
Problems and results in Extremal Combinatorics - III

Noga Alon ∗

Dedicated to Adrian Bondy, for his 70th-birthday

Abstract

Extremal Combinatorics is one of the most active topics in Discrete Mathematics, dealing with

problems that are often motivated by questions in other areas, including Theoretical Computer

Science, Geometry and Game Theory. This paper contains a collection of problems and results in

the area, including solutions or partial solutions to open problems suggested by various researchers.

The topics considered here include questions in Extremal Graph Theory, Combinatorial Geometry

and Combinatorial Number Theory. This is not a comprehensive survey of the area, and is merely

a collection of various extremal problems, which are hopefully interesting. The choice of the

problems is inevitably biased, and as the title of the paper suggests, it is a sequel of two previous

paper [8], [9] of the same flavour. Each section of this paper is essentially self contained, and can

be read separately.

1 Introduction

Extremal Combinatorics deals with the problem of determining or estimating the maximum or min-
imum possible value of an invariant of a combinatorial object that satisfies certain requirements.
Problems of this type are often related to other areas including Computer Science, Information The-
ory, Number Theory and Game Theory. This branch of Combinatorics has been very active during
the the last few decades, see, e.g., [14], [26], and their many references.

This paper contains a collection of problems and results in the area, including solutions or partial
solutions to open problems suggested by various researchers. The questions considered include prob-
lems in Extremal Graph Theory, Combinatorial Geometry and Combinatorial Number Theory. This
is not meant to be a comprehensive survey of the area, but rather a collection of several extremal
problems, which are hopefully interesting. The techniques used include combinatorial, probabilistic,
geometric and algebraic tools. Each section of this paper is essentially self contained, and can be
read separately. This paper is dedicated to Adrian Bondy, a leading graph theorist who has written
some of the very best books and survey articles on the subject, including his comprehensive article
[15], which is the first chapter of the Handbook of Combinatorics. It is therefore natural to start
with an observation settling a problem described in that chapter.
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1.1 Regular tournaments with many directed Hamilton cycles

A tournament T on n vertices is an orientation of the complete graph Kn. It is regular if all
the vertices have the same outdegree (n − 1)/2 (and hence also the same indegree (n − 1)/2.) A
Hamilton cycle in T is a simple directed cycle containing all its vertices. It is clear that there exists
a tournament on n vertices with at least (n− 1)!/2n Hamilton cycles, as this is the expected number
of such cycles in a random tournament. Thomassen asked in 1990 whether or not there is a regular
tournament on n vertices with at least that many Hamilton cycles. This question appears as Problem
7.12 in Bondy’s Chapter [15]. The following observation shows that the answer is ”yes”. The proof
for n which is 1 or 3 modulo 6 is a bit simpler, hence we describe the proof for this case and only
comment on the remaining case n ≡ 5(mod 6).

Theorem 1.1 For any integer n > 3 which is 1 or 3 modulo 6 there is a regular tournament on n

vertices with more than (n− 1)!/2n Hamilton cycles.

Proof: Take a Steiner Triple System on n vertices and orient each triangle of it cyclically, where
each direction is chosen randomly among the two possible options. This clearly gives a regular
tournament. Fix an undirected Hamilton cycle among the (n − 1)!/2 such cycles in the underlying
undirected complete graph. If it contains no two edges of the same triangle of the Steiner Triple
System, then the probability it becomes a directed Hamilton cycle is exactly 1/2n−1. In any other
case the probability is bigger. Hence, by linearity of expectation, the expected number of directed
Hamilton cycles is bigger than (n− 1)!/2n, completing the proof. 2

Note that in fact, using the method in [1] one can show, using Brun’s sieve, that the expected
number of directed Hamilton cycles in the random regular tournament above is bigger by a factor of
roughly e = 2.71828.. than the number (n− 1)!/2n, but this is not needed for establishing the above
claim. It is also possible to prove the statement of the claim for n ≡ 5( mod 6) by considering a
slightly more complicated model of random regular tournaments. We omit the details.

2 Larger homometric sets in graphs

For a graph G = (V,E) and a subset U of V , the profile of U is the multiset of pairwise distances (in
G) between the vertices in U . Two disjoint subsets of V are homometric if their profiles are identical.
It is known that for the cycle of length 2n and for any partition of it into two disjoint sets, these
two sets are homometric (see [29]). In music theory, for n = 6, this statement had been known for
a long time as the Hexachordal Theorem. In the twelve-tone scale, any set of six notes determines
the same multiset of differences, see [10] and its references for some additional information. More
generally, as shown in [2], any subset of n vertices in a vertex transitive graph with 2n vertices and
its complement are homometric.

Following [10], denote by h(n) the largest possible integer h so that any connected graph G with
n vertices contains two disjoint homometric subsets, each of size h. Albertson, Pach and Young
proved that there exists an absolute constant c > 0 so that for every n > 3

c
log n

log log n
≤ h(n) < n/4.
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The upper bound has been slightly improved by Axenovich and Özkahya [12] who showed that for
infinitely many values of n, h(n) ≤ n/4 − c log logn. There are better estimates for trees, see [12],
[20], but the best known lower bound for the function h(n) is still only c logn

log logn . The following
theorem provides a quadratic improvement of this lower bound. Note that this is still very far from
the known upper bound, which is linear in n.

Theorem 2.1 There is an absolute constant c > 0 so that

h(n) ≥ c (log n)2

(log log n)2
.

Proof: Throughout the proof we make no attempt to optimize the absolute constants involved.
To simplify the presentation we omit all floor and ceiling signs whenever these are not crucial, and
assume that n is sufficiently large whenever this is needed. Let G = (V,E) be a connected graph on
n vertices. Define

k =
1

112

(log n)2

(log log n)2
and r =

1

14

log n

log logn
.

