that it is at least Ω( logn

ε2 log(1/ε)
) and at most

O( logn
ε2

). This is used in [2] to derive several applications
in geometry, coding theory, extremal finite set theory and
the study of sample spaces supporting nearly independent
random variables. See also [13] for a more recent application
of the lower bound (for the special case ε < 1/

√
n) in com-

binatorial geometry and in the study of locally correctable
codes over real and complex numbers.

The notion of the ε-rank of a matrix is also related to
learning and to computational geometry. Indeed, the prob-
lem of computing the ε-rank of a given n by n matrix A is
equivalent to the geometric problem of finding the minimum
possible dimension of a linear subspace of Rn that intersects
the aligned cubes of edge length 2ε centered at the columns
of A. In learning, the problem of learning with margins, the
fat-shattering dimension of a family of functions and the
problem of learning functions approximately are all related
to this notion (see e.g., [4] and the references therein).

The focus of our paper is algorithmic applications of ε-rank;
we state our results in the next section.

1.2 Results
We begin with bounds on the ε-rank. A well known re-

sult of Forster [21] asserts that the sign-rank of any n by n
Hadamard matrix H is at least Ω(

√
n). This clearly implies

the same lower bound for the ε-rank of any such matrix for
any ε < 1. Using the approximate γ2 norm, Linial et al.
[30] further show that ε-rank(H) ≥ (1− 2ε)n. The following
gives a slightly stronger estimate, which is tight.

Theorem 1.2. For any n × n Hadamard matrix H and
any 0 < ε < 1, ε-rank(H) ≥ (1− ε2)n.

Next we show a lower bound on the approximate rank of
a random d-regular graph. Let AG denote the adjacency
matrix of a graph G, and ĀG denote the “signed” adjacency



matrix where the (i, j) entry is 1 for an edge and −1 for a
non-edge. We show, in fact, a stronger statement that for a
random d-regular graph the sign rank of ĀG is Ω(d).

A closely related result was shown by Linial and Shraib-
man [31]. Similarly to the sign rank, define γ∞2 (A) as the
minimum γ2 norm of a matrix that has the same sign pattern
as A and all entries at least 1 in magnitude. It is known that
rank±(A) = O(γ∞2 (A) log(mn)) [14] and also that the sign
rank can be exponentially smaller than γ∞2 [16, 42]. Linial

and Shraibman show that γ∞2 (AG) = Ω(
√
d) for a random

d-regular graph, which also implies an Ω(d) lower bound on
the ε-approximate rank for any constant ε < 1/2.

Our proof is different from these γ2 techniques and relies,
as in previous lower bounds on the sign rank [5], on Warren’s
theorem from real algebraic geometry [47].

Theorem 1.3. For almost all d-regular graphs G on n
vertices rank±(ĀG) = Ω(d) for the adjacency matrix of G.

By“almost all”we mean that the fraction of d-regular graphs
on n vertices for which the statement holds tends to 1 as n
tends to infinity. Note that as ĀG = 2AG−J , where J is the
all ones matrix, this result also implies that ε-rank(AG) =
Ω(d) for any ε < 1/2. The lower bound here is tight for
ε-rank up to a logn factor: it follows from results in [30, 29]
that for any fixed ε bounded away from zero the ε-rank of
AG for every d-regular graph on n vertices is O(d logn). The
lower bound is tight for sign rank, as a result of [5] implies
that the sign rank is bounded by the maximal number of
sign changes in each row.

The ε-rank of any positive semidefinite matrix can be
bounded from above as stated in the next theorem. The
theorem follows via a direct application of the Johnson-
Lindenstrauss lemma [26].

Theorem 1.4. For a symmetric positive semi-definite n×
n matrix A with |Aij | ≤ 1, we have

ε-rank(A) ≤ 9 logn

ε2 − ε3 .

Note that this is nearly tight, by the above mentioned lower
bound for the ε-rank of the identity matrix.

The last theorem can be extended to linear combinations
of positive semi-definite (=PSD) matrices.

Corollary 1.5. Let A =
∑m
i=1 αiBi where |αi| ≤ 1 are

scalars and Bi are n×n PSD matrices with entries at most
1 in magnitude. Then

ε-rank(A) ≤ Cm2 logn

ε2

for an absolute constant C.

The results above provide several algorithmic applications.
Our first application is finding approximate Nash equilibria
in 2-player games. Lipton et al. [32] showed that an ε-Nash

for any 2-player game can be computed in time nO(logn/ε2)

and it has been an important open question to determine
whether this problem has a PTAS (i.e., an algorithm of com-

plexity of nf(ε)). Our result establishes a PTAS when A+B
is PSD or when A+B has ε-rank O(logn) (and we are given
an ε-approximating matrix C of A+B with rank O(logn)),
where A and B are the payoff matrices of the game. Note
that the special case when A + B = 0 corresponds to zero-
sum games, a class for which the exact Nash equilibrium

can be computed using linear programming. The setting
of A + B having constant rank was investigated by Kan-
nan and Theobald [27], who gave a PTAS for the case when
the rank is a constant. Their algorithm has running time

npoly(d,1/ε); ours has complexity [O(1/ε)]dpoly(n), giving a
PTAS for ε-rank d = O(logn).

