
Guessing Secrets Efficiently via List Decoding

(Extended Abstract)

Noga Alon∗ Venkatesan Guruswami† Tali Kaufman‡ Madhu Sudan §

Abstract

We consider the guessing secrets problem defined by
Chung, Graham, and Leighton [CGL01]. This is a
variant of the standard 20 questions game where the
player has a set of k > 1 secrets from a universe of N
possible secrets. The player is asked Boolean questions
about the secret for each question, the player picks one
of the k secrets adversarially, and answers according to
this secret.

We present an explicit set of O(logN) questions
together with an efficient (i.e., poly(logN) time) algo-
rithm to solve the guessing secrets problem for the case
of 2 secrets. This answers the main algorithmic ques-
tion left unanswered by [CGL01]. The main techniques
we use are small ε-biased spaces and the notion of list
decoding.

We also establish bounds on the number of ques-
tions needed to solve the k-secrets game for k > 2, and
discuss how list decoding can be used to get partial in-
formation about the secrets.

1 Introduction

Under the familiar “20 questions” game a player, say
B, tries to discover the identity of some unknown secret
drawn by a second player, say A, from a large space ofN
secrets. B is allowed to ask binary (Yes/No) questions
about the secret to A (cf. [I52]). The assumption
is that A answers each question truthfully according
to the secret he picked. The goal of B is to recover
the secret by asking as few questions as possible. If

∗Schools of Mathematics and Computer Science, Tel Aviv
University, Tel Aviv, Israel. Email: noga@math.tau.ac.il.

Supported in part by a USA Israeli BSF grant, by a grant from

the Israel Science Foundation and by the Hermann Minkowski
Minerva Center for Geometry at Tel Aviv University.
†University of California at Berkeley, Computer Science Divi-

sion, Berkeley, CA 94720. Email: venkat@lcs.mit.edu. Work

done while at MIT.
‡School of Computer Science, Tel Aviv University, Tel Aviv,

Israel. Email: kaufmant@tau.ac.il
§Laboratory for Computer Science, Massachusetts Institute

of Technology, Cambridge, MA 02139. Email: madhu@mit.edu.

Supported in part by NSF grants CCR-9875511, CCR-9912342
and by MIT-NTT award MIT2001-01.

the N secrets are associated with dlogNe-bit strings,
then clearly dlogNe questions are both necessary and
sufficient to discover the secret. (Here, and in the rest
of the paper, all logarithms are in base 2).

Now, consider the following variant of the above
game. Under this variant, the player A picks not one,
but a set of k ≥ 2 secrets. For each question asked by
B, A gets to adversarially choose which one of the k
secrets to use in supplying the answer, but having made
the choice must answer truthfully according to the cho-
sen secret. (When questions have binary answers, this
imposes the restriction that if all secrets give the same
answer on a given question, then A must answer ac-
cordingly, else it can give any answer to the given ques-
tion.) This variant was introduced by Chung, Graham
and Leighton in [CGL01], and they called the problem
“Guessing Secrets”. What is the best strategy for B
in this situation, and how many questions does it take
in the worst-case for B to “find” the secrets? In ad-
dition to being an interesting “puzzle”, secret guessing
problems of this type have apparently arisen recently in
connection with certain Internet traffic routing applica-
tions (cf. [CGL01]). Moreover, problems of a related
nature have been studied in the literature under the
label of separating systems (see [KS88, Seg94, CES01]
and references therein), and have been applied in differ-
ent areas of computer science such as technical diagno-
sis, constructions of hash functions, and authenticating
ownership claims. The focus of much of this line of work
has been combinatorial, and our work appears to be the
first to present non-trivial algorithms to deal with (cer-
tain kinds of) separating systems.

Specifically, in this paper we present an algorithmic
solution using list decoding to a problem left open by the
work of [CGL01] dealing with the case of k = 2 secrets.
We also obtain some new results concerning adaptive
and oblivious schemes for guessing k > 2 secrets.

The paper assumes knowledge of some standard
terminology and definitions concerning error-correcting
codes, all of which can be found, for example, in [vL99].

1.1 Our results

We defer a formal definition of what it means to
solve the 2-secrets problem to the next section. We now
briefly state our main results and compare it to prior
work.

Chung et al. [CGL01] prove that for the 2-secrets
problem with a universe of N secrets there exist a set
of O(logN) questions which suffice. They also present
an explicit set of O(log2N) questions, the answers to
which allows one to “find” the two secrets. In this
paper, using a connection to ε-biased spaces, we present
an explicit set of O(logN) questions for the 2-secrets
problem. Note that up to a constant factor, this is
the fewest possible number of questions. Moreover,
the results of [CGL01] did not present an efficient
algorithm for B to recover the secrets given A’s answers
to the questions. They do briefly report a strategy
using O(log3N) questions which can recover the secrets
in O(log4N) time, but the number of questions used
is much more than the optimal O(logN). For our
explicit set of questions, we also present an O(log3N)
time algorithm to “recover” the secrets. This gives a
poly(logN) time algorithm to recover the secrets that
uses an optimal O(logN) number of explicitly specified
questions, and answers one of the main open questions
of [CGL01]. In a sense to be made precise, our algorithm
finds the maximum possible information about the 2
secrets which A picked.