To prove the theorem we show that G must contain two disjoint homometric sets, each of size
k. If the diameter of G is at least 2k − 1 then it contains two vertices u, v and a shortest path
u = u1, u2 . . . , u2k = v between them. In this case the distance between ui and uj is |i− j| for all i, j
and the two sets {u1, u2, . . . , uk} and {uk+1, uk+2, . . . , u2k} are homometric. Thus we may and will
assume that the diameter of G is at most 2k − 2.

Claim: The graph G contains
√
n
k pairwise disjoint sets of vertices Si, each of size k, where the

distance (in G) between any two vertices of each set Si is at most 2r.

Proof of Claim: We prove the existence of sets Si with the required properties. Suppose we already

have pairwise disjoint sets S1, . . . , Sp, where 0 ≤ p <
√
n
k so that each Si is of cardinality k and for

each i the distance in G between any two vertices of Si is at most 2r. We proceed by proving the
existence of another set Sp+1 ⊂ V − (∪pi=1Si) satisfying the required properties. Put Y = ∪pi=1Si
and note that |Y | <

√
n. Consider an auxiliary graph G′ obtained by adding to G a new vertex y

connected by edges to all vertices of Y . Since the diameter of G is at most 2k− 2, the distance in G′

between y and any other vertex of G is at most 2k − 1. Let Vj be the set of all vertices of distance
exactly j from y. Then V0 = {y}, V1 = Y , Vj = ∅ for all j ≥ 2k and ∪2k−1

j=1 Vi = V . As |Y | <
√
n and

|V | = n, this implies that there is some i, 0 ≤ i < d(2k − 2)/re, so that

| ∪ir+r+1
j=1 Vj |
| ∪ir+1

j=1 Vj |
≥ (
√
n)r/(2k). (1)

Indeed, if all these ratios are smaller than the right hand side of (1), their product, which is |V |/|Y | ≥√
n is too small.

Fix an i so that (1) holds and note that by our choice of parameters this implies that

| ∪ir+r+1
j=1 Vj |
| ∪ir+1

j=1 Vj |
≥ k + 1. (2)

Consider now a BFS tree in G′ rooted at the new vertex y. The level sets in this tree are exactly
the sets Vj . By (2) the total number of vertices in the r levels ir + 2, ir + 3, . . . ir + r + 1 is at least
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k times larger than the number of vertices in level number ir + 1. Thus there must be a vertex v
in level ir + 1 which has at least k descendents in these r levels. Let Sp+1 be a set of k of these
descendents. Clearly Sp+1 does not contain any vertex of Y = V1 and thus does not intersect any of
the previous sets S1, . . . , Sp. In addition, the distance between any of these descendents and v is at
most r, and hence the distance between any two vertices of Sp+1 is at most 2r. This completes the
proof of the claim. 2

Returning to the proof of the Theorem observe that the profile of each set Si is a multiset of exactly
K =

(k
2

)
integers, each between 1 and 2r. The number of possibilities for such collections of numbers

is exactly (
K + 2r − 1

2r − 1

)
<

(
k2

2r

)
< n3/7 <

√
n

k
.

Thus, by the pigeonhole principle, two of the sets Si must have the same profile, completing the
proof. 2

3 Steiner systems with distinct domination numbers

3.1 The main result

Let D = (V,E) be a Steiner Triple System (STS, for short) on a set V of v vertices. Thus E is a
collection of v(v − 1)/6 triples of V , so that each pair of vertices of V belongs to exactly one triple.
Let γ(D) denote the domination number of the incidence graph of D. This is the smallest possible
cardinality of a set V ′ ∪ E′ such that V ′ ⊂ V,E′ ⊂ E and
(i) for each u ∈ V − V ′ there is an e ∈ E′ containing it, and
(ii) for each e ∈ E − E′ there is a u ∈ V ′ which belongs to e.

Call such a set V ′ ∪ E′ a dominating set of D, and call γ(D) the domination number of D.
This parameter was defined by Goldberg, Rajendraprasad and Mathew, who raised the following
conjecture.

Conjecture 3.1 ([22]) For every integer v, all the Steiner Triple Systems on v vertices have the

same domination number.

The conjecture has been verified for all v ≤ 15 by a computer search, see [22] for the values of γ(D)
for all STS D of size at most 15.

Here we disprove the general conjecture, establishing the following

Theorem 3.2 For any ε > 0 there are infinitely many values of v so that there are two Steiner

Triple Systems D1 and D2, each on v vertices, satisfying γ(D1) ≤ 3v/4 and γ(D2) ≥ (1− 2ε)v.

3.2 The proof

The proof of Theorem 3.2 is not long, but applies several results, which we state below. A variant
of the proof can be given based on known results for completion of partial Steiner Triple Systems,
but we prefer the version given below, which is based on slightly simpler tools. Before stating these
tools we describe a simple relation between the domination number of an STS and its independence
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number. The independence number of an STS is the maximum cardinality of a set of vertices that
contains no edge.

Claim 1 For any STS D = (V,E) on v vertices with domination number γ = γ(D) and independence

number β = β(D): v − β ≤ γ ≤ v − bβ2 c.

Proof: To prove the upper bound let V ′ ⊂ V be the complement of a maximum independent set in
V . Thus |V ′| = v − β and any e ∈ E contains at least one vertex in V ′. Next cover the vertices in
V − V ′ by dβ/2e pairs, and for each such pair take an edge in E containing both its members. Let
E′ be the collection of these dβ/2e edges, and note that V ′ ∪ E′ is a dominating set of cardinality
v − bβ2 c.

To prove the lower bound, let V ′∪E′ be a dominating set of minimum cardinality, where V ′ ⊂ V
and E′ ⊂ E. For each edge e ∈ E′, take an arbitrary vertex u ∈ e and add it to V ′, thus getting a set
V ” of at most |V ′|+ |E′| = γ vertices. Since V ′ ∪E′ is dominating, V − V ” must be an independent
set. Therefore β ≥ |V − V ”| ≥ v − γ, completing the proof. 2

We need the following well known theorem of Wilson.

