
On-line and Off-line Approximation Algorithms

for Vector Covering Problems

Noga Alon
∗

Yossi Azar
†

János Csirik
‡

Leah Epstein
§

Sergey V. Sevastianov
¶

Arjen P.A. Vestjens
‖

Gerhard J. Woeginger
∗∗

Abstract
This paper deals with vector covering problems in d-dimensional space. The input to

a vector covering problem consists of a set X of d-dimensional vectors in [0, 1]d. The goal
is to partition X into a maximum number of parts, subject to the constraint that in every
part the sum of all vectors is at least one in every coordinate. This problem is known to be
NP-complete, and we are mainly interested in its on-line and off-line approximability.

For the on-line version, we construct approximation algorithms with worst case guarantee
arbitrarily close to 1/(2d) in d ≥ 2 dimensions. This result contradicts a statement of Csirik
and Frenk (1990) in [5] where it is claimed that for d ≥ 2, no on-line algorithm can have a
worst case ratio better than zero. Moreover, we prove that for d ≥ 2, no on-line algorithm can
have worst case ratio better than 2/(2d+ 1). For the off-line version, we derive polynomial
time approximation algorithms with worst case guarantee Θ(1/ log d). For d = 2, we present
a very fast and very simple off-line approximation algorithm that has worst case ratio 1/2.
Moreover, we show that a method from the area of compact vector summation can be used
to construct off-line approximation algorithms with worst case ratio 1/d for every d ≥ 2.
Keywords. Approximation algorithm, worst case ratio, competitive analysis, on-line algo-
rithm, packing problem, covering problem.

∗noga@math.tau.ac.il. Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sci-
ences, Tel Aviv University, Tel Aviv, Israel. Supported by a USA-Israeli BSF grant.
†azar@math.tau.ac.il. Department of Computer Science, Tel-Aviv University, Tel Aviv, Israel. Supported

by Alon Fellowship and by the Israel Science Foundation, administered by the Israel Academy of Sciences.
‡csirik@inf.u-szeged.hu. Department of Computer Science, University of Szeged, Aradi vértanúk tere 1,

H–6720 Szeged, Hungary. Supported by Project 20u2 of the Austro-Hungarian Action Fund.
§lea@math.tau.ac.il. Department of Computer Science, Tel-Aviv University, Tel Aviv, Israel.
¶seva@math.nsk.ru. Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Univer-

sitetskii pr. 4, 630090, Novosibirsk-90, Russia. Supported by the DIMANET/PECO Program of the European
Union.
‖arjenv@win.tue.nl. Department of Mathematics and Computing Science, Eindhoven University of Technol-

ogy, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands. Research partially supported by the HCM-project
CHRX-CT93-0087 of the European Union.
∗∗gwoegi@opt.math.tu-graz.ac.at. Institut für Mathematik B, TU Graz, Steyrergasse 30, A-8010 Graz,

Austria. Research partially supported by a research fellowship of the Euler Institute for Discrete Mathematics
and its Applications, by the HCM-project CHRX-CT93-0087 of the European Union, by the Project P10903-MAT
of the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung, by Project 20u2 of the Austro-Hungarian
Action Fund, and by the Spezialforschungsbereich F003 “Optimierung und Kontrolle”, Projektbereich Diskrete
Optimierung.

1

Vector Covering Algorithms 2

1 Introduction

Problem statement. For a set S ⊆ [0, 1]d and a coordinate i, 1 ≤ i ≤ d, we denote by
Di(S) the sum of the i-th components of the elements in S. The set S is called a unit cover if
Di(S) ≥ 1 holds for all 1 ≤ i ≤ d; in other words, the elements of a unit cover can be used to
cover simultaneously all sides of the d-dimensional unit-bin. The d-dimensional vector covering
problem is that of partitioning a given list X of vectors in [0, 1]d into the maximum number of
unit covers, i.e. covering the maximum number of unit-bins with the elements of X.

This vector covering problem models a variety of situations encountered in business and
in industry, from packing peach slices into tin cans so that each tin can contains at least
its advertised net weight, to such complex problems as breaking up monopolies into smaller
companies, each of which is large enough to be viable.

Approximation algorithms. The vector covering problem is easily seen to be NP-complete.
This suggests to look for fast approximation algorithms that come close to the optimum solution
in polynomial time. Let Opt(X) denote the number of unit covers in an optimum partition of
list X. For an approximation algorithm A, let A(X) denote the number of unit covers that A
produces on input list X. Define for every k ≥ 1

RA(k) := min
{

A(X)
Opt(X)

| Opt(X) = k

}
. (1)

The asymptotic worst case ratio RA (also called worst case performance, worst case guarantee,
or just worst case ratio) of an approximation algorithm A, is defined by

RA = lim inf
k→∞

RA(k). (2)

Clearly, RA(k) ≤ 1 for every k ≥ 1 and hence RA ≤ 1. The asymptotic worst case ratio is the
usual measure for the quality of an approximation algorithm for covering problems: the larger
the ratio, the better the approximation algorithm.