Theorem 1.6. Let A,B ∈ [−1, 1]n×n be the payoff ma-
trices of a 2-player game. If A+B is positive semidefinite,
then an ε-Nash equilibrium of the game can be computed by
a Las Vegas randomized algorithm using poly(n) space and
expected time

nO(log(1/ε)/ε2)

i.e., there is a PTAS to compute an ε-Nash equilibrium.

The above theorem can be recovered by a similar algorithm
using the γ2-norm approach.

The next theorem is more general (the γ2 approach seems

to achieve only a weaker bound of (n/ε)O(d) here).

Theorem 1.7. Let A,B ∈ [−1, 1]n×n be the payoff ma-
trices of a 2-player game. Suppose (ε/2)-rank(A + B) =
d and suppose we have a matrix C of rank d satisfying
‖A + B − C‖∞ ≤ ε/2. Then, an ε-Nash equilibrium of the
game can be computed by a Las Vegas randomized algorithm
using poly(n) space and expected time(

1

ε

)O(d)

poly(n).

Note that in particular if the rank of A+B is d ≤ O(logn)
we can simply take C = A + B and get a polynomial time
algorithm.

Our second application is to finding an approximately
densest (biparite) subgraph, a problem that has thus far
evaded a PTAS even in the dense setting. In fact, there are
hardness results indicating that even the dense case is hard
to approximate to within any constant factor, see [3]. Here
we observe that we can get efficiently a good additive ap-
proximation for the special case that the input matrix has a
small ε-rank (assuming we are given an approximating ma-
trix of low rank). For a matrix A with entries in [0, 1] and
subsets S, T of rows and columns, let AS,T be the submatrix
induced by S and T . The density of the submatrix AS,T is

density(AS,T ) =

∑
i∈S,j∈T Aij

|S||T |
the average of the entries of the submatrix.

Theorem 1.8. Let A be an n×n real matrix with entries
in [0, 1]. Then for any integer 1 ≤ k ≤ n, there is a Las
Vegas randomized algorithm to find subsets S, T of rows and
columns with |S| = |T | = k s.t.,

density(AS,T ) ≥ max
|U|=|V |=k

density(AU,V )− ε.

Its expected time complexity is bounded by nO(log(1/ε)/ε2) if

A is PSD and by
(

1
ε

)O(d)
poly(n) where d = (ε/2)-rank(A)

(and we are given an ε/2-approximation of rank d), and its
space complexity is poly(n).

Note that this is a bipartite version of the usual densest
subgraph problem in which the objective is to find the den-
sity of the densest subgraph on (say) 2k vertices in a a given



(possibly weighted) input graph. It is easy to see that the
answers to these two problems can differ by at most a factor
of 2, and as the best known polynomial time approximation
algorithm for this problem, given in [15], only provides an

O(n1/4+o(1))-approximation for an n-vertex graph, this bi-
partite version also appears to be very difficult for general
graphs.

Our results for general matrices are based on an algorithm
to efficiently find a near-optimal cover of a convex body A
by translates of another convex body B. We state this result
here as it seems to be of independent interest. Let N(A,B)
denote the minimum number of translates of B required to
cover A.

Theorem 1.9. For any two centrally symmetric convex
bodies A,B in <d, a cover of A using translates of B of size
N(A,B)2O(d) can be enumerated by a Las Vegas randomized

algorithm with expected running time N(A,B)2O(d) and us-
ing space poly(d).

In essence, this theorem allows us to find and use covers of
size (1/ε)O(d) rather than (d/ε)O(d) that can be constructed
more easily. Although we do not prove it here, we expect
that the theorem can be extended to asymmetric convex
bodies.

1.3 Organization
The rest of the paper is organized as follows. In Section

2 we describe lower and upper bounds for the ε-rank of a
matrix, presenting the proofs of Theorems 1.2, 1.3, 1.4 and
Corollary 1.5. In Section 3 we describe efficient construc-
tions of ε-nets which are required to derive the algorithmic
applications, and prove Theorem 1.9. Section 4 contains the
algorithmic applications including the proofs of Theorems
1.6, 1.7 and 1.8. The final Section 5 contains some conclud-
ing remarks, open problems and plans for future extensions.

2. BOUNDS ON ε-RANK

2.1 Lower bounds
We start with the proof of Theorem 1.2, which is based on

some spectral techniques. For a symmetric m by m matrix
A let λ1(A) ≥ λ2(A) ≥ . . . ≥ λm(A) denote its eigenvalues,
ordered as above. We need the following simple lemma.

Lemma 2.1. (i) Let A be an n by n real matrix, then the
2n eigenvalues of the symmetric 2n by 2n matrix

B =

(
0 A
AT 0

)
(1)

appear in pairs λ and −λ.
(ii) For any two symmetric m by m matrices B and C and
all admissible values of i and j

λi+j−1(B + C) ≤ λi(B) + λj(C).