Using a straightforward connection to 2k-universal
sets, we also explicitly describe a set of ck logN ques-
tions to solve the k-secrets problem, for any k ≥ 2. The
constant ck depends exponentially on k. We also prove
that this exponential dependence of ck on k is necessary,
even if B is allowed to pick the questions adaptively,
i.e., depending upon A’s answers to previous questions.
On the other hand, all our positive results yield a non-
adaptive or oblivious strategy for B, i.e., B can fix the
set of questions to be asked right at the outset.

1.2 Related work

Independent of our work, Micciancio and
Segerlind [MS01] recently presented a different strategy
with the optimal O(logN) questions together with
an O(log2N) time algorithm to recover the secrets.
The difference between their result and ours is that
our questions are oblivious or non-adaptive, where
as in the strategy of [MS01], B picks the questions
adaptively, depending upon A’s answers to previous
questions. Thus the results of [MS01] are incomparable
to ours. We elaborate further on adaptive and oblivious
strategies and motivate why oblivious strategies are
interesting in the next section.

2 Formal problem description

We first restrict ourselves to the case k = 2 when there
are only two secrets. This is already a non-trivial case
and as we shall see one where a very satisfactory solution
exists to the above problem. In this case, A has a set
X = {x1, x2} of two secrets, chosen from a universe U
of N possible secrets. Next, we proceed to precisely
formulate the algorithmic problem that B wishes to
(and can hope to) solve (the reader familiar with
the paper [CGL01] probably already knows the formal
definition, and can skip the next few paragraphs).

Note that A can always choose to answer according
to the secret x1, and thus B can never hope to learn
with certainty more than one of A’s secret. Moreover,
a moment’s thought reveals that B cannot even hope
to pin down with certainty one secret and claim that
it must be one of A’s secrets. This is because A
could pick three secrets {x1, x2, x3} and answer each
question according to the majority vote of the answers
of x1, x2, x3. For such a strategy, irrespective of the
number of questions B asks, A can always justify any
subset of two of these secrets as the set X he picked.

In light of these, it turns out that the best that
B can hope for is the following: For every set of two
disjoint pairs of secrets X = {x1, x2} and Y = {x3, x4}
where the xi’s are all distinct, rule out one of X or
Y as the set which A picked. An instructive way to
visualize this requirement is in terms of graphs. Let
KN denote the complete graph on the universe U of
N secrets. View a pair of secrets X = {x1, x2} as an
edge (x1, x2) of KN . A question is simply a function
F : U → {0, 1}, and the answer to it naturally induces
a partition U = F−1(0)∪F−1(1). If A answers question
F with a bit b ∈ {0, 1}, then we know that the set X
which A picked must satisfy X ∩F−1(b) 6= ∅, and hence
B can “eliminate” all edges within the subgraph of KN

spanned by F−1(1 − b). Stated in this language, the
goal of B is to ask a series of questions by which he can
eliminate all edges except those in a set W that contains
no pair of disjoint edges.

Now, there are only two possibilities for such a
surviving set W . Either W must be a “star”, i.e., a
set of edges all sharing a common x0, or W must be
a “triangle”, i.e., the set of three edges amongst a set
{x1, x2, x3} of three secrets. In the former case, B can
assert that x0 must be one of A’s secrets. In the latter
case, B can assert that the secret pair of A is one of
(x1, x2), (x2, x3), or (x3, x1). In the sequel, when we
use the phrase “find the secrets” we implicitly assume
that we mean finding the underlying star or triangle as
the case may be. We also use the phrase “solve the
2-secrets problem” to refer to the task of finding the
underlying star or triangle.

Oblivious vs Adaptive Strategies: There are two
possible strategies that one can consider for B: adaptive
and oblivious (also called non-adaptive). For adaptive
strategies each question of B can depend on A’s answers
to the previous questions. For oblivious strategies B
must fix the set of questions to be asked right at the
outset and be able to infer the secrets just based on A’s
answers to those fixed questions.