Now assume an environment where the list X of vectors xt ∈ [0, 1]d, 1 ≤ t ≤ n, arrives
one by one. When vector xt arrives, it must immediately and irrevocably be assigned to its
unit-bin, and the next vector xt+1 becomes only known after vector xt has been assigned. Such
an environment is called an on-line environment, and an approximation algorithm that is able
to work in an on-line environment is called an on-line algorithm. In contrast to this type of
algorithm are the off-line algorithms that only work under full knowledge of the problem data.

Known results. The one-dimensional version of the vector covering problem was for the first
time investigated in the thesis [2] of Assmann and in the journal article by Assmann, Johnson,
Kleitman and Leung [3]. There it is proved that the greedy algorithm (that simply keeps putting
items into the same bin until this bin is covered and then moves on to the next bin) has a worst
case guarantee of 1

2 . Moreover, two more sophisticated algorithms were derived with worst case
ratios 2

3 and 3
4 , respectively. Both of these sophisticated algorithms are based on presorting the

items, and consequently are off-line algorithms. The greedy algorithm, however, is an on-line
algorithm. Csirik and Totik [7] proved that in fact the greedy algorithm is a best possible on-line
algorithm, since no on-line algorithm can have a worst case ratio that is strictly greater than 1

2 .
Csirik, Frenk, Galambos and Rinnooy Kan [6] gave a probabilistic analysis of the one-

dimensional bin covering and of the two-dimensional vector covering problem. Gaizer [9] con-
structed an off-line approximation algorithm with worst case guarantee 1

2 for dimension d = 2.

Vector Covering Algorithms 3

The article by Csirik and Frenk [5] summarizes all results on vector covering problems that
were derived till 1990 (actually, there are not too many of them).

New results. In this paper, we derive five new results on vector covering problems.

(1) For every d ≥ 2, we construct an on-line approximation algorithm with worst case ratio
arbitrarily close to 1/(2d).

(2) For every d ≥ 2, we show that no on-line algorithm can have a worst case ratio greater
than 2/(2d+ 1).

(3) For every d ≥ 2, we show the existence of a polynomial time off-line approximation
algorithm with worst case ratio (1 + o(1))/(2 ln d).

(4) For d = 2, we present a very fast and very simple off-line approximation algorithm with
worst case ratio 1

2 .

(5) For d ≥ 2, we show how a method from the area of compact vector summation (see
Sevastianov [13, 14]) can be used to construct off-line approximation algorithms with
worst case ratio 1/d.

Result (1) provides the first non-trivial result on on-line approximations in dimensions d ≥ 2.
It also contradicts a statement of Csirik and Frenk [5] who claim that for d ≥ 2, no on-line
algorithm can have a worst case ratio better than zero. Result (2) is a higher dimensional
counterpart to the 1/2 lower bound of Csirik and Totik for d = 1. It also demonstrates that
Result (1) is not far from being best possible. Results (3), (4) and (5) give the first off-
line polynomial time approximability results for dimensions d ≥ 2. Result (3) is based on
probabilistic arguments. Result (4) uses simple ad hoc arguments to simplify the ideas of
Gaizer [9]. Result (5) outperforms result (3) for several small values of d.

Other related results. The related vector packing problem asks for a partition of a list X
of vectors into the minimum number of parts such that in every part the sum of all items is
at most one in every coordinate; cf. Garey, Graham, Johnson and Yao [10]. The best known
polynomial time approximation algorithms for the off-line version of d-dimensional packing have
worst case guarantees d + ε, where ε > 0 is an arbitrarily small positive real (Fernandez de la
Vega and Lueker [8]). The best on-line approximation algorithms have a worst case ratio of
d+ 7

10 for d ≥ 2 (Garey, Graham, Johnson and Yao [10]) and 1.589 for d = 1 (Richey [12]).
Since the vector covering problem may be considered to be a kind of inverse or dual version

of the vector packing problem, it is sometimes also called “dual bin-packing” or “dual vector
packing” in the literature.

Organization of the paper. Section 2 summarizes some basic notation that is used through-
out the rest of the paper. Section 3 investigates an auxiliary problem that deals with the on-line
partitioning of vector sets subject to a certain min-max criterion. The results derived for this
auxiliary problem then constitute the main ingredients for the on-line approximation algorithm
for vector covering as described in Section 4. Section 5 presents the 2/(2d+ 1) lower bound for
on-line algorithms in dimensions d ≥ 2. Section 6 gives a combinatorial lower bound for the
optimum objective value. The proof of this combinatorial lower bound is probabilistic and can
be translated into an efficient off-line approximation algorithm with worst case ratio Ω(1/ log d)
for d-dimensional vector packing. Section 7 presents and analyzes an ad hoc algorithm for

Vector Covering Algorithms 4

the two-dimensional case. Section 8 deals with the results that are related to compact vector
summation, and Section 9 gives the discussion.

2 Notation

For a set X ⊆ [0, 1]d, we denote by s(X) the sum of all elements of X, and by Di(X) we denote
the i-th component of s(X). Moreover, we define q(X) = min1≤i≤dDi(X) to be the smallest
component of s(X). Observe that Opt(X) ≤ q(X) holds.

