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Abstract

The following asymptotic result is proved. For every fixed graph H with h vertices, any

graph G with n vertices and with minimum degree d ≥ χ(H)−1
χ(H) n contains (1− o(1))n/h vertex

disjoint copies of H.
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1 Introduction

All graphs considered here are finite, undirected and simple (i.e., have no loops and no parallel

edges). If G is a graph on n vertices and H is a graph on h vertices, we say that G has an H-factor

if it contains n/h vertex disjoint copies of H. Thus, for example, a K2-factor is simply a perfect

matching, whereas a C4-factor is a spanning subgraph of G every connected component of which

is a cycle of length 4.

Let H be a graph on h vertices, let G be a graph on n vertices, and suppose h divides n. There

are several known results that show that in this case, if the minimum degree d = d(G) of G is

sufficiently large, then G contains an H-factor. Indeed, by Tutte’s 1-factor Theorem (see, e.g. [1])

if d ≥ n/2 then G has a K2-factor. Similarly, if H is a path of length h−1 then, by Dirac’s Theorem

on Hamilton cycles (cf. [1]), d ≥ n/2 suffices again for the existence of an H-factor. Corrádi and

Hajnal [2] proved that for H = K3, d = 2n/3 suffices and Hajnal and Szemerédi [4] proved that for

H = Kk, d = k−1
k n guarantees an H-factor. All these results are easily seen to be best possible.

A recent conjecture of Erdös and Faudree [3] asserts that any graph with n = 4m vertices and

with minimum degree 2m = n/2 has a C4-factor. At the moment we are unable to prove or disprove

this conjecture, but we can prove that any such graph contains an almost C4-factor, i.e., m− o(m)

vertex disjoint copies of C4. In fact, we can prove a much more general result, that shows that

for any fixed graph H, any graph on n vertices with a sufficiently large minimum degree contains

a subgraph on n − o(n) vertices which has an H-factor. The exact statement of the result is the

following.

Theorem 1.1 For every ε > 0 and for every integer h, there exists an n0 = n0(ε, h) such that for

every graph H with h vertices and for every n > n0, any graph G with n vertices and with minimum

degree d ≥ χ(H)−1
χ(H) n contains at least (1− ε)n/h vertex disjoint copies of H.

The proof is based on the Uniformity Lemma of Szemerédi [5] together with some additional

ideas, and is presented in the next two sections. The final section contains some concluding remarks

and open problems.

1



2 Almost H-factors in graphs with a totally ε-regular partition

We start with a few definitions, most of which follow [5]. If G = (V,E) is a graph, and A,B are two

disjoint subsets of V , let e(A,B) = eG(A,B) denote the number of edges of G with an endpoint in

A and an endpoint in B. If A and B are non-empty, define the density of edges between A and B

by d(A,B) = e(A,B)
|A||B| . For ε > 0, the pair (A,B) is called ε-regular if for every X ⊂ A and Y ⊂ B

satisfying |X| ≥ ε|A| and |Y | ≥ ε|B|, the inequality

|d(A,B)− d(X,Y )| < ε

holds.

An equitable partition of a set V is a partition of V into pairwise disjoint classes C0, C1, . . . , Ck,

in which all the classes Ci for 1 ≤ i ≤ k have the same cardinality. The class C0 is called the

exceptional class and may be empty. An equitable partition of the set of vertices V of G into the

classes C0, C1 . . . , Ck, with C0 being the exceptional class, is called ε-regular if |C0| ≤ ε|V |, and all

but at most εk2 of the pairs (Ci, Cj) for 1 ≤ i < j ≤ k are ε-regular. The above partition is called

totally ε-regular if C0 is empty and all pairs (Ci, Cj), where 1 ≤ i < j ≤ k, are ε-regular.

The following lemma is proved in [5].