Theorem 3.3 ([37]) For any integer k there is a v0 = v0(k) so that for every integer v > v0 for

which v − 1 is divisible by k − 1 and
(v
2

)
is divisible by

(k
2

)
, the complete graph Kv on v vertices can

be decomposed into pairwise edge disjoint copies of Kk. That is: there is a collection of subgraphs of

Kv, each being a copy of Kk, so that each edge of Kv belongs to exactly one copy.

We also use the following.

Lemma 3.4 (i) For any integer v of the form v = 2n − 1 there is an STS D = (V,E) on v vertices

with independence number β(D) = (v + 1)/2.

(ii) For any ε > 0 there is an r0 = r0(ε) so that for any r > r0 there is an STS D on k = 3r vertices

with independence number satisfying β(D) ≤ 2εk.

Proof: (i) Let the vertices be the set of all nonzero binary vectors of length n, where three of them
x, y, z form a triple iff their sum modulo 2 is the zero vector. This is easily seen to be an STS, and
the set of all 2n−1 = (v + 1)/2 vectors with first coordinate being 1 forms an independent set. Thus
β(D) ≥ (v + 1)/2. However, β(D) cannot be bigger. Indeed, let X be an independent set in a STS
D = (V,E) on v vertices. Pick x ∈ X. For any y ∈ X−{x} the pair xy is contained in a unique edge
{x, y, y′}, where y′ 6∈ X, as X is independent. Since no pair of points lies in two edges, the mapping
f(y) = y′ is bijective, implying that |V −X| ≥ |X| − 1, that is, |X| ≤ (v + 1)/2.

(ii) Here the vertices are all ternary vectors of length r, where three of them form a triple if their sum
modulo 3 is the zero vector. Equivalently, {x, y, z} form a triple iff they are an arithmetic progression
of size 3 (in Zn3 ). Here, too, it is easy to see that this is an STS. The claim about its independence
number was first proved in [13], see also [19] for a related proof and [30], [16] for better quantitative
estimates. 2

Finally we will use the known results about the existence of nearly perfect matchings in simple
uniform regular hypergraphs. The basic result was proved by Rödl using his nibble method [31],
here it is convenient to use the following subsequent result. Recall that a hypergraph is simple iff no
two of its edges share two vertices.
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Lemma 3.5 ([3]) Any simple k-uniform, D-regular hypergraph on N vertices, with k > 3, contains

a matching covering all vertices but at most O(ND−1/(k−1)).

Proof of Theorem 3.2: Given ε > 0, let r be a large odd integer and define k = 3r. By Lemma
3.4, part (ii) if r is sufficiently large there is an STS F on k vertices satisfying β(F ) ≤ εk. Note that
since r is odd, k = 3r ≡ 3 (mod 4) and hence (k − 1)/2 = (3r − 1)/2 is odd. Let φ = φ(

(k
2

)
) be

the Euler function of K =
(k

2

)
, that is, the cardinality of the multiplicative group Z∗K of the residues

modulo K which are relatively prime to K. Let n be a large integer so that φ divides n− 1. Finally,
put v = 2n − 1. Note that as K is odd, 2 ∈ Z∗K and as φ divides n − 1, 2n−1 is 1 modulo K,
that is, K =

(k
2

)
divides 2n−1 − 1. Thus k − 1 = 2k−1

2 , divides v − 1 = 2v−1
2 = 2(2n−1 − 1). Also,

K =
(k

2

)
divides

(v
2

)
= (2n − 1)(2n−1 − 1). Therefore, by Wilson’s Theorem (Theorem 3.3 above) if

n is sufficiently large then Kv can be decomposed into copies of Kk. Let D2 be a STS on a set of
v vertices obtained by substituting a copy of the STS F in each copy of Kk in this decomposition.
Formally, if the set of vertices of Kv is V , then for each copy of Kk in the decomposition whose set
of k vertices is VK ⊂ V , take a copy of F on the set of vertices VK and take all its edges to be edges
of D2. The triples of the STS D2 are thus all the triples in the(

v

2

)
/

(
k

2

)

copies of F described above.
Consider the k-uniform hypergraph on the set of vertices of Kv whose edges are all vertex sets

of the complete graphs Kk in the decomposition. This hypergraph is simple and regular of degree
D = (v − 1)/(k − 1). Therefore, if n (and hence v and D) are sufficiently large then by Lemma 3.5
there is a matching M of this hypergraph covering at least (1− ε)v vertices. Note that this matching
corresponds to a collection of pairwise disjoint copies of F in D2.

We claim that β(D2) < 2εv. Indeed, any independent set in D2 can contain at most εk vertices
in each copy of F in the matching M , and hence altogether at most an ε fraction of the vertices
covered by this matching. As there are at most εv other vertices, the assertion of the claim follows.

By Lemma 3.4, part (i) there is also an STS D1 on v vertices satisfying β(D1) = (v + 1)/2. By
Claim 1 we thus conclude that γ(D1) ≤ (3v − 1)/4 and γ(D2) ≥ (1− 2ε)v, completing the proof. 2

4 On complete decomposition graphs

An H decomposition of a graph G is a partition of the edges of G into parts each of which is an
isomorphic copy of the graph H. The intersection graph of the decomposition is the graph whose
vertices are the parts where two are connected iff they share at least one common vertex of G.
Jamison [25] asked for the largest possible s = s(d, k) so that the complete graph on s vertices is the
intersection graph of an H(k) decomposition of some d-regular graph, where H(k) is a matching of
size k. He showed that

s(d, k) ≤ 2k(d− 1) + 1, (3)

proved that s(3, 2) = 9, that is, equality holds in (3) for d = 3, k = 2, and asked to determine the
cases in which equality holds. Here we answer this question and prove the following.
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Theorem 4.1 For every d ≥ 3, k ≥ 2 equality holds in (3) if and only if there is a Kd-decomposition

of the complete graph on 2k(d− 1) + 1 vertices.

In particular, s(3, k) = 4k+ 1 iff there is a Steiner Triple system on 4k+ 1 vertices, that is, iff k

is 0 or 2 modulo 3, and for any fixed d and sufficiently large k, s(d, k) = 2k(d− 1) + 1 iff d divides

2k − 4k2.