For a < b, we denote by [a, b], (a, b), (a, b], and [a, b) the closed, open and half-open intervals
between a and b, respectively. IN is the set of non-negative integers and IR is the set of real
numbers. By log z we denote the base two logarithm of z, and by ln z the base e logarithm.

3 An Auxiliary Problem: On-line Vector Partitioning

This section deals with an auxiliary problem that is called the d-dimensional on-line vector
partition problem: A list X of vectors xt ∈ [0, 1]d, 1 ≤ t ≤ n, has to be partitioned into d parts
P1, . . . , Pd. The vectors xt = (xt1, . . . , x

t
d) arrive on-line, i.e. when vector xt arrives it must be

assigned to a part Pi before vector xt+1 becomes known. The goal is to make the value

min
1≤i≤d

Di(Pi)/Di(X) (3)

as large as possible. In other words, the i-th part in the partition should get a fair amount of
the total size of the i-th coordinate of list X.

For an algorithm A for this partition problem, we denote by A1(X), . . . , Ad(X) the partition
that A generates for the input list X. To simplify notation, we will sometimes write Ai instead
of Ai(X) when the list X is clear from the context. This section is devoted to proving the
following theorem.

Theorem 3.1 For every integer d ≥ 1 and for every real 0 < ε < 1, there exists a positive con-
stant cd,ε and an on-line algorithm A = A(d, ε) for the d-dimensional vector partition problem
such that

Di(Ai(X)) ≥ 1− ε
d

Di(X)− cd,ε (4)

holds for all input lists X and for all i, 1 ≤ i ≤ d.

Proof. The proof will be done by induction on the dimension d. For d = 1, the claimed
algorithm trivially exists (even for ε = 0 and cd,ε = 0). Now assume that the statement of the
theorem holds for all dimensions up to d− 1. Consider some fixed ε, 0 < ε < 1.

We introduce a number of technical definitions. Define α = (d + ε)/(d + dε) and note
that 1

d < α < 1. Next, the interval [0, 1] is divided into an infinite number of subintervals
Ij = (αj+1, αj] for j ∈ IN. Moreover, we define I∞ = [0]. With every vector c ∈ (IN ∪ {∞})d,
we associate a subset C(c) ⊆ [0, 1]d where x = (x1, . . . , xd) ∈ C(c) if and only if xi ∈ Ic(i) for
all 1 ≤ i ≤ d. These sets C(c) are called blocks and constitute an orthogonal partition of the
cube [0, 1]d into an infinite number of subsets. Finally, we fix for every vector c = (c1, . . . , cd) ∈
(IN ∪ {∞})d a total order ‘≺’ of its coordinates as follows: For 1 ≤ i 6= j ≤ d, the relation

Vector Covering Algorithms 5

i ≺ j holds if and only if (i) ci > cj or (ii) ci = cj and i < j. Hence, components ci that are
‘small’ with respect to ≺ correspond to intervals Ici that are close to the zero point in [0, 1],
and components that are ‘large’ with respect to ≺ correspond to intervals that are close to 1.

The algorithm A = A(d, ε) proceeds as follows. In the background, it simultaneously runs d
copies of the algorithm A(d− 1, ε2) that exists by the inductive assumption. Every background
algorithm sees only some fragments of the input list, and it maintains its own private partition of
these fragments into d−1 parts. Every time a new vector xt arrives, it is either assigned imme-
diately by the master algorithm A = A(d, ε), or it is handed over to one of these d background
algorithms and then assigned depending on the decision of the background algorithm.

(S0) Let xt = (xt1, . . . , x
t
d) be the t-th vector that arrives. Determine the vector c∗ ∈ (IN∪{∞})d

such that xt belongs to the block C(c∗). Let k denote the smallest coordinate of c∗ with
respect to the ordering ‘≺’.

(S1) If |{x1, . . . , xt} ∩ C(c∗)| is divisible by d, then xt is immediately assigned to the part Ak.

(S2) Otherwise, we remove the k-th component from xt while keeping the remaining compo-
nents in the same order. The resulting vector has d−1 components and is handed over to
the k-th background algorithm who will assign it to, say, its `-th private set in its private
partition.

The master algorithm assigns it to the corresponding part while taking care of the removed
coordinate: If ` < k then A(d, ε) assigns xt to the part A`, and otherwise it assigns xt to
the part A`+1.

Next, we will prove that the algorithm defined above fulfills inequality (4) for i = 1. Since the
statement of Theorem 3.1 and the algorithm A(d, ε) are both almost symmetric with respect
to all coordinates, this will be sufficient to establish the correctness of Theorem 3.1 (Note that
small but harmless asymmetries arise from the definition of the orders ‘≺’).

Define X(c) = {x1, . . . , xn} ∩ C(c) and n(c) = |X(c)|. For 1 ≤ i ≤ d, let C(i) contain all
the vectors c ∈ (IN ∪ {∞})d for which the i-th coordinate is minimum with respect to ‘≺’. Let
X(i) =

⋃
c∈C(i) X(c).