Definitely, adaptive strategies seem more natural
for a “20 questions” kind of set-up, since that is what
a human would use when playing such a game. But,
oblivious strategies have the merit of being easy to play
(and being more democratic in terms of different play-
ers’ abilities), since one just has to read out a fixed pre-
determined set of questions. Moreover, as we shall see,
it is possible to do surprisingly well just using oblivious
strategies. In fact, it turns out that there exist oblivi-
ous strategies that find the secrets using just O(logN)
questions, which is only a constant-factor off the obvious
lower bound of logN on the number of necessary ques-
tions. Moreover, the quest for oblivious strategies runs
into some intriguing combinatorial questions, and leads
us, quite surprisingly, into list decodable codes! Hence,
we focus mainly on oblivious strategies here. (See the
work of [CGL01] for some lower and upper bounds on
the number of questions required by adaptive strate-
gies.)

A probabilistic construction shows that O(logN)
questions are sufficient to solve the 2-secrets prob-
lem [CGL01]. But this only proves the existence of good
strategies and the questions are not explicitly specified.
In the next section, we discuss how certain binary codes
give explicit oblivious strategies.

3 An explicit strategy with O(logN) questions

3.1 A characterization of oblivious strategies
using separating codes

An oblivious strategy for B is simply a sequence F
of n Boolean functions (questions) fi : [N] → {0, 1},
1 ≤ i ≤ n. We say a strategy solves the 2-secrets
guessing problem if the answers to the questions fi bring
down the possible pairs of secrets to a star or a triangle.

For each secret x ∈ [N], we denote the sequence
of answers to the questions fi on x by C(x) =
〈f1(x), f2(x), . . . , fn(x)〉. We suggestively call the map-
ping C : [N] → {0, 1}n thus defined as the code used
by the strategy. There is clearly a one-one correspon-
dence between oblivious strategies F and such codes C
(defined by fi(x) = C(x)i, where C(x)i is the i’th bit of
C(x)). Hence we will from now on refer to a strategy F
using its associated code C.

We say that a code C is (2, 2)-separating (or sim-

ply, separating) if for every 4-tuple of distinct secrets
a, b, c, d ∈ [N], there exists at least one value of i,
1 ≤ i ≤ n, called the discriminating index, for which
C(a)i = C(b)i 6= C(c)i = C(d)i. Note that if B asks
questions according to a separating code C, then for ev-
ery two disjoint pairs of edges (a, b) and (c, d), B can
rule out one of them based on the answer which A gives
on the i’th question, where i is a discriminating index
for the 4-tuple (a, b, c, d)). In fact it is easy to see that
the (2, 2)-separating property of C is also necessary for
the corresponding strategy to solve the 2-secrets guess-
ing game.

This implies the following characterization for the
existence of oblivious strategies for the 2-secrets guess-
ing game.

Lemma 3.1. There exists a (2, 2)-separating code C :
[N] → {0, 1}n if and only if there exists an oblivious
strategy for B to solve the 2-secrets guessing problem
for a universe size of N that uses n questions.

Hence the problem of finding a small set of questions
to solve the 2-secrets problem reduces to the task
of finding a good (2, 2)-separating code. There is a
reason why we called these objects “codes” since the
following result states that any error-correcting code
with a certain property is also a (2, 2)-separating code.
We will assume without loss of generality that N = 2m

so that we can view each secret as an m-bit binary
string. The separating code C then encodes an m-bit
string into an n-bit string.

Lemma 3.2. Let C be an [n,m]2 binary linear code
with minimum distance d and maximum distance (i.e.,
the maximum number of coordinates where two distinct
codewords differ) equal to m1. Assume further that
d,m1 satisfy the condition d > 3m1

4 . Then, C is a (2, 2)-
separating code. If the constraint of linearity is removed,
then an (n,m)2 binary code C is (2, 2)-separating if
d > m1

2 + n
4 .

The above lemma is proved in the work of Cohen,
Encheva, and Schaathun [CES01]. The result for linear
codes had been previously proved by Segalovich [Seg94],
and, as mentioned in [CGL01], it has also been discov-
ered, later and independently, by the first author of the
present paper. For the case of general codes, note that
the condition d > m1/2 + n/4 implies d > n/2, since
m1 ≥ d. We obtain the following strengthening of the
above lemma (for the non-linear case), by noting that
the weaker condition d > n/2 itself suffices for a code to
be (2, 2)-separating. We omit the proof, since the result
is not needed in the rest of the paper.

Lemma 3.3. Let C be an [n,m]2 binary code with min-
imum distance d > n/2. Then C is a (2, 2)-separating
code. Moreover, this bound is tight, in that there are
codes of blocklength n and distance n/2 which are not
(2, 2)-separating.

There is a big advantage in using linear codes C
for B’s strategy, since then each question simply asks
for the inner product over GF(2) of the secret with a
fixed m-bit string. Thus all questions have a succinct
description, which is not the case for general non-linear
codes. Hence, we focus exclusively on strategies based
on linear separating codes in the rest of this section and
in the one following it.