Proof: Put s = 2k(d − 1) + 1 and suppose there is a Kd-decomposition of Ks. This means that
there is a collection B1, B2 . . . , Bm of subsets of a set S of size s, where |Bp| = d for each p and every
pair of distinct vertices i, j ∈ S are contained together in a unique block Bp. Construct a d-regular
graph G on the set of vertices M = {1, 2, . . . ,m} as follows. For each vertex v ∈ S there are exactly
(s − 1)/(d − 1) = 2k blocks Bp containing v. Split them arbitrarily into k disjoint pairs, and for
each pair Bp, Bq, let pq be an edge of G. Let Mv denote the matching of size k consisting of all
these k edges. We have thus constructed s matchings, and the graph G consists of the edges of all
of them. Note that the matchings are pairwise edge-disjoint, as there are no distinct u, v contained
in two blocks Bp, Bq. Note also that G is d-regular, as each vertex p gets a contribution of one edge
from each element v ∈ Bp. In addition, each pair of distinct matchings Mv,Mu has exactly one
common vertex-the unique p so that u, v ∈ Bp. This shows that the existence of the design (that is,
the Kd-decomposition of Ks) implies that s(d, k) ≥ 2k(d − 1) + 1 which, in view of (3), shows that
equality holds.

Conversely, assuming that equality holds in (3) we prove that there exists a Kd-decomposition of
Ks. By assumption there is a d-regular graph G and a decomposition of its set of edges into matchings
M1,M2, . . . ,Ms, (s = 2k(d− 1) + 1), each matching of size k, so that every pair of matchings share
at least one common vertex. Simple counting implies that each pair of matchings share exactly one
common vertex (since altogether the vertices saturated by a matching M are incident with at most
2k(d−1) other edges, and if two of these edges belong to the same matching then M would not have
enough room to share a vertex with all the other matchings). Put S = {1, 2, . . . , s}. For each vertex
v of G define a block Bv ⊂ S as follows:

Bv = {i : v is saturated by the matching Mi}.

Clearly each block is of size exactly d, as the graph is d regular. Moreover, every pair of elements
i, j ∈ S lie in a unique block, since by the above discussion for every two matchings Mi,Mj there
is a unique vertex v saturated by both of them. It follows that the construction above is indeed a
Kd-decomposition of Ks. This completes the proof of the first sentence in the statement the theorem.
The assertion of the second sentence follows by the well known fact that there exists a Steiner triple
system on v vertices iff v is either 1 or 3 modulo 6, and by Wilson’s Theorem [37] on the existence of
balanced incomplete block designs. (We omit the simple computation showing that the divisibility
condition is indeed that d should divide 2k − 4k2.)

5 List coloring of directed line graphs

The list chromatic number χ`(H) of a graph H is the smallest integer k so that for any assignment
of a list of k colors to each vertex of H there is a proper vertex coloring of the graph in which each
vertex gets a color from its list. It is clear that χ`(H) ≥ χ(H) for any graph H, and it is easy and
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well known that strict inequality may hold. See, e.g., [6] and its references for some background on
list coloring.

Theorem 5.1 Let G = (V,E) be a (finite, loopless) directed graph with maximum total degree D

and let L = L(G) be the directed graph whose vertices are the directed edges of G, in which (x, y) ∈ E
is connected by a directed edge to (x′, y′) iff y = x′. If

e(2D − 1)(
3

4
)s < 1 (4)

then the list chromatic number of L satisfies χ`(L) < s. Thus χ`(L) ≤ O(logD).

Remark: If the average degree in G is at least Ω(D) (and in particular if G is regular Eulerian),
then by the main result in [7] (see also [35] for a numerical improvement) the list chromatic number
of L(G) is at least Ω(log2D). The chromatic number of L(G) may be much smaller, and is well
known to be (1 + o(1)) log2(χ(G)), see, e.g., [5].

Proof of Theorem 5.1: Let G, L, D and s satisfy the assumptions of the theorem. For every
vertex (x, y) of L(G) let Sx,y be a set of s colors assigned to this vertex. We have to show that there
is a proper vertex coloring of L(G) assigning to each vertex a color from its list. Let S = ∪Sx,y
be the set of all colors. For each vertex v ∈ V of G, let S = Pv ∪ Qv, Pv ∩ Qv = ∅ be a random
partition of the set of all colors into two disjoint sets chosen uniformly and independently among all
partitions. We claim that with positive probability, for each (x, y) ∈ E

Sx,y ∩ Px ∩Qy 6= ∅. (5)

To prove this claim we apply the Lovász Local Lemma, proved in [18]. Let Bx,y denote the event
that (5) fails. It is clear that the probability of this event is (3/4)s. In addition, each such event
Bx,y is mutually independent of all other events Bx′,y′ besides those with {x′, y′} ∩ {x, y} 6= ∅, since
all other events are determined by the random partitions (Pv, Qv) for v 6∈ {x, y}. It follows that each
event is mutually independent of all others besides at most 2D − 2, and the desired claim follows
from the Local Lemma.

To complete the proof fix partitions Pv, Qv for which (5) holds for each (x, y) ∈ E, and color
(x, y) by an arbitrary color c from Sx,y ∩ Px ∩Qy. This is clearly a proper coloring, since if c is the
color of (x, y) and c′ is the color of (y, z) then c ∈ Qy whereas c′ ∈ Py, which is disjoint from Qy,
implying that c 6= c′. This completes the proof. 2

6 Intersections of sets with their shifts

Let [n] = {1, 2, . . . , n} and let A ⊂ [n] satisfy |A| = m > 1. For a positive integer i put A + i =
{a+ i : a ∈ A}.