Let us first deal with blocks C(c) where c ∈ C(1). If the first component of c equals j, then
by step (S1) above,

D1(A1 ∩X(c)) ≥ α
1
d
D1(X(c))− αj ≥ 1− ε

d
D1(X(c))− αj (5)

holds, since every d-th vector of C(c) is assigned to A1 and since the first component of vectors
in C(c) is at most αj . It is easy to see that there are only (j+ 1)d−1 vectors c ∈ C(1) whose first
component equals j. By summing up (5) over all vectors in C(1), we derive

D1(A1 ∩X(1)) ≥ 1− ε
d

D1(X(1))−
∞∑
j=0

(j + 1)d−1αj . (6)

Elementary calculus shows that the infinite sum in the righthand side of (6) converges for α < 1.
Hence, it is bounded by some constant depending only on α and d.

Next, we consider blocks C(c) with c ∈ C(2). Fix some arbitrary c ∈ C(2) and assume
that its first component equals j. Observe that only bn(c)/dc elements of X(c) are assigned

Vector Covering Algorithms 6

to A2 in step (S1), whereas the remaining d(1− 1
d)n(c)e elements move on to step (S2). Since

n(c)αj+1 ≤ D1(X(c)) ≤ n(c)αj , and since the total size of the first components of the vectors
packed in step (S1) is at most bn(c)/dcαj , the total size ∆(c) of the first components of the
vectors packed in step (S2) fulfills

∆(c) ≥ n(c)αj+1 − bn(c)/dcαj ≥ n(c)αj
(
α− 1

d

)
≥

(
α− 1

d

)
D1(X(c)). (7)

This yields that the total size of the first components of all vectors in X(2) that move on to
step (S2) is at least∑

c∈C(2)

∆(c) ≥
(
α− 1

d

)
D1(X(2)). (8)

These vectors are packed according to the second background algorithm. Combining the induc-
tive assumption with (8) we derive that

D1(A1 ∩X(2)) ≥ 1− ε2

d− 1

 ∑
c∈C(2)

∆(c)

− cd−1,ε2

≥ 1− ε2

d− 1

(
α− 1

d

)
D1(X(2))− cd−1,ε2

=
1− ε
d

D1(X(2))− cd−1,ε2 . (9)

For X(3), . . . , X(d), inequalities analogous to (9) can be derived by analogous arguments. Sum-
ming up these d− 1 inequalities for X(2), . . . , X(d), and adding (6) to the result then yields

D1(A1) = D1(A1 ∩X(1)) +
d∑
i=2

D1(A1 ∩X(i))

≥ 1− ε
d

D1(X(1))−
∞∑
j=0

(j + 1)d−1αj +
1− ε
d

d∑
i=2

D1(X(i))− (d− 1)cd−1,ε2

≥ 1− ε
d

d∑
i=1

D1(X(i))− cd,ε

=
1− ε
d

D1(X)− cd,ε

where cd,ε ≥ (d − 1)cd−1,ε2 +
∑∞
j=0(j + 1)d−1αj is a constant. This proves inequality (4) for

i = 1 and also completes the proof of Theorem 3.1.

What about the time complexity of algorithm A(d, ε)? It is straightforward to get a running
time of O(n), where the constant hidden in the O-notation depends on d and ε.

4 An On-line Algorithm for Vector Covering

In this section, we describe on-line approximation algorithms for vector covering whose worst
case ratio comes arbitrarily close to 1/(2d). Let us first recapitulate the corresponding result
for d = 1.

Vector Covering Algorithms 7

Observation 4.1 (Assmann, Johnson, Kleitman, Leung [3])
There exists an on-line approximation algorithm G for one-dimensional vector covering that
fulfills

G(X) ≥ D1(X)/2− 1 ≥ Opt(X)/2− 1 (10)

for all input lists X. Hence, RG = 1
2 .

Proof. The greedy algorithm G (that covers bins one by one) puts into every bin a set of items
with overall size at most 2.

Theorem 4.2 For every integer d ≥ 2 and for every real 0 < ε < 1, there exists an on-line
algorithm B = B(d, ε) for the d-dimensional vector covering problem with asymptotic worst case
ratio RB = (1− ε)/(2d).

Proof. For every input list X, algorithm B(d, ε) simulates the algorithm A(d, ε) for on-line
vector partitioning from Theorem 3.1 and uses the resulting partition A1, . . . , Ad. If A(d, ε)
puts item xt into the i-th part Ai, algorithm B(d, ε) forgets about all coordinates of xt with
the exception of the i-th coordinate, and thus prunes xt down to a one-dimensional item.

By applying the greedy algorithm from Observation 4.1, item xt then is used for covering
the i-th coordinate of the bins. Therefore, for every coordinate 1 ≤ i ≤ d, algorithm B will
cover the i-th component of at least (1− ε)Di(X)/(2d)−O(1) unit bins. This implies that

B(X) ≥ min
1≤i≤d

1− ε
2d

Di(X)−O(1) ≥ 1− ε
2d

Opt(X)−O(1), (11)

since Opt(X) ≤ min1≤i≤dDi(X) holds. This completes the proof.