3.2 Construction of good linear separating
codes

Definition 1. (ε-biased codes) A binary linear code
of blocklength n is defined to be ε-biased if every non-
zero codeword in C has Hamming weight between (1/2−
ε)n and (1/2 + ε)n.

Now Lemma 3.2 implies the following separation
property of ε-biased codes.

Corollary 3.1. If a binary linear code C is ε-biased
for some ε < 1/14, then C is (2, 2)-separating.

Thus, in order to get explicit (2, 2)-separating codes
(and hence, an explicit strategy for the secret guessing
game), it suffices to explicitly construct an ε-biased code
for ε < 1/14.

A simple explicit construction of ε-biased codes can
be obtained by concatenating an outer Reed-Solomon
code with relative distance (1 − 2ε) with an inner bi-
nary Hadamard code. It is easy to see that all non-
zero codewords have relative Hamming weight between
(1/2 − ε) and 1/2, and thus this gives an ε-biased
space. However, this construction encodes m bits into
O(m2/ε2) bits. Other explicit constructions of ε-biased
codes of dimension m and blocklength O(m2/ε2) are
also known (cf. [AGHP92]). In fact, the explicit con-
struction of a secret guessing strategy with O(log2N)
questions in [CGL01] is based on one of the ε-biased
codes from [AGHP92]. All these constructions suf-
fer from the drawback of needing Ω(log2N) questions,
and this means they provide a strategy with O(log2N)
questions, while we would like to achieve the optimal
O(logN) questions.

But, there are also known ways to achieve ε-biased
codes with blocklength O(m/εO(1)). For example, one
can use a concatenated scheme with outer code any
explicitly specified code with relative distance (1−O(ε))
over a constant alphabet size (that depends on ε), and

inner code itself being a Reed-Solomon concatenated
with Hadamard code. Specifically, one can use for
the outer code the construction from [ABN+92] that
achieves rate Ω(ε) and alphabet size 2O(1/ε). It is easy to
check that this gives an explicit [O(m/ε4),m]2 ε-biased
code. A better choice of inner code can be used to bring
down the blocklength to O(m/ε3) [ABN+92], but this
is not very important to us since this will only improve
the number of questions by a constant factor.

We therefore have:

Lemma 3.4. ([ABN
+

92]) For any ε > 0, there exists
an explicitly specified family of constant rate binary
linear ε-biased codes.

Applying the above with any ε < 1/14, and using
the connection to separating codes from Corollary 3.1
and the result of Lemma 3.1, we get the following:

Theorem 3.1. There is an explicit oblivious strategy
for the 2-secrets guessing game that uses O(logN)
questions where N is the size of the universe from which
the secrets are drawn.

4 An efficient algorithm to recover the secrets

The construction of an explicit strategy using O(logN)
questions is not difficult, and follows rather easily once
one realizes the connection to ε-biased spaces. However,
a fairly basic and important point has been ignored
so far in our description. We have only focused on
strategies that “combinatorially” limit the possible pairs
of secrets to a star or a triangle. But how can B
figure out the star or triangle as the case may be,
once he receives the answers to all the questions?
One obvious method is to simply go over all pairs
of secrets and check each one for consistency with
the answers. By the combinatorial property of the
strategy, we will be left with only a star or a triangle.
The disadvantage of this approach, however, is that it
requires O(N2) time. We would ideally like to have a
strategy to recover the secrets that runs in poly(logN)
time, since we are thinking ofN as very large. Strategies
with such an efficient secret recovery algorithm are
called invertible strategies in [CGL01]. In [CGL01],
the authors mention an invertible strategy for the 2-
secrets guessing game, attributed to Lincoln Lu, which
uses O(log3N) questions to find the star/triangle in
O(log4N) time. Note, however, the number of questions
is much larger than O(logN). The problem of finding
an invertible strategy that uses only O(logN) questions
was left unanswered in [CGL01]. Independent of our
work, [MS01] answered this question by presenting
an adaptive invertible strategy using only O(logN)
questions.

In this section, we present a connection between list
decoding and the 2-secrets guessing game. Using this
connection, we are able to give an oblivious invertible
strategy that uses only O(logN) questions. The time
to recover the secrets (i.e. the triangle or a succinct
representation of the star) is O(log3N). We stress that,
unlike the result of [MS01], our strategy is oblivious, and
therefore is incomparable to their result (it is not strictly
better because the constants in front of the logN in the
number of questions and the time needed to find the
secrets are slightly worse in our construction).

This algorithmic result is our main contribution to
the guessing secrets problem. Details on our construc-
tion and algorithm follow.

4.1 Connection to list decoding

Lemma 4.1. Suppose that C is a [cm,m]2 binary lin-
ear code which is ε-biased for some constant ε < 1/14.
Suppose further that there exists a list decoding algo-
rithm for C that corrects up to a (1/4 + ε/2) frac-
tion of errors in time O(T (m)). Then, C is a (2, 2)-
separating code which gives a strategy to solve the 2-
secrets guessing game for a universe size N = 2m in
O(T (logN) + log3N) time using c logN questions.