Theorem 6.1 For any integer k there is some i > 0 so that

|A ∩ (A+ i)| ≥ km(km− n− k + 1)

(n+ k − 1)k(k − 1)
.
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Remark: The above is nearly tight. Indeed, by a theorem of Singer [33], for any prime power q and
for any d ≥ 2 there is a subset S of cardinality m = qd−1+qd−2+. . .+1 of [n], for n = qd+qd−1+. . .+1,
so that the intersection of S with any shifted copy of itself (and in fact even with any cyclic shifted
copy) is of cardinality at most qd−2 + . . .+ 1. In particular note that this gives sets of size m = q+ 1
in [n] for n = q2 + q + 1 (that is, m >

√
n) so that all intersections are of size at most 1. It follows

that the case m ≤ (1 − o(1))
√
n is clear (as there are enough prime powers to get close to

√
n for

any n by a number of the form q+ 1). One can use other constructions of difference sets as well. For
m > (1 − o(1))

√
n we can choose an optimal k in the theorem above. Without trying to optimize

note that it is clear that by taking k so that n = o(km), k = o(n) and k >> 1 (for example, k = n3/4

will always do), we get that there is always an intersection of size at least (1 + o(1))m
2

n . For specific
values of m and n we can optimize more carefully. In addition, if m = o(n) and

√
n log n = o(m)

then the (1 + o(1)))m
2

n estimate above is tight, as shown by a random subset of cardinality m in [n].

Proof: Define x = max{|A ∩ (A + i)| : 1 ≤ i ≤ k − 1}. Note that for any 0 ≤ i < j ≤ k − 1,
|(A + i) ∩ (A + j)| ≤ x, since clearly |(A + i) ∩ (A + j)| = |A ∩ (A + j − i)|. For each integer p,
1 ≤ p ≤ n + k − 1, let dp denote the number of indices i, 0 ≤ i ≤ k − 1, so that p ∈ A + i. Clearly∑n+k−1
p=1 dp = km, since any set A+ i contributes to exactly m dp-s. By the convexity of the function

f(z) =
(z
2

)
= z(z − 1)/2 this implies that

n+k−1∑
p=1

(
dp
2

)
≥ (n+ k − 1)

( km
n+k−1)( km

n+k−1 − 1)

2
=
km(km− n− k + 1)

2(n+ k − 1)
.

On the other hand the sum
∑n+k−1
p=1

(dp
2

)
is exactly the sum of the quantities |(A+ i)∩ (A+ j)|, over

all pairs i, j with 0 ≤ i < j ≤ k − 1. Indeed, both these sums count precisely the number of triples
(p, i, j) with 1 ≤ p ≤ n+ k − 1, 0 ≤ i < j ≤ k − 1 and p ∈ (A+ i) ∩ (A+ j).

By the definition of x the final sum is at most x
(k

2

)
, implying that

x

(
k

2

)
≥ km(km− n− k + 1)

2(n+ k − 1)
,

and completing the proof. 2

Note that for specific values of m and n we can optimize further by using the fact that in the
above proof the value of dp for small or large indices p cannot be large (namely, dp ≤ p for all p and
similarly dn+k−p ≤ p for all p). This, however, does not change the asymptotic estimate.

7 Long paths in graph orientations

For a digraph D, let `(D) denote the maximum number of vertices of a directed simple path in D.
For an undirected graph G and an integer j ≥ 0, let `j(G) denote the minimum possible value of
`(D) when the minimum is taken over all orientations D of G in which every outdegree is at least j.
(If there is no such orientation define `(G) = 0). It is well known that for any graph G `0(G) = χ(G).
This was proved independently by Gallai [21], Roy [32], Hasse [23] and Vitaver [36]. Hod and Naor
[24] showed that for any d-regular graph G on n vertices `1(G) ≤ O(log n/ log log d) and that there
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are d-regular graphs on n vertices for which `1(G) ≥ Ω(log n/ log d). They also raised the problem
of estimating `j(G) for larger values of j. Here we show that already for j = 2 and any fixed d ≥ 4
there are d regular graphs G on n vertices for which `2(G) ≥ Ω(n).

Theorem 7.1 For any fixed d ≥ 4 there is a d-regular graph G on n vertices so that `2(G) ≥ Ω(n),

that is, in any orientation of G in which each outdegree is at least 2, the length of the longest directed

path is at least Ω(n).

To prove the above we establish the following.

Lemma 7.2 Let G = (V,E) be a graph in which any set of z ≤ z0 vertices spans at most (j+1)z/2−1

edges, then `j(G) ≥ z0/2.

Proof: Let D be an orientation of G in which every outdegree is at least j. Consider a run of DFS on
D. During the algorithm, each vertex is colored white, gray or black. Initially all vertices are white,
and in each step at most one vertex changes a color, where white vertices can become gray, and gray
can become black. During the algorithm the gray vertices form a directed path, and there are no
directed edges from a black vertex to a white vertex. At the end all vertices are black. Consider the
algorithm when exactly x = z0/2 vertices are black. Let y be the number of gray vertices at that
point. Then the induced subgraph of G on the set of all black and gray vertices contains at least
jx+ y − 1 edges (at least j outgoing edges from each black vertex and at least y − 1 edges between
gray vertices). If y < x this gives a set of z = x + y vertices with more than (j + 1)z/2 − 1 edges,
contradiction. 2

The lemma and the known results about the distribution of edges in random d-regular graphs
that imply that with high probability all induced subgraphs on small linear size sets in such graphs
have average degree at most 2 + δ < 3, (c.f., e.g., Lemma 6 in [24]), imply the statement of the
theorem.

8 The cover number of sign matrices

The ε-cover number Nε(A) of an m by n matrix A is the minimum possible cardinality of a set S
of vectors in Rm so that any point in the convex hull of the columns of A is within `∞-distance at
most ε from some point of S. This notion is considered in [4], where it is shown, as a corollary of a
more general result, that for any n by n sign-matrix A,

Nε(A) ≤ nO(logn/ε2).

Here we show that this estimate is tight, up to the hidden constant factor in the exponent (when n
is at least 1/ε7, say). It is convenient to consider m by n matrices, with m = n6 (this clearly only
changes the constant, as any such matrix can be embedded in anm bymmatrix, and log n6 = 6 log n.)

Let A be a random m = n6 by n sign matrix.