Proof. (i) Let (x, y) be the eigenvector of an eigenvalue
λ of B, where x and y are real vectors of length n. Then
Ay = λx and ATx = λy. It is easy to check that the vector
(x,−y) is an eigenvector of the eigenvalue −λ of B. This
proves part (i).
(ii) The proof is similar to that of the Weyl Inequalities - c.f.,
e.g., [23], and follows from the variational characterization
of the eigenvalues. It is easy and well known that

λi(B) = min
U, dim(U)=m−i+1

max
x∈U,‖x‖=1

xTBx

where the minimum is taken over all subspaces U of dimen-
sion m− i+ 1. Similarly,

λj(C) = min
W, dim(W )=m−j+1

max
x∈W,‖x‖=1

xTCx.

Put V = U ∩ W . Clearly, the dimension of V is at least
m− i− j + 2 and for any x ∈ V, ‖x‖ = 1,

xT (B + C)x = xTBx+ xTCx ≤ λi(B) + λj(C).

Therefore, λi+j−1(B + C) is equal to

min
Z, dim(Z)=m−i−j+2

max
x∈Z,‖x‖=1

xT (B + C)x ≤ λi(B) + λj(C).

2

Proof. (of Theorem 1.2). Let E be an n by n matrix,
‖E‖∞ ≤ ε so that the rank of H+E is the ε-rank of H. Let
B and C be the following two symmetric 2n by 2n matrices

B =

(
0 H
HT 0

)
, (2)

C =

(
0 E
ET 0

)
. (3)

Since H is a Hadamard matrix, BTB = B2 is n times the
2n by 2n identity matrix. It follows that λ2

i (B) = n for all i,
and by Lemma 2.1, part (i), exactly n eigenvalues of B are√
n and exactly n are −

√
n. In particular λn+1(B) = −

√
n.

The absolute value of every entry of E is at most ε, and
thus the square of the Frobenuis norm of C is at most 2n2ε2.
As this is the trace of CTC, that is, the sum of squares of
eigenvalues of C, it follows that C has at most 2nε2 eigenval-
ues of absolute value at least

√
n. By Lemma 2.1, part (i),

this implies that there are at most ε2n eigenvalues of C of
value at least

√
n and thus λbε2nc+1(C) <

√
n. By Lemma

2.1, part (ii) we conclude that λn+bε2nc+1(B + C) < 0.

Therefore B + C has at least n − bε2nc negative eigenval-
ues and hence also at least n − bε2nc positive eigenvalues.
Therefore its rank, which is exactly twice the rank of H+E,
is at least 2(n− bε2nc), completing the proof. 2

Remark: By the last theorem, if ε < 1√
n

then the ε-rank

of any n by n Hadamard matrix is n. This is tight in the
sense that for any n which is a power of 4 there is an n by
n Hadamard matrix with ε-rank n − 1 for ε = 1√

n
. Indeed,

the matrix

H1 =


+1 +1 +1 −1
+1 −1 +1 +1
+1 +1 −1 +1
+1 −1 −1 −1

 (4)

is a 4 by 4 Hadamard matrix in which the sum of elements in
every row is of absolute value 2. Thus, the tensor product of
k copies of this matrix is a Hadamard matrix of order n = 4k

in which the sum of elements in every row is in absolute value
2k. We can thus either add or subtract 1

2k = 1√
n

to each

element of this matrix and get a matrix in which the sum of
elements in every row is 0, that is, a singular matrix.

In a similar vein, we can show that the ε-rank of any
n-by-n matrix A with entries in [−1, 1] is at most n − 1
for ε = 6√

n
. Indeed, for any such A = (aij) there are, by

the main result of [44], δj ∈ {−1, 1} so that for every i,
|
∑n
j=1 aijδj | ≤ 6

√
n. Fix such δj and define, for each i,



εi = (
∑n
j=1 aijδj)/n. Therefore, for every i, |εi| ≤ 6√

n
and∑n

j=1(δjaij−εi) = 0, implying that the inner product of the

vector (δ1, δ2, . . . , δn) with any row of the matrix (aij−δjεi)
is zero. Since |δjεi| ≤ 6√

n
for all admissible i, j, this shows

that the ε-rank of A is at most n− 1, for ε = 6√
n

.

Recall that the sign rank, rank±(A), is the minimal rank
of a matrix with the same sign pattern as A. In [5] it is shown
that there are n-by-n sign matrices A for which rank±(A) ≥
n/32, thus for larger ε we cannot expect that ε-rank(A) ≤
(1− ε2)n for all A.

The proof of Theorem 1.3 is a simple consequence of a known
bound of Warren for the number of sign pattern of real poly-
nomials. For a sequence P1, P2, . . . , Pm of real polynomials
in ` variables, and for x ∈ R` for which Pi(x) 6= 0 for any i,
the sign pattern of the polynomials Pi at x is the vector

(sign(P1(x)), sign(P2(x)), . . . , sign(Pm(x))) ∈ {−1, 1}m.