Lemma 2.1 (The Uniformity Lemma [5]) For every ε > 0 and every positive integer t there

is an integer T = T (ε, t) such that every graph with n vertices has an ε-regular partition into k+ 1

classes, where t ≤ k ≤ T . 2

When applying the Uniformity Lemma to derive Theorem 1.1 we have to prove the existence of

almost H-factors in graphs with a totally ε-regular partition. When H is a complete multipartite

graph, this is established in the following two lemmas.

Lemma 2.2 Let C1, . . . , Ck be a totally ε-regular partition of the set of vertices of a graph G, and

suppose that |Ci| = m for all i and that d(Ci, Cj) ≥ δ for all 1 ≤ i < j ≤ k. If k ≥ 2 and

(k − 1)ε+
h− 1
m

< (
δ

2
)hk

then G contains a complete k-partite graph with h vertices in each of its color classes A1, . . . Ak,

where Ai ⊂ Ci for 1 ≤ i ≤ k.
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Proof We prove that for every p, 1 ≤ p ≤ k, and for every q, 0 ≤ q ≤ h, there are (possibly empty)

subsets Ai ⊂ Bi ⊂ Ci, (1 ≤ i ≤ k), with the following properties.

(i) |Ai| = h for all i < p, |Ap| = q and |Ai| = 0 for all i > p.

(ii) |Bi| ≥ ( δ2)(i−1)hm for all 1 ≤ i ≤ p and |Bi| ≥ ( δ2)(p−1)h+qm for all p < i ≤ k

(iii) For all 1 ≤ i < j ≤ k, every vertex u ∈ Ai is adjacent in G to every vertex v ∈ Bj .

The assertion of the lemma follows from the above statement for p = k and q = h, since for

these values of the parameters the sets Ai are the color classes of a complete multipartite subgraph

of G with h vertices in each color class.

The subsets Ai and Bi are constructed by induction on (p−1)h+q. For p = 1 and q = 0 simply

take Ai = ∅ and Bi = Ci for all i. Given the sets Ai, Bi satisfying (i), (ii) and (iii) for p and q we

show how to modify them for the next value of (p−1)h+ q. If q = h and p < k we can replace p by

p+ 1 and q by 0 with no change in the sets Ai, Bi. Thus we may assume that q is strictly smaller

than h. Consider the set Dp = Bp \ Ap. Observe that by assumption the cardinality of each Bj ,

for p < j ≤ k is bigger than εm. For each such j, let Dj
p denote the set of all vertices in Dp that

have less than (δ − ε)|Bj | neighbors in Bj . We claim that |Dj
p| < εm for each j. This is because

otherwise the two sets X = Dj
p and Y = Bj would contradict the ε-regularity of the pair (Cp, Cj),

since d(Dj
p, Bj) < δ − ε, whereas d(Cp, Cj) ≥ δ, by assumption. Therefore, the cardinality of the

set Dp \ (Dp+1
p ∪ . . . ∪Dk

p) is at least

|Bp| − |Ap| − (k − p)εm ≥ (
δ

2
)(p−1)hm− q − (k − 1)εm > 0,

where the last inequality follows from the assumption in the lemma. We can now choose arbitrarily

a vertex v in Dp \ (Dp+1
p ∪ . . . ∪Dk

p), add it to Ap, and replace each Bj for p < j ≤ k by the set of

neighbors of v in Bj . Since δ − ε > δ/2 this will not decrease the cardinality of each Bj by more

than a factor of δ/2 and it is easily seen that the new sets Ai, Bi defined in this manner satisfy the

conditions (i), (ii) and (iii) with p′ = p and q′ = q + 1. This completes the proof of the lemma. 2

Corollary 2.3 Let C1, . . . , Ck be a totally γ2-regular partition of the set of vertices of a graph G,

and suppose that |Ci| = c for all i and that d(Ci, Cj) ≥ δ + γ for all 1 ≤ i < j ≤ k. If k ≥ 2 and

(k − 1)γ +
h− 1
γc

< (
δ

2
)hk

3



then G contains at least (1− γ)c/h vertex disjoint complete k-partite graphs with h vertices in each

color class, so that each of these graphs has one color class in each Ci.