Proof: Let C be a code as in the statement of the
lemma and assume that B is using C for its strategy.
Let X = {x1, x2} be the set which A claims he picked
after giving all the answers. Let the set of answers be
a = (a1, a2, . . . , an). Then for each i, we must have
either C(x1)i = ai or C(x2)i = ai since A is supposed
to answer each question according to one of x1 or x2.
Now by the property of C, we have C(x1)i = C(x2)i for
all i ∈ A for some set A ⊆ [n] of size at least (1/2− ε)n.
For each i ∈ A we have C(x1)i = C(x2)i = ai, and for
each i /∈ A, exactly one of C(x1)i and C(x2)i equals
ai. It follows that either C(x1) or C(x2) is within
Hamming distance (n − |A|)/2 of a; assume without
loss of generality that it is C(x1). Then

∆(a, C(x1)) ≤ (1/2 + ε)
n

2
= (

1
4

+
ε

2
)n .

The algorithm for B to recover the secrets (i.e., the
triangle or the star) after receiving the answer vector a
is as follows.

1. Perform list decoding of the code C using the
assumed algorithm to find the set, say S, of all
x ∈ {0, 1}m for which ∆(a, C(x)) ≤ (1

4 + ε
2)n.

2. For each x ∈ S returned by the list decoding
algorithm in the previous step, do the following.
Compute A = {i : C(x)i = ai}, and perform an
erasure list decoding of the received word a when

all of its symbols in positions in A are erased. In
other words find (some representation of) the set Sx
of all x′ for which C(x′)i = ai for each i ∈ [n] \ A.
If Sx is empty, then remove x from S.

3. Return the set of unordered pairs {(x, x′) : x ∈
S, x′ ∈ Sx} as the final set of all possible feasible
pairs.

We now argue the correctness of the algorithm.
First note that any pair returned by the algorithm
is a proper solution to the guessing secrets. This is
because the set Sx consists of precisely those secrets
that could form the other secret in a pair with x so
that the resulting pair will be “consistent” with the
answers a. We next prove that any pair (x, x′) which
is a consistent solution to the 2-secrets problem for the
answers a, will be found by the algorithm. Appealing
to the (2, 2)-separation property of C (which is implied
by Corollary 3.1 since C is ε-biased for some ε < 1/14),
the above two facts imply that the final set of pairs will
either be a triangle or a star.

If a pair (x, x′) is consistent with a, then we know
by the initial arguments in this proof that
min{∆(a, C(x)),∆(a, C(x′))} ≤ (1/4 + ε/2)n. Assume,
without loss of generality, that ∆(a, C(x)) ≤ (1/4 +
ε/2)n. Then, x will be found as part of the set S in the
first list decoding step of the above algorithm. Now for
each i such that C(x)i 6= ai, we must have C(x′)i = ai,
or otherwise (x, x′) would not be a consistent pair for
the answers a. Hence x′ will be a solution to the erasure
decoding performed in the second step. It follows that
x′ ∈ Sx and that (x, x′) will be output by the algorithm,
as desired.

Now we move on to the runtime analysis of the
algorithm. By the hypothesis of the lemma, the first
list decoding step can be performed in O(T (m)) time.
Moreover, the size of the list S returned will be bounded
by an absolute constant. This follows from the Johnson
bound (see, for example, [GS00, Theorem 1]), which
for binary codes states that list decoding to a α/2
fraction of errors in a code of relative distance δ/2
when α < 1 −

√
1− δ, requires lists of size at most

(α2 − 2α + δ)−1. Applying this with α = 1/2 + ε and
δ = 1 − 2ε, gives that the list size will be at most
(ε2 − 3ε + 1/4)−1, which is at most 24.5 for ε < 1/14.
Hence we will have |S| ≤ 24 and therefore the second
erasure decoding step will only be performed for O(1)
choices of x.

For the second step we critically use the fact that C
is a linear code, and hence erasure list decoding amounts
to finding all solutions to a linear system. The set
Sx, therefore, is either empty or the coset of a linear
subspace, say Wx, of Fm2 , and in the latter case can be

represented by one solution together with a basis for
Wx. Hence an O(m2) size representation of each non-
empty Sx can be computed in the time needed to solve
a linear system, which is certainly O(m3).