Let s(P1, P2, . . . , Pm) denote the total number of sign pat-
terns of the polynomials Pi as x ranges over all points of
R` in which no Pi vanishes. Note that this is bounded by
the number of connected components of the semi-variety
V = {x ∈ R` : Pi(x) 6= 0 for all 1 ≤ i ≤ m}. In this
notation, the theorem of Warren is the following.

Theorem 2.2 (Warren [47]). Let P1, P2, . . . , Pm be real
polynomials in ` variables, each of degree at most k. Then
the number of connected components of V = {x ∈ R` :
Pi(x) 6= 0 for all 1 ≤ i ≤ m} is at most (4ekm/`)`. There-
fore, s(P1, P2, . . . , Pm) ≤ (4ekm/`)`.

Proof of Theorem 1.3. It is easy and well known that
for any admissible n and d (with nd even) the number of

labelled d regular graphs on n vertices is [Θ(n/d)]nd/2. In

particular this number is at least (cn/d)nd/2 for some ab-
solute positive constant c. Let us estimate the number of
d-regular graphs G for which rank±(ĀG) ≤ r. For any such
matrix there are two matrices B and C where B is an n by
r matrix and C is an r by n matrix, so that sgn(BC) = ĀG,
where sgn(A) is the sign function applied entrywise to A.
Thinking about the 2nr entries of the matrices B and C
as variables, every entry of their product BC is a degree 2
polynomial in these variables. This means that the number
of such adjacency matrices that have sign rank bounded by
r is at most the number of sign patterns of n2 polynomials,
each of degree 2, in ` = 2nr variables. (It actually suffices to
look at half of the entries, as the matrix is symmetric, but
this will not lead to any substantial change in the estimate
obtained). By Theorem 2.2 this number is at most(

4e2n2

2nr

)2nr

.

For r < c′d for an appropriate absolute positive constant
c′ this is exponentially smaller than the number of labelled
d-regular graphs on n vertices, completing the proof. 2

2.2 Upper bounds
We will use the Johnson-Lindenstrauss (JL, for short)

Lemma [26]. The following version is from [9, 46].

Lemma 2.3. Let R be an n × k matrix, 1 ≤ k ≤ n, with
i.i.d. entries from N(0, 1/k). For any x, y ∈ <n,

Pr(|(RTx)T (RT y)− xT y| ≥ ε‖x‖‖y‖) < 2e−(ε2−ε3)k/4.

Proof. (of Theorem 1.4). Since A is PSD there is a
matrix B so that A = BBT . Let R be a random n×k matrix
with entries from N(0, 1/k). Consider Ã = BRRTBT .

For two vectors x, y ∈ <n,

E(xTRRT y) = xT y

and by the JL Lemma,

Pr(|xTRRT y − xT y| ≥ ε) ≤ 2e−(ε2−ε3)k/4.

Setting, say, k = 9 lnn/(ε2 − ε3) we conclude that whp

‖A− Ã‖∞ ≤ ε.

2

Proof. (of Corollary 1.5). Put

A1 =
1∑

αi>0 αi

∑
αi>0

αiBi

and

A2 =
1∑

αi<0 |αi|
∑
αi<0

|αi|Bi.

Then A1 and A2 are positive semi-definite with entries of
magnitude at most 1. We can thus apply Theorem 1.4 to
approximate the entries of each of them to within ε

m
and ob-

tain the desired result by expressing A as a linear combina-
tion of A1 and A2 with coefficients whose sum of magnitudes
is at most m. 2

We can sometimes combine the Johnson-Lindenstrauss
lemma with some information about the negative eigenval-
ues and eigenvectors of a matrix to derive nontrivial bounds
for its ε-rank. A simple example appears in the remark at
the end of the previous subsection. A more elaborate use
of the lemma arises when trying to estimate the ε-rank of
the n by n matrix A = (aij) in which aij = +1 for all
i ≥ j and aij = −1 otherwise. This matrix, also known
as the half-graph matrix or the greater-than matrix, is mo-
tivated by applications in computational complexity as well
as by regularity partitions. It is known that its ε-rank is
Ω(logn/(ε2 log(1/ε))) [2] and is also Ω(log2 n) for any ε <
0.99. The latter inequality follows from the result of [22]
that γα2 (A) ≥ Ω(logn) for any α, and the known relation
between the ε-rank of A and γα2 (A) for α = 1 + Θ(ε).

The best-known upper bound is that for any ε the ε-rank
of A is O(log3 n/ε2) where here one combines the result of
[34] that γ2(A) = O(logn) with the the upper bound on
approximate rank in terms of approximate γ2 norm [29].