5 A Lower Bound for On-line Vector Covering Algorithms

In this section, we show that for d ≥ 2 there does not exist an on-line algorithm with worst
case ratio better than 2/(2d + 1). Note that this lower bound is only a factor of 2 away from
the upper bound 1/(2d) that has been derived in the preceding section.

Let us suppose that there exists a dimension d ≥ 2 and that there exists an on-line algorithm
A for d-dimensional vector covering that fulfills

RA ≥
2

2d+ 1
+ τ for some τ > 0. (12)

We are going to derive a contradiction from this. Inequality (12) implies that there exists a
threshold k(τ) such that

2
2d+ 1

+
τ

2
≤ A(X)/Opt(X), whenever Opt(X) ≥ k(τ) (13)

holds, where X is any finite list over [0, 1]2. Consider a sufficiently large value k that fulfills
k ≥ k(τ) (the precise value of k will be determined later), and define a small positive real number
ε = 1/(4kd). Define d+ 1 homogeneous lists X1, X2, X3 and Yi, 1 ≤ i ≤ d− 2, as follows.

• List X1 contains 2kd times the vector (1− ε, 1
k ,

1
k2 ,

1
k3 , . . . ,

1
kd−1).

Vector Covering Algorithms 8

• List X2 contains 2kd times the vector (ε, 1, 1, 1, . . . , 1).

• List X3 contains kd times the vector (0, 1, 1, 1, . . . , 1).

• For 1 ≤ i ≤ d− 2, list Yi contains 2ki+1 times the vector (0, . . . , 0︸ ︷︷ ︸
(d−i)−times

, 1, . . . , 1︸ ︷︷ ︸
i−times

).

Next, we feed list X1 to algorithm A and we investigate the resulting partitioning of X1 into
bins. Let z1 denote the number of bins that contain exactly 1 item, and let z2 denote the
number of bins that contain at least 2 but less than k items. For 1 ≤ j ≤ d− 2, let mj denote
the number of bins that contain at least kj but less than kj+1 items. Finally, md−1 denotes the
number of bins that contain at least kd−1 items. Clearly,

z1 + 2z2 +
d−1∑
j=1

kjmj ≤ 2kd (14)

holds, and this implies

d−1∑
j=1

mj ≤ 2kd−1. (15)

Next, we observe that A(X1) = md−1 ≤ 2k and Opt(X1) = 2k holds. By (13),

2
2d+ 1

+
τ

2
≤ md−1

2k
. (16)

Moreover, A(X1X2) ≤ z1 + z2 +
∑d−1
j=1 mj , since A cannot fill any bin with items from X2 if

the bin does not contain at least one item from X1. Together with Opt(X1X2) = 2kd and the
inequality in (13), this leads to

2
2d+ 1

+
τ

2
≤ 1

2kd
(z1 + z2 +

d−1∑
j=1

mj). (17)

Next, observe that A(X1X3) ≤ z2 +
∑d−1
j=1 mj since the first coordinates of the items in X3

are too small to fill a bin that does not already contain at least two items from X1. Since
Opt(X1X3) = kd, we get from (13) that

2
2d+ 1

+
τ

2
≤ 1

kd
(z2 +

d−1∑
j=1

mj). (18)

Next, observe that for 1 ≤ i ≤ d − 2, Opt(X1Yi) = 2ki+1, whereas A(X1Yi) ≤
∑d−1
j=d−i−1mj .

Hence for 1 ≤ i ≤ d− 2, inequality (13) yields

2
2d+ 1

+
τ

2
≤ 1

2ki+1
(

d−1∑
j=d−i−1

mj). (19)

Vector Covering Algorithms 9

Now we multiply (18) by 1
2 , and add the inequalities (16) and (17) and the d − 2 inequalities

(19) for 1 ≤ i ≤ d− 2 to it. This yields

1 +
τ

4
(2d+ 1) ≤ 1

2kd

z1 + 2z2 + 2
d−1∑
j=1

mj +
d−2∑
i=0

kd−i−1
d−1∑

j=d−i−1

mj

 (20)

=
1

2kd

z1 + 2z2 + 2
d−1∑
j=1

mj +
k

k − 1

d−1∑
j=1

kjmj

 (21)

≤ 1
2kd

(
2kd−1 +

k

k − 1
2kd

)
=

1
k

+
k

k − 1
. (22)

where we applied (14) and (15) in order to derive the last inequality. As k tends to infinity, the
righthand side 1/k+ k/(k− 1) in (22) tends to 1, whereas the lefthand side is bounded strictly
away from 1. This is a contradiction, and hence an on-line algorithm A that fulfills (12) cannot
exist.

Theorem 5.1 For any on-line algorithm A for d-dimensional vector covering with d ≥ 2, the
inequality RA ≤ 2/(2d+ 1) holds.

A simple extension of the above argument combined with Yao’s theorem [15] yields an
analogous result for randomized on-line algorithms. We omit the straightforward details.

Theorem 5.2 For any randomized on-line algorithm A for d-dimensional vector covering with
d ≥ 2, the inequality RA ≤ 2/(2d+ 1) holds.