Hence the above algorithm finds either the triangle
or the star of all pairs of secrets consistent with the
answer vector a in O(T (m) + m3) time. Note that in
the case when it outputs a star, the number of pairs
could be quite large (as high as (N − 1) in case the
answer vector a exactly matches C(x) for some secret
x). The algorithm exploits the fact that the non-hub
vertices of the star, being the set of solutions to a linear
system, can be described succinctly as the coset of a
linear space. 2

Remark: We stress here that the use of list decoding
in the above result is critical and unique decoding does
not suffice for the above application. This is because
for any pair (x, x′) which is consistent with a, we are
only guaranteed that one of x or x′ is within Hamming
distance (1/4+ε/2)n from a. Thus, we need to perform
decoding to a relative radius of (1/4 + ε/2). Therefore,
if we were to perform unique decoding, we would need
a relative distance of (1/2 + ε), which is of course
impossible for binary codes (unless they just have a
constant number of codewords which is not very useful).
Also, note that after the list decoding algorithm finds
the set S of codewords close to a, the application gives
a natural post-processing routine to prune the list and
actually zero down the possibilities to the true solutions.

4.2 The final result using specific list decodable
codes

We now prove that explicit codes with the property
needed in Lemma 4.1 exist, and thus conclude our main
algorithmic result about the 2-secrets guessing game.
The following result is quite standard and can be proved
easily using known techniques on concatenated codes.
The only new element is the requirement of an ε-biased
code, but as we shall see this necessitates no significant
change in the proof technique.

Lemma 4.2. For every positive constant α < 1/2, the
following holds. For all small enough ε > 0, there exists
an explicit asymptotically good family of binary linear ε-
biased codes which can be list decoded up to an α fraction
of errors in O(n2(logn

ε)O(1)) time.

Proof: (Sketch) We only sketch the proof since it is by
now quite routine. Given α < 1/2, we pick ε = O((1/2−
α)2). The code construction will be the concatenation
of an outer Reed-Solomon code CRS of rate smaller
than ε with inner code Cin being an explicitly specified

ε/2-biased binary linear code (such a code exists by
Lemma 3.4). It is clear that the resulting concatenated
code, say C, has minimum relative distance at least
(1 − ε)(1/2 − ε/2) > 1/2 − ε, and maximum relative
distance at most 1 · (1/2 + ε/2) < 1/2 + ε. Hence C is
definitely an ε-biased code.

Let the Reed-Solomon code be defined over GF(2`)
and have blocklength n0 = 2`. Let the blocklength of
Cin be n1. The blocklength of C is then N = n0n1.
To list decode a received word r ∈ Fn2 , we first divide
r into n0 blocks r1, r2, . . . , rn0 corresponding to the n0

inner encodings, where each ri ∈ Fn1
2 . Each of the ri’s

is decoded by brute-force to produce a list Li of all
ζ ∈ GF(2`) for which ∆(Cin(ζ), ri) ≤ βn1, for some
β where α < β < 1/2. Since δ(Cin) ≥ 1/2 − ε and
α = 1/2 − Ω(

√
ε), it follows using Johnson bounds for

list decoding (see, for example, [GS00, Theorem 1]),
that for each i, |Li| = O(1/ε). Now if x is such that
∆(C(x), r) ≤ αN , then by an averaging argument for
at least an α/β fraction of i, 1 ≤ i ≤ n0, we must have
CRS(x)i ∈ Li. Therefore, to finish the list decoding, it
suffices to list decode the outer Reed-Solomon code to
find all x for which CRS(x) has an element from Li at the
i’th position for at least αn0/β values of i. If the rate
of CRS is at most O(α2ε/β2), this can be accomplished
in O((n0/ε)2 log2 n0) time using the Reed-Solomon list
decoding algorithms from [GS99]. (For easy reference
we state the precise form of the result used from [GS99]
at the end of the proof.) This completes the proof of
the lemma. 2

Theorem 4.1. (Implicit in [GS99]) Let C be an
[n, k+ 1, n− k]q Reed-Solomon code defined by the eval-
uation of degree k polynomials over GF(q) at n distinct
elements of GF(q). Then, given lists Li ⊆ GF(q) with
each |Li| ≤ `, there are at most O(

√
n`/k) codewords of

C which agree with an element of Li for at least αn val-
ues of i, provided α > Ω(

√
k`/n). Moreover, the list of

all such codewords can be found in O(n2`2 log2 q) time.1

Applying the result of Lemma 4.2 with α = 1/4 +
1/28 = 2/7 and any ε < 1/14, gives an explicit construc-
tion of the codes which were needed in Lemma 4.1, with
a quadratic list decoding algorithm. The O(log3N)
time required to perform the “simple, clean-up” erasure
decodings in Lemma 4.1 therefore dominates the over-
all time to recover the triangle or star of secrets. This
gives our main result of this section, which achieves the
optimal (up to constant factors) number of questions
together with a poly(logN) algorithm to recover the
secrets.

1The claim about the runtime follows from fast implementa-

tions of the algorithm of [GS99] from [NH99, RR00].