To see this directly, consider a decomposition of A first
into an upper-triangular matrix and a complementary lower-
triangular matrix. For the upper-triangular 0-1 matrix, we
extract the large block of all 1 entries, roughly the upper
right quarter of the matrix and let A1 be the matrix of the
same dimensions as A with this block as its support. The
remaining matrix can be viewed as two upper-triangular ma-
trices put together, we recursively extract a block of 1’s from
each of them and let A2 be the matrix (of the same dimen-
sions as A) with support equal to these two blocks. This
process clearly terminates after dlogne steps, giving a de-
composition into l = O(logn) matrices. Now we notice that
for each matrix in the decomposition, upon removing the
all-zero rows and columns, we are left with a block-diagonal
matrix, with each block consisting entirely of 1’s. It is easy



to see that using the JL lemma, any such block-diagonal
matrix has ε-rank O(logm/ε2) where m is the number of
blocks; all rows of the same block are mapped to the same
random vector and so the entry in the approximate matrix
depends only on the block numbers of the indices. We as-
sign a single random vector to each index i ∈ [n] formed
by concatenating the random vectors for each element of
the decomposition, i.e., a random vector from N(0, 1/k)kl.
Then the expectation of the inner product of two such in-
dices is 0 or 1 corresponding to the entry, and the probability
of deviation from the expectation of any single entry by an

additive tl is at most e−kl(t
2−t3)/4. Using l = O(logn) and

setting t = ε/l, we get a probability of failure bounded by

e−k(ε2−ε3)/l. Thus setting k = O(l logn/ε2), we ensure that
with high probability, every entry deviates from its expec-
tation by at most ε. The total dimension of the embedding
is kl = O(log3 n/ε2).

3. CONSTRUCTING ε-NETS
For a matrix A that has small ε-rank, we will be able to

construct small ε-nets to approximate the quadratic form
xTAy for any x, y of `1-norm 1 to within additive ε. We
describe the construction of these nets in this section, then
apply them to some algorithmic problems in what follows.
The construction in the PSD case is more explicit and inde-
pendent of the input matrix; we describe this first.

Theorem 3.1. Let A = BBT , where A is an n× n posi-
tive semidefinite matrix with entries in [−1, 1] and B is n×d.
Let ∆ = ∆n = {x ∈ Rn, ‖x‖1 = 1, x ≥ 0}. There is a finite
set S ⊂ <d independent of A,B such that

∀x ∈ ∆, ∃x̃ ∈ S : ‖BTx− x̃‖∞ ≤
ε√
d

with |S| = O(1/ε)d. Moreover, S can be computed in time
O(1/ε)dpoly(n).

Proof. We note that since the diagonal entries of A are
at most 1, every column of BT has 2-norm at most 1. For
x ∈ ∆, we have y = BTx ∈ [−1, 1]d. Let us classify the
entries of y into buckets based on their magnitude. Let
m = dlog(

√
d)e and

bj =

∣∣∣∣{i :
1

2j
≤ |yi| ≤

1

2j−1
}
∣∣∣∣

forj = 1, . . .m− 1, and bm = |{i : |yi| ≤ 1/2m−1}|. Then

m−1∑
j=1

bj2
−2j ≤ 1.

We call the vector (b1, b2, . . . , bm) the profile of a vector y.
Thus, bj ≤ 22j for all j ≤ m.

We will now construct an ε-net by discretizing each coor-
dinate to multiples of ε/

√
d. If we replace each coordinate of

a vector y by its nearest multiple of ε/
√
d, then the resulting

vector ỹ satisfies

‖y − ỹ‖∞ ≤
ε√
d

and thus ‖y − ỹ‖ ≤ ε.

We now bound the size of this ε-net. The total number of
distinct profiles is(

d+m− 1

m− 1

)
( < 22d). (5)

For a fixed profile, the number of ways to realize the profile
( by assigning coordinates to each bucket) is(

d

b1

)(
d− b1
b2

)
. . .

(
d−

∑m−1
j=1 bj

bm

)
<

log2 d∏
i=1

(
d

d/2i

)
. (6)

This last product is bounded by

2d(H(1/2)+H(1/4)+H(1/8)+...+H(1/d)) = 2O(d),

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy function.

For each realization of a profile, the maximum size of the
ε-net can be bounded as

Πm
j=1

( √
d

2j−2ε

)bj
≤ (

1

ε
)dΠm

j=1

( √
d

2j−2

)22j

≤ (
1

ε
)d2O(d).

(7)
The product of (5), (6) and (7) is an upper bound on the
size of S. Thus, the size of the net is bounded by [O(1/ε)]d

as claimed. 2

We prove a similar algorithmic bound for the general case
of a rank k matrix, with a set that depends on the input
matrix.

Theorem 3.2. Let A be an n× n matrix with entries in
[−1, 1] and (ε/2)-rank(A) = d. There is a finite set S ⊂ <n
s.t.

∀x ∈ ∆, ∃x̃ ∈ S : ‖Ax−Ax̃‖∞ ≤ ε

and |S| = O(1/ε)d. Moreover a set of size O(1/ε)d can be
computed in time O(1/ε)dpoly(n) given an ε/2-approximating
matrix of rank d.

This theorem will be proved using a more general state-
ment, Theorem 1.9. For compact sets A,B, let N(A,B) be
the minimum number of translates of B required to cover A.
The next two bounds are well-known via volume arguments
(see e.g., Pisier’s book [35]).

Lemma 3.3. For a convex body K in <d, N(K, εK) ≤(
1 + 2

ε

)d
.

Lemma 3.4. For centrally symmetric convex bodies, A,B,

vol(A)

vol(A ∩B)
≤ N(A,B).