6 Off-line Results for Vector Covering

In this section, we first provide a combinatorial lower bound for the size of the optimum solu-
tion of d-dimensional vector covering problems. This lower bound is based on a probabilistic
argument and then yields (by applying derandomization) an off-line approximation algorithm
with worst case guarantee Ω(1/ log d).

Theorem 6.1 For d ≥ 2, let µd = 2 ln d + 2 ln ln d + 2. Then for every set X ⊆ [0, 1]d with
q(X) ≥ µd,

Opt(X) ≥
⌊
q(X)
µd

⌋(
1− 1

ln d

)
=

⌊
q(X)
2 ln d

⌋
(1− o(1)) . (23)

Proof. Color the vectors in X with bq(X)/µdc ≥ 1 colors, where each vector is colored
randomly and independently according to a uniform distribution on the colors. Fix a color c∗

and consider the sum Ψ of all vectors with this color c∗ at a fixed coordinate. The expected
value µ of this sum is at least µd.

By a standard estimate (cf., e.g., the remark after Theorem 2 in [11]) the following result
holds for a weighted sum Ψ of independent Bernoulli trials where all weights are real numbers
in [0, 1]: If µ is the expected value of Ψ and if 0 < γ ≤ 1, then

Pr[Ψ− µ < −γµ] < exp(−γ2µ/2). (24)

Vector Covering Algorithms 10

By setting γ = 1 − 1/µ in our case, we derive from this that the probability that the sum of
vectors at the fixed coordinate is smaller than one is

Pr[Ψ < 1] = Pr[Ψ− µ < −γµ] < exp(−γ2µ/2)

< exp(1− µ/2) < exp(− ln d− ln ln d) =
1

d ln d
.

Therefore, the probability that the sum of vectors with color c∗ will be less than 1 in some
coordinate does not exceed d · 1/(d ln d) = 1/ ln d. It follows that the expected number of colors
whose elements form a unit cover is at least (1− 1

ln d)bq(X)/µdc.

We remark that up to a constant factor, the lower bound in (23) is best possible. This can
be deduced from one of the results in [1]. It is proved there (see Section 3) that for every d
there is a collection F of d subsets of cardinality d each of a set Z of size bd ln dc so that no set
of at most ln2 d − 10 ln d members of Z intersects all subsets in the collection. Associate each
element z of Z with a (0, 1)-vector vz = (vz(F) : F ∈ F) of length d whose coordinates are
indexed by the subsets in F , where vz(F) = 1 if z ∈ F and vz(F) = 0 otherwise. Let X be the
set of all these vectors. Every coordinate of the sum of the members of X is precisely d, that
is q(X) = d. Also, by the properties of the above collection, every unit cover must contain at
least ln2 d− 10 ln d vectors. Therefore

Opt(X) ≤ bd ln dc
ln2 d− 10 ln d

= (1 + o(1))
d

ln d
= (1 + o(1))

q(X)
ln d

, (25)

proving the remark. Note also that by duplicating each vector as many times as needed, similar
examples X exist in which the value of Opt(X) is arbitrarily large.

Moreover, by applying Raghavan’s method of conditional probabilities with pessimistic esti-
mators [11], we can convert the probabilistic existence proof of Theorem 6.1 into a deterministic
polynomial time algorithm. Since Opt(X) ≤ q(X), this yields the following theorem.

Theorem 6.2 For every d ≥ 2, there exists a deterministic polynomial time off-line ap-
proximation algorithm for d-dimensional vector covering with asymptotic worst case ratio
(1 + o(1))/(2 ln d).

7 A Simple Off-line Algorithm for Dimension Two

In this section, we present a fast and simple off-line approximation algorithms for d = 2. It will
produce an approximative solution that covers at least q(X)/2 ≥ Opt(X)/2 bins.

The algorithm assumes that the input list X fulfills q(X) = D1(X) = D2(X) (otherwise,
decrease some of the coordinates to make these values equal). Moreover, the algorithm some-
times make use of a garbage bin: The items in X will be classified into four classes. In case
that one of these classes contains only a single item, this item is thrown into the garbage bin
and disregarded from further arguments (in the end, the contents of the garbage bin is merged
with one part of the constructed partition of X). Since there are just four classes, the garbage
bin will contain at most four items and it will not effect the asymptotic worst case ratio of our
algorithm.

Next, let us classify the items: Items with two large components in the interval (1
2 , 1] are

called of type (+,+). Items where only the first component is large are called of type (+,−),

Vector Covering Algorithms 11

items where only the second component is large are called of type (−,+), and items with both
components in the interval [0, 1

2] are called of type (−,−).
The algorithm B2 goes through the following four steps (0)—(3).

(Step 0). As long as there exist two items x and y of type (−,−), replace them by a
new item x+y. If there is a single item of type (−,−), it is thrown into the garbage
bin.

From now on, all items have at least one coordinate that is strictly greater than 1
2 .