Theorem 8.1 With high probability (whp, for short)

Nε(A) ≥ nΩ(logn/ε2).
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To prove the theorem it suffices to show that whp there is a set T of at least nΩ(logn/ε2) vectors in
Rm that lie in the convex hull of the columns of A, so that the `∞ distance between any two of these
vectors exceeds ε. Let F be a family of

t ≥ n(1−o(1)) logn

ε2

subsets of [n] = {1, 2, . . . , n}, so that the cardinality of each member of F is 2
ε2

log n, and the
intersection of any two distinct members of F is at most 1

ε2
log n. The existence of such an F is

proved by a simple greedy procedure, picking sets one by one and omitting all those that intersect a
chosen set by too many elements.

Let Aj denote column number j of A. For each F ∈ F , let vF denote the average of the columns
Aj for j ∈ F . It suffices to show that whp the `∞-distance between any pair of vectors vF and vF ′ ,
for F, F ′ ∈ F , F 6= F ′, exceeds ε. For this it suffices to show that whp, for any two such sets F, F ′,
there is a row i so that the number of indices j with j ∈ F − F ′ and Aij = 1 exceeds the number
of indices j with j ∈ F ′ − F and Aij = 1, by more than 1

ε log n. Fix a pair of sets F, F ′ ∈ F . By
standard estimates of Binomial distributions (see, e.g. [11], Appendix A), the probability that for
a fixed i the above happens exceeds 1

n5 , with room to spare. (Indeed, it suffices to ensure that the
number of +1 entries in F − F ′ exceeds its expectation by at least 0.5

ε log n, and the same occurs to
the number of −1 entries in F ′−F . ) Therefore, the probability that there is no row i in which this
happens is smaller than

(1− 1

n5
)n

6 ≤ e−n

and this number is sufficiently small to ensure, by the union bound, that whp there is such a
coordinate for any pair of distinct sets F, F ′ ∈ F . This completes the proof of the theorem. 2

Recall that the Vapnik-Chervonenkis dimension of a sign (or binary) matrix A, denoted by V C(A),
is the maximum cardinality of a set J of columns of A so that for each F ⊂ J there is a row i of
A such that for j ∈ J , Aij = 1 iff j ∈ F . It will be interesting to decide if the more general result
proved in [4], that asserts that

Nε(A) ≤ nO(d/ε2),

where d = V C(A), is also tight for all admissible values of n, ε and V C(A). It is not difficult to get
a lower bound of nΩ(d/ε). Indeed, let A be the

(n
d

)
by n sign-matrix in which the rows are indexed

by d-subsets of [n], and each row has −1 in all entries corresponding to its set. Let F be a family of
subsets of [n], each of size d

ε , where for each two distinct F, F ′ ∈ F , |F − F ′| ≥ d and |F| ≥ nΩ(d/ε).
Then the averages vF as defined above, for F ∈ F satisfy ||vF − vF ′ ||∞ > ε for all distinct F, F ′ ∈ F ,
as shown by considering the row indexed by a d-set that lies in F − F ′.

For d = 1 the nΩ(1/ε) estimate is, in fact, tight, as we prove next. The proof applies the known
characterization of spaces with V C-dimension 1. We suspect, however, that the behavior for d > 1
may well be different, as spaces with V C-dimension 2 are far more complicated. It is more convenient
to state and prove the theorem for binary matrices rather than sign matrices and prove first a result
for totally unimodular matrices, which may be interesting in its own right.

A matrix A is totally unimodular (TU, for short) if the determinant of any square submatrix of it
(of any dimension) lies in {0,−1, 1}. In particular , all entries of such a matrix must lie in {0,−1, 1}.
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Theorem 8.2 Let A be a TU matrix with n columns. Then for any ε > 0,

Nε(A) ≤
(
n+ d1/εe − 1

d1/εe

)
.

Proof: Let A = A(u, v), u ∈ U, v ∈ V . Let {zv : v ∈ V } denote the column vectors of A, and let C
denote their convex hull. Put k = d1/εe and let F denote the set of all averages of k columns of A
(with repetitions). Then |F| =

(n+k−1
k

)
and it suffices to show that for every vector z ∈ C there is a

vector y ∈ F so that ||y − z||∞ ≤ 1/k. Let z =
∑
v∈V xvzv be a vector in C, where xv ≥ 0 for all v

and
∑
v∈V xv = 1. Define x′v = kxv, then

kz =
∑
v∈V

x′vzv, x′v ≥ 0 for all v ∈ V and
∑
v∈V

x′v = k (6)

Consider the following linear program in the variables x′v, v ∈ V :

bkz(u)c ≤
∑
v∈V

x′vzv(u) ≤ dkz(u)e for all u ∈ U, x′v ≥ 0 for all v ∈ V and
∑
v∈V

x′v = k (7)

By (6) this has a feasible solution x′v. Since the matrix A is totally unimodular, the linear program
(7) admits an integral solution x∗v. It follows that

|z(u)− 1

k

∑
v∈V

x∗vzv(u)| ≤ 1

k
≤ ε

for all u ∈ U . Since the vector y = 1
k

∑
v∈V x

∗
vzv ∈ F , this completes the proof of the theorem. 2

Remark: The assertion of the last theorem is tight, as shown by the identity matrix A with n
columns. Indeed, if ε < 1/k then the set of all averages of k columns of A (with repetitions) contains
no two members within `∞ distance smaller than 1/k, implying that here

Nε(A) ≥
(
n+ k − 1

k

)
.

For a binary matrix A = (aij), the complement of A is the binary matrix A = (1 − aij). Call
a binary matrix TU-complement (TUC, for short) if it is the complement of a totally unimodular
binary matrix. Finally, call an m by n matrix A a double-TU matrix, if it is possible to split its
columns into two disjoint sets, thus splitting A into two matrices A1 and A2, where A1 has m rows
and n1 columns, A2 has m rows and n2 columns, with n = n1 +n2, and A1 is a TU-matrix while A2

is a TUC-matrix. We allow one of these matrices to be empty and therefore any TU or TUC matrix
is double-TU as well. The following result is proved in [27].