Theorem 4.2. [Main Result on Guessing Secrets, k =
2] For the guessing secrets game between players
B and A with 2 secrets picked out of a universe of
size N , there exists an explicit oblivious strategy for B
to discover the underlying star or triangle of possible
pairs of secrets, that requires O(log3N) time and uses
O(logN) questions.

5 The case of more than two secrets

One can also consider the situation when the player A
has k > 2 secrets. In this case, stated in the same
graph-theoretic language that we used to describe the
2-secrets problem, the goal of B would be to find a
k-uniform hypergraph H with vertex set being the N
secrets with the property that every two hyperedges
of H intersect. Let us call such a hypergraph an
intersecting hypergraph.

5.1 Explicit oblivious strategies with O(logN)
questions

Unlike the case of graphs, where there were only two
classes of such graphs, namely a triangle or a star, the
situation even for 3-regular hypergraphs is much more
complicated. Nevertheless, there exist explicit strate-
gies which will allow B to “combinatorially” reduce the
possibilities to an intersecting hypergraph, even though
we do not know any method for B to actually find some
representation of this hypergraph short of trying out all
k element subsets of secrets and pruning out all “in-
consistent” ones. This follows from a connection of the
k-secrets guessing problem to the study of 2k-universal
families of binary strings. The latter problem concerns
finding a subset S ⊂ {0, 1}N of as small size as pos-
sible with the property that for every subset of 2k in-
dices i1, i2, . . . , i2k and every (a1, a2, . . . , a2k) ∈ {0, 1}2k,
there exists a string x ∈ S such that xij = aj for each
j = 1, 2, . . . , 2k. Explicit constructions of such universal
families of very small size, namely at most ck logN , are
known [NN93, ABN+92], where ck is a constant that
depends exponentially on k.

We claim this implies the existence of explicit
oblivious strategies using ck logN questions for the k-
secrets guessing game. Indeed let {y1, y2, . . . , yn} be
a 2k-universal family of N -bit strings for some n ≤
ck logN . For 1 ≤ i ≤ n, define the function fi :
[N] → {0, 1} as follows: for each x ∈ [N], fi(x) is
simply the x’th bit of the string yi. That is, the string
yi gives the truth table of the function fi. Clearly if
the yi’s are explicitly specified then so are the functions
fi. We claim the sequence of questions f1, f2, . . . , fn
is a valid oblivious strategy for the k-secrets guessing
game. This is because, for every pair of disjoint sets

of k secrets each, say S1 = {i1, i2, . . . , ik} ⊂ [N] and
S2 = {ik+1, . . . , i2k} ⊂ [N], by the 2k-universality
property there exists some i for which fi(x) = 0 for each
x ∈ S1 and fi(z) = 1 for each z ∈ S2. This implies that
the answer to question number i rules out one of the sets
S1 or S2 as being a possible set of k secrets consistent
with all answers to the questions f1, f2, . . . , fn. This
is exactly what we wanted to show, and the k-sets
of secrets consistent with any answer to the questions
f1, f2, . . . , fn therefore form an intersecting k-uniform
hypergraph.

The best known construction of 2k-universal fami-
lies, due to [ABN+92], achieves ck = ck26k where c is
an absolute constant. We therefore have:

Theorem 5.1. For the k-secrets guessing game over
a universe of size N , there exists an explicit oblivious
strategy for B that uses at most ck26k logN questions,
where c is an absolute constant independent of k.

5.2 An efficient “partial solution” for the
k-secrets game

For the case of k > 2 secrets, The question of
whether there exists a strategy together with an effi-
cient algorithm to actually find a representation of the
intersecting hypergraph is wide open, and appears to be
rather difficult to solve. We instead aim for the weaker
goal of finding a small “core” of secrets such that any
k-set which A might pick must intersect the core in at
least one secret. This at least gives useful partial in-
formation about the set of secrets which A could have
picked.

This version of the problem is quite easily solved if
we could ask not binary questions, but questions over a
larger alphabet [q] = {1, 2, . . . , q}. That is, each of the n
questions that B asks is now a function Fi : [N] → [q],
1 ≤ i ≤ n. For any set of k secrets which A might
pick, the sequence of answers a ∈ [q]n must agree with
the correct answers to one of the secrets for at least n/k
values of i. If q is a prime power bigger than k, there are
known explicit constructions of q-ary linear codes, say
C, with N codewords and blocklength O(logN) which
are efficiently list decodable from a (1 − 1/k) fraction
of errors [GS00]. Basing the questions Fi on the n
positions of the code (as in the earlier binary case), the
answer vector a of A will differ from at least one secret
in A’s set in at most a (1 − 1/k) fraction of positions.
The list decoding algorithm, when run on input a, will
output a small list that includes that secret.