We prove Theorem 1.9 via an algorithm in the next sec-
tion. Here, to warm up, we give a simpler proof of a net of
size N(A,B)O(d)d.

Start by finding a parallelopiped P s.t.

P ⊆ A ∩B ⊆ αP

i.e., a sandwiching of A ∩B by parallelopipeds. It is shown
in [8] that α = 4d can be achieved in polynomial time. Now
apply an affine transformation that makes P a unit cube.
Tile the resulting A with unit cubes so that every point
of A is covered. Then, using Lemma 3.4, the number of
translates used is at most

vol(A+ P )

vol(P )
≤ vol(A+A)

vol(P )
≤ 2d(4d)d

vol(A)

vol(A ∩B)

≤ (8d)dN(A,B).



Proof. (of Theorem 3.2). We assume that A has rank
d (replacing it with its ε/2 approximation, if needed, and
rescaling to assume that in this approximation too every en-
try lies in [−1, 1]). Let K be the intersection of the span of A
with [−1, 1]n. Thus K is a d-dimensional convex body. Now
let L be the intersection of the span of A with [−ε/2, ε/2]n.
A cover of K by copies of L would achieve the property we
need for S. Note that (ε/2)K = L. Therefore,

N(K,L) = N(K,
ε

2
K) ≤

(
1 +

4

ε

)d
using Lemma 3.3. We can now apply Theorem 1.9 (proved
in the next subsection) to complete the proof. 2

3.1 Constructing nearly optimal ε-nets
In this section we prove Theorem 1.9 by algorithmically

finding a nearly optimal ε-net. More generally, given two
centrally-symmetric convex bodies A,B ∈ <d, we give a Las
Vegas algorithm that finds a set of points T such that:

1. |T | ≤ N(A,B)2O(d).

2. A ⊆ B + T .

In other words, for any point x in A, there is a point y in T
such that ‖x− y‖B ≤ 1.

The algorithm is based on classical proofs of the existence
of nearly optimal lattice coverings. For a convex body K in
<d, a covering lattice L has the property that K + L covers
<d, i.e., lattice translates of K cover all of space. Our goal is
to find a covering lattice of large determinant, comparable
to the volume of K. The next lemma shows how such a
lattice allows us to find a near-optimal ε-net.

Lemma 3.5. Let A,B be centrally-symmetric convex bod-
ies in <d and let L be a covering lattice with respect to
A∩B. Then there is a set S ⊂ L of size 2dN(A,B)vol(A∩
B)/det(L) with the property that for any x ∈ A, there is a
point y ∈ S s.t. ‖x−y‖B ≤ 1 and this set can be enumerated

in time 2O(d)N(A,B)vol(A ∩B)/det(L).

Proof. Let

S = {x ∈ L : (x+ (A ∩B) ∩A 6= φ}.

We can enumerate S by a depth-first traversal over trans-
lates of the fundamental parallelopiped of L. By the defi-
nitions of S and L, we have A ⊆ S + B, and the running
time is at most |S| times a polynomial in d (to check for
intersections). Next we bound the size of S, using Lemma
3.4.

|S| ≤ vol(A+ (A ∩B))

det(L)

≤ vol(2A)

vol(A ∩B)

vol(A ∩B)

det(L)

≤ 2d
vol(A)

vol(A ∩B)

vol(A ∩B)

det(L)

≤ 2dN(A,B)
vol(A ∩B)

det(L)
.

2

We now turn to the question of algorithmically finding
covering lattices of large determinant. The existence of such
lattices was investigated in the 1950’s in a series of papers

by Rogers [38, 39, 40, 41]. The simplest of these consists of
choosing a random lattice with a fixed determinant. This
already works with high probability and gives

vol(K)

det(L)
= 2O(d).

The algorithm below describes this in detail along with a
verification step to make it a Las Vegas algorithm, i.e., the
output is verified deterministically and the expected running
time of the algorithm is 2O(d).

The current best existential result [41] is a covering lattice
L for any convex body K with

vol(K)

det(L)
= dO(log log d).

i.e., the “density” of the resulting covering of space by trans-
lates of K is bounded by dO(log log d). Such a lattice would
directly give an approximation to the volume of K with the
same factor. We note, however, that the results of Bárány
and Füredi [10, 11] imply that for any deterministic algo-

rithm running in 2O(d) time the approximation factor is 2Ω(d)

(in the general oracle model for convex bodies). Rogers also
gives another proof based on a deterministic greedy con-
struction [38] and this too can be made algorithmic in a
straightforward manner. However this variant uses expo-
nential space unlike our randomized algorithm, which needs
only polynomial space for enumerating the cover.

Input: Convex bodies A,B ∈ <d.

1. Let K = A ∩B and compute V such that vol(K) ≤
V ≤ 2vol(K) using a volume estimation algorithm.

2. Let L be a random lattice of determinant V/cd1.

3. Compute the set of points S = {x ∈ L : (x + K) ∩
A 6= φ}, via a depth-first traversal, starting with any
x ∈ L for which x+K intersects A; if the size of this
set exceeds cd2 at any point, stop.