Lemma 8.3 ([27]) A binary matrix A has VC-dimension 1 if and only if it is possible to reduce it

to the empty matrix by repeatedly applying operations of the following two forms:

(i) Delete a row identical to another one.

(ii) Delete a column with at most one 0 or at most one 1.
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Corollary 8.4 Any binary matrix A with VC-dimension 1 is a double TU-matrix.

Proof: By the above Lemma and since any binary matrix with at most one row or column is TU
(and hence double TU too), it suffices to show that if A is double TU and A′ is obtained from A
either by adding to it a row identical to one of the rows of A or by adding to it a column with at most
one 0 or at most one 1, then A′ is also double TU. Suppose, thus, that A is a double TU matrix with
n columns. Without loss of generality assume that the matrix A1 consisting of the first n1 columns
of A is TU, and the matrix A2 consisting of the last n2 columns of A is TUC, where n = n1 + n2. If
A′ is obtained from A by adding to it a row identical to one of the rows of A, then it is easy to check
that the matrix consisting of the first n1 columns of A′ is TU, and the one consisting of the last n2

columns of A′ is TUC, as needed. If A′ is obtained from A by adding a column with at most one 1,
then we can add this column to A1 to get A′1, which is still TU (as the determinant of any square
submatrix of A′1 that contains part of this column can be expanded with respect to this column.)
Similarly, if A′ is obtained from A by adding a column with at most one 0, then we can add this
column to A2 keeping it TUC. This completes the proof. 2

We can now prove the following.

Theorem 8.5 Let A be a binary matrix with VC-dimension 1 and n columns. Then

Nε(A) ≤ nO(1/ε).

Proof: By the above Corollary A is double TU. Assume, without loss of generality, that the matrix
A1 consisting of the first n1 columns of A is TU, and the matrix A2 consisting of the last n2 columns
of A is TUC, where n = n1 + n2. By Theorem 8.2

Nε/2(A1) < n2/ε.

Similarly, for the complement B of A2 we have, by Theorem 8.2,

Nε/2(B) < n2/ε.

As each vector v in the convex hull of the columns of the complement B is simply the vector j − u
for some vector u in the convex hull of A2, where j is the all 1 vector, it follows that

Nε/2(A2) = Nε/2(B) < n2/ε.

Finally note that this implies that
Nε(A) ≤ nO(1/ε).

This is because for every pair of matrices A1 and A2 we have

Nε(A1 +A2) ≤ Nε/2(A1)Nε/2(A2).

Indeed, one can just take the pairwise sum of the corresponding ε/2-nets and use the triangle in-
equality. As the cover numbers of the matrices A1, A2 do not increase much by appending to them
0 columns to get matrices A1 and A2 whose sum is A, the desired estimate follows, completing the
proof. 2
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9 Orders with the running intersection property

9.1 The main result

A sequence of subsets F1, F2, . . . , Fm of a finite set X satisfies the Running Intersection Property
(RIP ) if for every k > 1 the intersection of Fk with the union of all previous Fj is contained in one
of these previous subsets, that is,

For every k > 1 there is an i < k so that Fk ∩ (∪j<kFj) ⊂ Fi. (8)

A family of subsets F of X satisfies RIP ∗ if there is an ordering of its members that satisfies RIP .
For more on the Running Intersection Property see, e.g., [28], [17] and the references therein.

A sequence of subsets F1, F2, . . . , Fm of a finite set X is expansive if for every k > 1, the
cardinality of the intersection of Fk with the union of all previous sets is at least as large as the
cardinality of the intersection of any subset that appears after Fk with this union, that is,

For every k > 1, |Fk ∩ (∪j<kFj)| ≥ |Fi ∩ (∪j<kFj)| for all i > k. (9)

R. Spiegler [34] conjectured that if a family of subsets satisfies RIP ∗, then any expansive ordering
of its members satisfies RIP . This is proved in the following theorem.

Theorem 9.1 Let F be a family of subsets of a finite set X. If F satisfies RIP ∗, then any expansive

ordering of its members satisfies RIP .

Note that the above theorem supplies a simple efficient algorithm for checking if a given family
F satisfies RIP ∗: we simply produce an expansive ordering of it and check if it satisfies (8).

9.2 The proof

A family of subsets F = {F1, F2, . . . , Fm} of a finite set satisfies the Tree Decomposition Property
(TDP ) if there is a tree T on the set of vertices F so that for any Fi, Fj , Fk ∈ F where Fi is on the
unique path in T from Fk to Fj , Fk ∩ Fj ⊂ Fi. If this is the case we say that T , with an arbitrary
vertex of it designated as a root, is a realization for F . Note that there can be many trees realizing
the same family F .

An ordering of the vertices of a rooted tree is called admissible if the root appears first, and
any other vertex appears after its unique parent in the tree. The following simple lemma appears, in
various forms, in the literature, see, e.g., [28], Chapter 2. For completeness we include a short proof.

Lemma 9.2 Let F be a family of subsets of a finite set X. Then F satisfies RIP ∗ if and only if it

satisfies TDP . Moreover, if F satisfies TDP and T is a rooted tree realizing F , then any admissible

ordering of its members satisfies RIP .

Proof: Assume first that F satisfies RIP ∗. Then there is a sequence F1, F2, . . . , Fm of the members
of F such that (8) holds. Let T be a rooted tree on the set of vertices F , where F1 is the root, and
for each k > 1 the unique parent of Fk in the tree is an arbitrarily chosen Fi so that i < k and

Fk ∩ (∪j<kFj) ⊂ Fi.
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We claim that T is a realization for F . Indeed, suppose Fi, Fj , Fk ∈ F , with Fi being on the unique
path between Fj and Fk. We have to show that Fk ∩ Fj ⊂ Fi. This is proved by induction on the
distance in T between Fk and Fj . If the distance is 0 or 1 there is nothing to prove as in this case
Fi is either Fj or Fk. Assuming the assertion holds for distance smaller than d, suppose the distance
between Fj and Fk is d ≥ 2. Without loss of generality suppose that j < k. Let Fs be the unique
parent of Fk in T . By the construction of T , Fk ∩ Fj ⊂ Fs. It is also clear that Fs is on the unique
path in T from Fk to Fj (since Fj is not a descendent of Fk). Thus either s = i, and then the desired
result Fk ∩Fj ⊂ Fi holds, or Fi is on the unique path in T between Fs and Fj . In the latter case, as
the distance between Fs and Fj is d − 1 it follows, by the induction hypothesis, that Fs ∩ Fj ⊂ Fi,
completing the proof of the claim, as Fk ∩ Fj ⊂ Fs ∩ Fj ⊂ Fi.