Proof Let F be a maximal family of vertex disjoint complete k-partite subgraphs of G, each having

h vertices in each color class, and each having a color class in each Ci. We have to prove that the

cardinality of F is at least (1 − γ)c/h. Suppose this is false, and let G∗ be the induced subgraph

of G obtained by deleting from G all the vertices of the members of F . Let C∗i be the set of all

vertices of G∗contained in Ci. Clearly, |C∗i | ≥ γc, and one can easily check that the sets C∗i form a

totally γ-regular partition of the set of vertices of G∗. Moreover d(C∗i , C
∗
j ) ≥ δ for all 1 ≤ i < j ≤ k.

By Lemma 2.2 (with m = γc and ε = γ) G∗ contains a complete k-partite graph with h vertices in

each color class that can be added to F , contradicting its maximality. This completes the proof. 2

3 The proof of the main result

In order to deduce Theorem 1.1 from Lemma 2.1 and Corollary 2.3 we need some additional prepa-

ration. In particular, we need the theorem of Hajnal and Szemerédi mentioned in the introduction,

which is the following.

Lemma 3.1 ( Hajnal and Szemerédi [5]) If k divides n then any graph with n vertices and

with a minimum degree d ≥ k−1
k n has n/k vertex disjoint copies of Kk. 2

Corollary 3.2 Let G = (V,E) be a graph with n vertices in which the degrees of all the vertices

but at most βn are at least (1 − β)k−1
k n. Then G contains a set of at least n

k − k(βn + 1) vertex

disjoint copies of Kk.

Proof Let V ′ be the set of all vertices of G whose degrees in G are less than (1− β)k−1
k n. Let G′

be the graph obtained from G by joining each vertex of V ′ to any other vertex of G. (Thus in G′

the degree of each vertex in V ′ is n− 1). Let G” be the graph obtained from G′ by adding to it a

complete graph on a set V ” of at least (k − 1)βn and at most (k − 1)(βn+ 1) new vertices and by

joining each of them to every vertex of G′. The exact cardinality of V ” is chosen so that the total

number of vertices of G” will be divisible by k. In G” the degree of every vertex in V ′∪V ” is m−1,

where m = n + |V ”| is the number of vertices of G”. The degree of each other vertex is at least

4



(1− β)k−1
k n+ |V ”| ≥ k−1

k m. Therefore, by Lemma 3.1, G” has a set of m/k vertex disjoint copies

of Kk. At most |V ′|+ |V ”| ≤ k(βn+ 1) of these contain vertices of V ′ ∪ V ” and all the others are

in fact subgraphs of G. Therefore, G contains a set of at least m/k−|V ′|− |V ”| ≥ n/k− k(βn+ 1)

vertex disjoint copies of Kk. 2

Proof of Theorem 1.1 Given an integer h and a real positive ε < 1, choose a real δ = δ(ε, h) > 0

satisfying

δ <
ε

33h2
. (1)

Let γ = γ(ε, h) satisfy

γ <
1

2(h− 1)
(
δ

2
)h

2
. (2)

Put t = d1/δe and let T (·, ·) be the function appearing in the Uniformity Lemma (Lemma 2.1). We

prove the theorem with

n0 = n0(ε, h) =
T (γ2, t) · 2h

(1− γ2)γ(δ/2)h2 . (3)

Let H be a graph with h vertices and let k = χ(H) denote its chromatic number. Clearly

k ≤ h. Suppose n > n0 and let G be a graph with n vertices in which all degrees are at least k−1
k n.

We must show that G contains a set of at least (1 − ε)n/h vertex disjoint copies of H. Let K be

the complete k-partite graph with h vertices in each color class. It is easy to check that K has

an H-factor, i.e., it contains k vertex disjoint copies of H. Therefore, it suffices to prove that G

contains a set of at least (1− ε) nkh vertex disjoint copies of K. We next prove this assertion by the

Uniformity Lemma, Corollary 2.3 and Corollary 3.2.