4. Output the set of translates of B that cover A.

Figure 1: Las Vegas algorithm for an ε-net

To estimate the volume, we can use a randomized volume
algorithm [18, 33]. To pick a random lattice of fixed determi-
nant, we can use the algorithm of Goldstein and Mayer [25],
which shows how to do this with a discrete algorithm and
approximate the continuous probability distribution with re-
spect to the integral of any bounded function.

For a convex body K and lattice K, let δ(K,L) be the
density of points not covered by the union of sets x+K for
x ∈ L.

Lemma 3.6. [40] Let K be a convex body of volume V ≤
1
4
d log(27/16) − 3 log d and L be a random lattice of deter-

minant 1. Then,∣∣∣E(δ(K,L))− e−V
∣∣∣ ≤ cd3

(
16

27

) d
4

where the expectation is over the choice of the random lattice
and c is an absolute constant.



The lemma is based on a fundamental theorem of Siegel
about random lattices [43].

Proof. (of Theorem 1.9.) Let K = A ∩ B. By Lemma
3.6, with probability at least 3/4, a random lattice L1 with

det(L1) =
4vol(K)

d log(27/16)− 12 log d

has the property that the set K + L1 leaves uncovered a

subset of density at most p = (4c + 1)d3
(

16
27

) d
4 . We now

argue (following Rogers) that 2K + L1 covers <d, i.e., K +
1
2
L1 covers <d.
With probability at least 3/4, the density of K +L1 is at

least 1 − p. So, with this probability, for every x ∈ <d, the
density of x−K +L1 is at least 1− p. Fix a point x. Since
p < 1/2, these set systems intersect and we have a point
z ∈ K + L1 ∩ (x −K + L1), i.e., there are points a, b ∈ K
and a′, b′ ∈ L1 such that

z = a+ a′ = x− b+ b′

implying that x = a + b + a′ − b′ ∈ 2K + L1. Since this
holds for every x, it follows that L1 is a covering lattice for
2K, and therefore L = L1/2 is a covering lattice for K with

determinant at least 2vol(K)

d2d .
We can now apply Lemma 3.5 with this lattice L to get a

cover of A with translates of B of size N(A,B)2O(d). 2

4. ALGORITHMIC APPLICATIONS

4.1 Approximate Nash equilibria
Let A,B ∈ [−1, 1]n×n be the payoff matrices of the row

and column players of a 2-player game. A Nash equilibrium
is a pair of strategies x, y ∈ ∆n = {x ∈ <n : ‖x‖1 = 1, x ≥
0} s.t.

xTAy ≥ eTi Ay ∀i ∈ {1, . . . , n}
xTBy ≥ xTBej ∀j ∈ {1, . . . , n}

Alternatively, a Nash equilibrium is a solution to the fol-
lowing optimization problem:

min max
i
Aiy + max

j
xTBj − xT (A+B)y (8)

x, y ∈ ∆n. (9)

An ε-Nash equilibrium is a pair of strategies with the prop-
erty that each player’s payoff cannot improve by more than
ε by moving to a different strategy, i.e.,

xTAy ≥ eTi Ay − ε ∀i ∈ {1, . . . , n}
xTBy ≥ xTBej − ε ∀j ∈ {1, . . . , n}

Lemma 4.1. Any x, y ∈ ∆n that achieve an objective value
of at most ε for (8) form an ε-Nash equilibrium.

The algorithm for the case when A+B is PSD is described
in Figure 2.

We are ready to prove Theorem 1.6.

Proof. Using Lemma 2.3, we have that for any x, y ∈ ∆n

‖xT (A+B)y − xTV V T y‖ ≤ ε

6
.

Using Theorem 3.1, we can find a set S in <d of size
O(1/ε)d with the property that for every y ∈ ∆n, there is a

1. Let d = 9 log n/(ε/6)2 − (ε/6)3) and R be an n × d
random matrix with iid entries from N(0, 1/k).

2. Write A+B = UUT and let V = UR.

3. Let S be an (ε/6
√
d)-net in the L∞-norm for {V T y :

y ∈ ∆n}.

4. For each ỹ ∈ S, solve the following convex program:

min max
i
Aiy + max

j
xTBj − xTV ỹ

s.t. y ∈ ∆n

‖V T y − ỹ‖∞ ≤
ε

6
√
d
.

5. Output x, y that achieve an objective value of at
most ε

2
.

Figure 2: Finding ε-Nash when A+B is PSD

ỹ ∈ S s.t.

‖V T y − ỹ‖∞ ≤
ε

6
√
d
.

The algorithm enumerates over ỹ ∈ S and looks for a pair
with a corresponding x, y ∈ ∆n such that the objective func-
tion (8) is at most ε/2, i.e., solves a convex program for each
ỹ ∈ S. We note that since ỹ is fixed, the resulting program
has a convex objective function subject to linear constraints
and thus can be solved in polynomial time.