(Step 1). While there are at least two items of type (+,−) and at least two items of
type (−,+), repeat the following step: Take x of type (+,−) and y of type (−,+).
If x+ y ≤ (1, 1), replace them by a new item x+ y of type (+,+). If x+ y ≥ (1, 1),
pack them together and produce a unit cover. Otherwise assume w.l.o.g. that the
first coordinate of x + y is in [1, 3

2) and the other coordinate is in (1
2 , 1). Add an

arbitrary item of type (−,+) and close the corresponding (covered!) bin.

Without loss of generality, we assume that we eventually run out of (+,−)-items (a single
surviving item of this type is thrown into the garbage bin) and that there only remain items of
type (−,+) and (+,+). In case we eventually run out of (−,+)-items, we apply a symmetric
version of (Step 3) below.

(Step 2). While there are at least two items of type (+,+), the sum of these two
items has both coordinates in the interval (1, 2]. We pack such a pair together to
cover a unit bin. If in the end a single item of type (+,+) remains, it is thrown into
the garbage bin.

(Step 3). Finally, pack the remaining items of type (−,+) with the greedy algorithm
according to the first coordinate.

Lemma 7.1 The asymptotic worst case ratio of the off-line approximation algorithm B2 defined
via the above three steps equals 1

2 . The algorithm can be implemented to run in O(n) time.

Proof. All bin covers that are produced during (Step 1) and (Step 2) have both components
in [1, 2]. By Observation 4.1, the first component of all bin covers produced in (Step 3) is at
most 2. Hence, the number of produced bin covers is at least q(X)/2− 5/4, where the additive
constant accounts for the items in the garbage bin.

This yields that the worst case ratio is at least 1
2 . That this bound is tight follows by

considering the list X∗ containing n-times the item (1−ε, 1
2 +ε) and n-times the item (3ε, 1

2 +ε),
where ε < 1/(3n) is some small positive real. Here Opt(X∗) = n and B2(X∗) ≤ n

2 +1. Reaching
the claimed time complexity is straightforward.

8 An Off-line Algorithm with Worst Case Ratio 1/d

In this section, we present an off-line approximation algorithm that exploits a method from the
area of compact vector summation (see Sevastianov [13, 14], and also Beck and Fiala [4].) The
approximation algorithm has a worst case ratio of 1/d and is essentially based on the following
proposition.

Vector Covering Algorithms 12

Proposition 8.1 (Sevastianov [13])
Let W = {w1, . . . , wn} ⊆ IRd, let δ′i ∈ [0, 1], 1 ≤ i ≤ n and let w∗ =

∑n
i=1 δ

′
iwi. Then one can

find in O(nd2) time a set of reals δi ∈ [0, 1] such that

•
∑n
i=1 δiwi = w∗, and

• |{i | 0 < δi < 1}| ≤ d.

In other words, the linear dependence w∗ =
∑n
i=1 δiwi can be easily transformed into another

linear dependence where almost all of the coefficients are 0 or 1.
Let ~1 denote the vector that has all of its d components equal to 1. For a vector x ∈ IRd

and an integer i, 1 ≤ i ≤ d, we will denote by x(i) the i-th component of vector x.

Lemma 8.2 For an integer d ≥ 2 and for a family {x1, . . . , xn} ⊂ [0, 1]d, of vectors, denote
z
.= s(X)/q(X) ≥ ~1. Then we can find in O(nd2) time a subset X ′ ⊆ X such that

~1 ≤ z ≤ s(X ′) ≤ dz. (26)

Proof. Since for coefficients δ′j = 1/q(X), 1 ≤ j ≤ n, the equation z =
∑n
j=1 δ

′
jxj holds, we

may apply Proposition 8.1 to transform the numbers {δ′j} into reals δj ∈ [0, 1] so that

n∑
j=1

δjxj = z, (27)

|{j | δj ∈ (0, 1)}| ≤ d. (28)

We denote N ′ = {j | δj ∈ (0, 1)} and N ′′ = {j | δj = 1}, and we define y =
∑
j∈N ′′∪N ′ xj and

u =
∑
j∈N ′′ xj . Then we have by these definitions that

y ≥
∑

j∈N ′′∪N ′
δjxj = z ≥

∑
j∈N ′′

xj = u. (29)

If y ≤ z+ (d− 1)~1, then y ≤ dz, and we are done since the xj with indices in N ′′ ∪N ′ form the
desired solution set. Hence, from now on we assume without loss of generality that

y(1) > z(1) + d− 1. (30)

Since u(1) ≤ z(1) and y(1) = u(1) +
∑
j∈N ′ xj(1) > z(1) + d− 1 holds, we obtain

u(1) + xj(1) > z(1) for all j ∈ N ′. (31)

If
∑
j∈N ′ δj ≥ 1 then

y(1)− z(1) =
∑
j∈N ′

(1− δj)xj(1) ≤
∑
j∈N ′

(1− δj) = |N ′| −
∑
j∈N ′

δj ≤ d− 1, (32)

which contradicts (30). Hence,∑
j∈N ′

δj < 1. (33)

Vector Covering Algorithms 13

Next, let us prove that

∀ν ∃jν ∈ N ′ : u(ν) + xjν (ν) ≥ z(ν). (34)