By the Uniformity Lemma G has a γ2-regular partition into q + 1 vertex disjoint classes

C0, . . . , Cq, where C0 is the exceptional class and t ≤ q ≤ T (γ2, t).

Let L be the graph on the vertices 1, 2, . . . , q in which ij is an edge for 1 ≤ i < j ≤ q iff (Ci, Cj)

is a γ2-regular pair and the density of edges in this pair satisfies d(Ci, Cj) ≥ δ + γ. A vertex i

of L is called good if there are at most γq other vertices j of L such that the pair (Ci, Cj) is not

γ2-regular. Obviously, all vertices of L but at most 2γq are good.

Claim: The degree of any good vertex of L is at least

q(
k − 1
k
− γ2 − 1

q
− 2γ − δ) ≥ q k − 1

k
(1− 10δ).

Proof Let c = n−|C0|
q ≤ n/q denote the number of vertices in each of the sets Cj , 1 ≤ j ≤ q. For

each fixed i, 1 ≤ i ≤ q, the sum of the degrees in G of the vertices in Ci is at least k−1
k nc, by the
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hypotheses. On the other hand, if the degree of i in L is d, and i is a good vertex, then the sum of

the degrees in G of the vertices in Ci can be bounded by the sum of five summands, as described

below.

• The contribution to the sum of the edges between Ci and the exceptional class C0 does not

exceed |C0|c ≤ γ2nc.

• The contribution of edges joining two vertices of Ci does not exceed c2.

• The contribution of edges between Ci and classes Cj for which the pair (Ci, Cj) is not γ2-

regular is at most c2 times the number of such indices j and is thus at most γqc2. (Here we

used the fact that i is a good vertex of L.)

• The contribution of edges between Ci and classes Cj for which d(Ci, Cj) < δ + γ does not

exceed q(δ + γ)c2.

• The contribution of edges between Ci and classes Cj for which (Ci, Cj) is γ2-regular and

d(Ci, Cj) ≥ δ + γ is at most dc2 (since each such j is a neighbor of i in L).

Therefore
k − 1
k

nc ≤ γ2nc+ c2 + γqc2 + q(δ + γ)c2 + dc2.

Since c ≤ n/q this imples that

k − 1
k

n ≤ n(γ2 +
1
q

+ γ + (δ + γ) +
d

q
),

and thus

d ≥ q(k − 1
k
− γ2 − 1

q
− 2γ − δ).

Since q ≥ t ≥ 1/δ, we have 1/q ≤ δ. By (2) γ2 < γ < δ(< 1) and since k ≥ 2 we conclude that

d ≥ q(k − 1
k
− γ2 − 1

q
− 2γ − δ) ≥ q(k − 1

k
− 5δ) ≥ q k − 1

k
(1− 10δ).

This completes the proof of the claim.

Returning to the proof of the theorem, recall that all the vertices of L but at most 2γq < 10δq

are good. Therefore, by the last claim and by Corollary 3.2 (with β = 10δ and n = q), L contains

a set of at least
q

k
− k(10δq + 1) ≥ q

k
(1− 11δk2) (4)
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vertex disjoint copies of Kk. (Here we used the fact that since q ≥ 1/δ we have 10δq + 1 ≤ 11δq.)

Consider a copy of Kk in L, and let i1, i2, . . . , ik be its vertices. Let G′ be the induced subgraph

of G on Ci1 ∪ . . . ∪ Cik . The partition of the set of vertices of G′ into the classes Ci1 , . . . , Cik is a

totally γ2-regular partition, by the definition of L. Moreover, by this definition, d(Cij , Cis) ≥ δ+ γ

for all 1 ≤ j < s ≤ k. In addition, k ≥ 2 and the number of vertices c in each Cij satisfies:

c ≥ n(1− γ2)
q

≥ n(1− γ2)
T (γ2, t)

≥ 2h
γ(δ/2)h2 , (5)

where the last inequality follows from (3).