Conversely, suppose that F satisfies TDP , and let T be a rooted tree which forms a realization
for F . Let F1 be the root, and let F1, F2, . . . , Fm be an admissible order of the members of F . We
complete the proof of the lemma by showing that this ordering satisfies RIP . For k > 1, let Fi be
the unique parent of Fk in T . Since the order is admissible i < k. In addition, Fi lies on the unique
path between Fk and Fj for any j < k, as no such Fj is a descendent of Fk in T . As T satisfies TDP
it follows that Fk ∩ Fj ⊂ Fi for each j < k, and hence Fk ∩ (∪j<kFj) ⊂ Fi, as needed. 2

Proof of Theorem 9.1: Let F be a family of subsets of a finite set X and suppose it satisfies
RIP ∗. Let F1, F2, . . . , Fm be an expansive order of the members of F . We have to show that this
ordering satisfies RIP . To do so we prove the following:

Claim: For every k ≥ 1 there is a tree that forms a realization for F so that F1, F2, . . . , Fk is an
initial segment in an admissible ordering of the vertices of the tree.

Note that the case k = m of the above lemma implies the assertion of the theorem, as it provides a
realization for F in which the sequence F1, F2, . . . , Fm is admissible, and hence, by Lemma 9.2, this
sequence satisfies RIP , as needed.

It remains to prove the claim. This is done by induction on k. The case k = 1 follows from
Lemma 9.2. Assuming the assertion of the claim for k − 1, we prove it for k, k ≥ 2.

By the induction hypothesis there is a tree T on the set of vertices F so that F1, F2, . . . , Fk−1 is
an initial segment in an admissible ordering of the vertices of the tree. Therefore, each Fj for j ≥ k
is a descendent in T of at least one of the vertices in the set {F1, F2, . . . , Fk−1}. In particular, this
holds for Fk, let Fi be the first vertex in the path from Fk to the root F1 in T so that i ≤ k − 1. If
Fi is the parent of Fk in T , then the tree T satisfies the assertion of the claim for k, establishing the
required induction step. We thus assume that this is not the case and the path in T from Fi to Fk
is the following: Fi, G1, G2, . . . , Gs, Fk, where Gj ∈ {Fk+1, Fk+2, . . . , Fm} for all j, 1 ≤ j ≤ s.

Our objective is to transform T into another tree T ′ that satisfies the assertion of the claim for
k. To this end we define several pieces of the tree T , as follows. Let T0 be the subtree of T rooted at
F1 and consisting of all vertices of T besides G1 and its descendents. Let T1 denote the subtree of T
rooted at G1, besides G2 and its descendents. Similarly, for each q < s, let Tq denote the subtree of
T rooted at Gq besides Gq+1 and its descendents. Let Ts be the subtree of T rooted at Gs besides
Fk and its descendents. Finally, let T∞ denote the subtree of T rooted at Fk.

Note that the tree T0 contains all the vertices F1, F2, . . . , Fk−1. This is because these vertices
form an initial segment in an admissible ordering of the vertices of T , hence none of them can be a
descendent of G1, which is not in this initial segment.
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Recall that F1, F2, . . . , Fm is an expansive ordering of the members of F . Therefore,

|Fk ∩ (∪j<kFj)| ≥ |Gq ∩ (∪j<kFj)| (10)

for all 1 ≤ q ≤ s. On the other hand, T is a realization for F which satisfies TDP , and as all vertices
Fj for j < k lie in T0, it follows that for each such Fj , Fk ∩ Fj ⊂ Fi and also Fk ∩ Fi ⊂ Gq for all
1 ≤ q ≤ s. We conclude that Fk ∩ (∪j<kFj) = Fk ∩ Fi is contained in Fi ∩Gq for all 1 ≤ q ≤ s, and
by (10) we have

Fk ∩ (∪j<kFj) = Fk ∩ Fi = Fi ∩G1 = Fi ∩G2 = . . . = Fi ∩Gs.

We can now construct the tree T ′. It is obtained from T by reversing the path between G1 and Fk
as follows: starting with the subtree T0, connect to it the subtree T∞ by making Fi the parent of
Fk. Next, connect the subtree Ts by making Fk the parent of Gs, the subtree Ts−1 by making Gs
the parent of Gs−1 and so on until the tree T1 which is connected by letting G2 be the parent of G1.
Clearly F1, F2, . . . , Fk is an initial segment in an admissible ordering of T ′, and hence it only remains
to check that the tree T ′ is indeed a realization of F , namely, that for every three vertices along a
path in the tree, the subset corresponding to the middle vertex is contained in the intersection of
those corresponding to the other two subsets. This is obvious if all three vertices belong to T0 or if
none of them belongs to T0. The only remaining cases are when the path is between a vertex in T0

and a vertex not in T0. In this case, the intersection of the corresponding sets is contained in the
common value of Fk ∩Fi = G1 ∩Fi = G2 ∩Fi = . . . = Gs ∩Fi and the desired inclusion in T ′ follows
from the corresponding one in T . This completes the proof of the claim, establishing the assertion
of the theorem. 2
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[19] P. Frankl, R. Graham and V. Rödl, On subsets of abelian groups with no 3-term arithmetic
progression, J. Combin. Theory Ser. A, 45 (1987), pp. 157–161.
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