Suppose, that this is not the case and that for some coordinate ν, 1 ≤ ν ≤ d, we have u(ν) +
xj(ν) < z(ν) for all j ∈ N ′. But in this case

z(ν) = u(ν) +
∑
j∈N ′

δjxj(ν) < u(ν) +
∑
j∈N ′

δj (z(ν)− u(ν)) < z(ν), (35)

where the last inequality follows from (33). This contradiction proves (34).
Finally, let us define Ñ to be the set of indices {j2, . . . , jd} that exist by (34). Clearly,

|Ñ | ≤ d− 1. It follows from (31) and (34) that

u(ν) +
∑
j∈Ñ

xj(ν) ≥ z(ν) for all ν = 1, . . . , d. (36)

Thus, for y′ .=
∑
j∈N ′′∪Ñ xj , we have y′ ≥ z. Moreover,

y′(ν)− z(ν) ≤ y′(ν)− u(ν) =
∑
j∈Ñ

xj(ν) ≤ d− 1 (37)

holds for all ν = 1, . . . , d, which implies z ≤ y′ ≤ z+(d−1)~1 ≤ dz. Hence, X ′ = {xi|i ∈ N ′′∪Ñ}
yields the required set.

Theorem 8.3 For every d ≥ 2, there exists a deterministic polynomial time off-line approxi-
mation algorithm for d-dimensional vector covering with asymptotic worst case ratio 1/d. The
algorithm can be implemented to run in O(d2n2) time.

Proof. Let X = {x1, . . . , xn} ⊆ IRd be an input list for d-dimensional vector covering. We
apply the algorithm described in Lemma 8.2 repeatedly to list X, and remove in every step the
corresponding set X ′ from X. Clearly, every step produces a unit cover, and there are at least
bq(X)/dc steps. The claimed time complexity follows from Proposition 8.1.

9 Discussion

In this paper, we derived the first non-trivial approximation algorithms for on-line and off-line
vector covering. There remain many open questions.

(Q1) Determine the exact approximability threshold for the on-line version! We feel that
our upper bound 1/(2d) should be closer to the true approximability threshold than our lower
bound 2/(2d+ 1).

(Q2) Find lower bounds for the off-line version! We do not know of any non-approximability
results for polynomial time approximation algorithms for the vector covering problem. Can
our Ω(1/ log d) approximability result be beaten asymptotically? Does the problem allow an
approximation algorithm whose worst case ratio is a constant (that does not depend on the
dimension d)? Does it allow a polynomial time approximation scheme?

(Q3) Is it possible to improve on the ancient 3
4 approximation algorithm of Assmann et al

[3] for the one-dimensional bin covering problem? This seems to be very difficult. Can one at
least disprove the existence of a polynomial time approximation scheme?

Vector Covering Algorithms 14

References

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs and Combinatorics 6, 1990,
1–4.

[2] S.F. Assmann, “Problems in Discrete Applied Mathematics”, Doctoral Dissertation, Math-
ematics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts,
1983.

[3] S.F. Assmann, D.S. Johnson, D.J. Kleitman, and J.Y.-T. Leung, On a dual version of the
one-dimensional bin packing problem, J. Algorithms 5, 1984, 502–525.

[4] J. Beck and T. Fiala, Integer-making Theorems, Disc. Appl. Math. 3, 1981, 1–8.

[5] J. Csirik and J.B.G. Frenk, A dual version of bin packing, Algorithms Review 1, 1990,
87–95.

[6] J. Csirik, J.B.G. Frenk, G. Galambos, and A.H.G. Rinnooy Kan, Probabilistic analysis of
algorithms for dual bin packing problems, J. Algorithms 12, 1991, 189–203.

[7] J. Csirik and V. Totik, On-line algorithms for a dual version of bin packing, Discr. Appl.
Math. 21, 1988, 163–167.

[8] W. Fernandez de la Vega and G.S. Lueker, Bin packing can be solved within 1 + ε in linear
time, Combinatorica 1, 1981, 349–355.

[9] T. Gaizer, An algorithm for the 2D dual bin packing problem, unpublished manuscript,
University of Szeged, Hungary, 1989.

[10] M.R. Garey, R.L. Graham, D.S. Johnson, and A.C.C. Yao, Resource constrained scheduling
as generalized bin packing, J. Combinatorial Theory Ser. A 21, 1976, 257–298.

[11] P. Raghavan, Probabilistic Construction of Deterministic Algorithms: Approximating
Packing Integer Programs, Journal of Computer and System Sciences 37, 1988, 130–143.

[12] M.B. Richey, Improved bounds for harmonic-based bin packing algorithms, Discr. Appl.
Math. 34, 1991, 203–227.

[13] S.V. Sevastianov, Geometry in the theory of scheduling, Trudy Instituta Matematiki
Sibirskogo Otdelenia Akademii Nauk SSSR 10, 1988, 226–261. (in Russian).

[14] S.V. Sevastianov, On some geometric methods in scheduling theory: a survey, Discr. Appl.
Math. 55, 1994, 59–82.

[15] A.C.C. Yao, Probabilistic Computations: Towards a unified measure of complexity, in
Proceedings of the 18th ACM Symposium on Theory of Computing, 1977, 222-227.