By (2) and (5) we have:

(k − 1)γ +
h− 1
γc

< (h− 1)γ +
h

γc
≤ 1

2
(δ/2)h

2
+

1
2

(δ/2)h
2

= (δ/2)h
2 ≤ (δ/2)hk.

Therefore, by Corollary 2.3, G′ contains a set of at least (1−γ)c/h ≥ (1−γ)n(1−γ2)
qh vertex disjoint

copies of K.

Since this holds for every copy of Kk in L, this and (4) implies that G contains a set of at least

(1− γ)
n(1− γ2)

qh

q

k
(1− 11δk2) =

n

kh
(1− γ)(1− γ2)(1− 11δk2) (6)

vertex disjoint copies of K.

However, as γ2 < γ < 11δk2 we conclude, by (1), that

(1− γ)(1− γ2)(1− 11δk2) ≥ (1− 11δk2)3 ≥ 1− 33δk2 ≥ 1− 33δh2 ≥ 1− ε.

Thus, by (6), G contains a set of at least n
kh(1− ε) vertex disjoint copies of K. Since each copy of

K contains k vertex disjoint copies of H this completes the proof of the theorem. 2

4 Concluding remarks and open problems

1. Theorem 1.1 is essentially best possible in the sense that the quantity χ(H)−1
χ(H) appearing there

cannot be replaced by any smaller constant. This is easily seen by letting G be a complete

k-partite graph with non-equal color classes where H is any complete k-partite graph with

equal color classes.
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2. Some error term is needed in the statement of Theorem 1.1, even if h divides n, i.e., the

statement of the theorem becomes false if we omit the ε even if we assume that h divides n.

To see this, let G be the graph obtained from two vertex disjoint complete graphs on n/2 + 1

vertices each by identifying two vertices of the first with two vertices of the second. Then in

G all the degrees are at least n/2. Let H be a 3-connected bipartite graph on h = 2l vertices

(e.g., the complete biparite graph Kl,l, where l ≥ 3), and suppose that n = (4s + 2)l, for

some integer s. Clearly, every copy of H in G must be contained completely in one of the

two complete graphs consisting G. However, by the assumptions n
2 ≡ l(mod h) and hence h

does not divide n/2− 1, n/2 or n/2 + 1, implying that G does not have an H-factor.

A similar (though slightly more complicated) argument shows that the error term is needed

even if h divides n and H is a properly chosen tree with h vertices. In particular, one can

show that if H is the complete full ternary tree of depth 3 with h = 1 + 3 + 9 + 27 = 40

vertices and G is obtained from two complete graphs on n/2 + 1 vertices each as above, then,

if n = (2s+ 1)40, G does not have an H-factor. We omit the detailed proof of this fact.

Another example showing that some error term is needed in Theorem 1.1 is the following; let

H be the complete bipartite graph Kl,l, where l ≥ 3 is odd, and let G be the graph obtained

from the complete bipartite graph with color classes of sizes l(2s+ 1) + 1 and l(2s+ 1)− 1 by

adding a perfect matching on the vertices of the larger color class. Here, again, the number

of vertices of H, which is h = 2l divides the number of vertices of G, which is n = (2s+ 1)2l,

and the minimum degree in G is n/2. It is, however, easy to check, that G does not have an

H-factor. This example can be obviously extended to show that some error term is needed

in Theorem 1.1 for certain graphs H of any desired chromatic number.

3. By the above remark, some error term is needed in any strengthening of Theorem 1.1. The

following strengthening seems true.

Conjecture 4.1 For every integer h there exists a constant c(h) such that for every graph H

with h vertices, any graph G with n vertices and with minimum degree d ≥ χ(H)−1
χ(H) n contains

at least n/h− c(h) vertex disjoint copies of H.

4. By the Hajnal-Szemerédi result stated in Section 3, the error term in Theorem 1.1 is not
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needed in case H is a complete graph and h divides n. As mentioned in the introduction this

is also trivially the case if H is a path. It would be interesting to find additional nontrivial

graphs H for which no error term is needed. A possible interesting example is the case

H = C4, as conjectured by Erdös and Faudree [3].
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