A solution of small objective value exists: any x, y that
form a Nash equilibrium will have a corresponding ỹ with
objective value at most ε/2. Similarly any solution of objec-
tive value at most ε/2 for the program used in the algorithm
implies a solution of the original quadratic program of value
at most ε, and thus satisfies the ε-Nash conditions, complet-
ing the proof. 2

Next we give a variant of the algorithm that works for any
A+B, not necessarily PSD, with complexity depending on
the (ε/2)-rank of A+B. This appears in Figure 3.

1. Let C be a rank d matrix that satisfies ‖A + B −
C‖∞ ≤ ε/2.

2. Let S be an ε/2-net in the L∞-norm for {Cx : x ∈
∆n}.

3. For each ỹ ∈ S, solve the following convex program:

min max
i
Aiy + max

j
xTBj − xT ỹ

s.t. x, y ∈ ∆n

‖Cy − ỹ‖∞ ≤
ε

4
.

4. Output x, y that achieve an objective value of at
most ε

2
.

Figure 3: Finding ε-Nash when A+B has (ε/2)-rank
d



The proof of Theorem 1.7 follows from this algorithm and
Theorem 3.2.

4.2 Densest subgraph
Our strategy for approximating the densest (bipartite)

subgraph is similar to the one described in the previous sub-
section. We observe that an ε-approximate solution to the
following optimization problem suffices.

max xTAy

x, y ∈ ∆n

xi, yi ≤
1

k
∀i ∈ {1, . . . , n}

Indeed, in a solution here no xi, yj exceeds 1/k. Since for
fixed y the function xTAy is linear in x and vice versa, it
is easy to replace any solution by one of at least the same
value in which each xi and each yj is either 0 or 1/k, and
this corresponds to the problem of maximizing the quantity
density(AS,T ) over all sets S of k rows and T of k columns.

To solve this optimization problem, we replace the given
adjacency matrix A by an approximating matrix Ã of rank
equal to the (ε/2)-rank of A. Then we enumerate an ε/2-net

in the ∞-norm for Ãy and solve a convex program for each
element. This establishes Theorem 1.8.

5. CONCLUDING REMARKS
We have studied the ε-rank of a real matrix A, and exhib-

ited classes of matrices for which it is large (Hadamard ma-
trices, random matrices) and ones for which it is small (posi-
tive semi-definite matrices and linear combinations of those).
This leads to several approximation algorithms, mainly to
problems in which the input can be approximated by a pos-
itive semi-definite matrix or a low-rank matrix. Essentially
all the discussion here applies to rectangular matrices as
well, and we have considered square matrices just for the
sake of simplicity.

It will be interesting to investigate how difficult the prob-
lem of determining or estimating the ε-rank of a given real
matrix is. As mentioned in the introduction, a rough ap-
proximation is given in [29].

One of our main motivating problems was the complexity
of finding ε-Nash equilibria. This remains open for general
2-player games. Our methods do not work when the sum of
the payoff matrices has high rank with many negative eigen-
values, e.g., for random matrices. However, in the latter
case, there is a known simple algorithm even for exact Nash
equilibria, based on the existence of small support equilibria
[12]. It would be interesting to find a common generalization
of this class with the classes considered here.

Finally, note that the main component in our algorithmic
applications is an efficient procedure for generating, for a
given input matrix A, a collection of not too many ε-cubes
in the `∞ norm whose union covers the convex hull conv(A)
of the columns of A. This motivates the study of Nε(A), the
minimum possible size of such a collection. Thus, Nε(A) is
the minimum size of a set T such that for all z ∈ conv(A)
there is a t ∈ T such that ‖z − t‖∞ ≤ ε. Call a cover of
conv(A) by ε-cubes an ε-net for A. The applications moti-
vate the study of Nε(A) and that of finding efficient means
of constructing ε-nets for A. The focus in the present paper
is to do so using the rank or approximate rank of A, and as

we have mentioned one can also use the γ2 norm of A for
this purpose. It turns out that there is another complexity
measure of A, its V C-dimension, that can be used here.

For a real matrix A, and a subset C of its columns, we
say that A shatters C if there are real numbers {tc, c ∈ C},
such that for any D ⊆ C there is a row i with A(i, c) < tc
for all c ∈ D and A(i, c) > tc for all c ∈ C \ D. The
V C-dimension of A, denoted by V C(A) is the maximum
cardinality of a shattered set of columns. We can prove that
for any real m by n matrix A with entries in [−1, 1] and

V C-dimension d, Nε(A) ≤ nO(d/ε2). Moreover, an ε-net of
this size can be constructed deterministically in time propor-
tional to its size times a polynomial factor. Note that by def-
inition the V C-dimension of any matrix with m rows cannot
exceed logm, and thus the corresponding covers are always
of size at most quasi-polynomial. We can also show that
this quasi-polynomial behavior is tight in general. There-
fore, while the covers obtained using this approach do not
suffice to reproduce our polynomial time approximation al-
gorithms obtained for matrices of logarithmic rank, they do
provide improved bounds in many cases. In particular, this
approach supplies a quasi-polynomial time additive approx-
imation scheme for the densest bipartite subgraph problem
for any weighted graph with bounded weights. We do not
include the proofs of these results here, but plan to investi-
gate the approach as well as some additional aspects of the
γ2 approach in a subsequent work.
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