When B is only allowed binary questions, we can
still give such a “core finding” strategy as follows. Pick
q to be a prime power larger than k2, and C to be
an explicit q-ary linear code that is list decodable from

a (1 − 1/k2) fraction of errors [GS00]. As above, we
first encode each secret by C to get a string of length
n = O(logN) over [q]. We then encode each element
of [q] further using 2k-universal family F of strings
in {0, 1}q. That is, we encode i ∈ [q], by the string
comprising of the i’th entry from the set of strings in F .
In other words, we concatenate C with the 2k-universal
family F to get a binary code C ′. Player B now asks
A for the bits of the encoding of the secret as per the
concatenated code C ′.

Using the 2k-universal property of F , B can recover
an intersecting k-hypergraph Hi on [q] for the value
of the i’th symbol of the encoding of the k secrets by
C. B can do this by a brute-force search over all k-
element subsets of q, since q, k are constants, this only
takes constant time for each i. B then picks one of the
hyperedges Ei from Hi arbitrarily, and then picks an
element ai ∈ [q] from it at random.

Let S = {x1, x2, . . . , xk} be the set of k-secrets that
A picked. Note that Ei must intersect the set, say
Si = {C(x1)i, . . . , C(xk)i} consisting of the i’th symbols
of the encoding of the secrets in S by C. Therefore, we
will have ai ∈ Si for an expected 1/k fraction of i’s. An
averaging argument that implies that there must exist
a j, 1 ≤ j ≤ k, for which ai = C(xj)i for at least a 1/k2

fraction of i’s. Therefore, the assumed list decoding
algorithm for C on input a will find a small list that
includes the secret xj .

This gives the following result, whose detailed proof
will appear in the full version of the paper.

Theorem 5.2. For the k-secrets guessing game with a
universe of N secrets, there exists an explicit oblivious
strategy for B that uses O(logN) questions. Moreover,
there is an efficient poly(logN) time algorithm for B to
find a small core of poly(k) secrets such that the k-set
picked by A must contain at least one secret from the
core.

5.3 Lower bounds for the k-secrets game

As mentioned above, there is an oblivious algorithm
for solving the k secrets problem by asking ck logN
questions. An easy probabilistic argument shows that
the smallest possible ck is O(k22k). This also follows
from the result of [KS73] that shows (non-explicitly)
that there is a 2k-universal family of N -bit strings
consisting of O(k22k logN) strings. The next result
shows that no oblivious algorithm can be much better.

Proposition 5.3. Any oblivious strategy for solving
the k-secrets problem requires at least Ω(22k logN) ques-
tions.

Proof: Suppose there is an oblivious strategy con-

sisting of n questions. Then there are n functions
fi : [N] → {0, 1} such that for every pair of disjoint
sets of k secrets each, say S1 = {i1, i2, . . . , ik} ⊂ [N]
and S2 = {ik+1, . . . , i2k} ⊂ [N], there exists some i for
which fi(x) = ε for each x ∈ S1 and fi(z) = 1 − ε
for each z ∈ S2, where ε ∈ {0, 1}. Our objective is to
show that n is large. To do so, pick, randomly and inde-
pendently, two disjoint subsets S′1 and S′2 of [N], where
|S′1| = |S′2| = k − 1. We say that fi separates S′1 and
S′2 if there is an ε ∈ {0, 1} such that fi(x) = ε for each
x ∈ S′1 and fi(z) = 1 − ε for each z ∈ S′2. A simple
computation shows that for each fixed i, the probabil-
ity that fi separates the two random sets S′1 and S′2 is
smaller than 21−2k. Therefore, by linearity of expecta-
tion, there are some two sets S′1 and S′2 as above which
are separated by at most n21−2k functions fi. Fix such
S′1, S

′
2 and let I ⊂ {1, 2, . . . , n} be the set of all functions

separating them. We claim that for each two distinct
p, q ∈ [N] \ (S′1 ∪S′2), the two vectors (fi(p) : i ∈ I) and
(fi(q) : i ∈ I) must differ. Indeed, otherwise, none of
the functions fi will separate S′1∪{p} and S′2∪{q}, con-
tradicting the fact that they form an oblivious strategy
for solving the k-secrets problem. It thus follows that

N − (2k − 2) ≤ 2n21−2k
,

implying that

n ≥ 22k−1 log(N − 2k + 2),

and completing the proof. 2

We next show that even adaptive algorithms cannot
solve the k-secrets problem in less than Ω(22k

√
k

logN)
questions.

Proposition 5.4. Any adaptive algorithm for solving
the k-secrets problem requires at least ak logN−ak log ak
questions, where

ak = 2k − 2 +
1
2

(
2k − 2
k − 1

)
.

Proof: Let ak be as in the statement of the proposition.
We claim that for every k ≥ 2 there is an intersecting
k-uniform hypergraph Hk on ak vertices which is a
maximal intersecting hypergraph. That is, one cannot
add to it any additional edge (of size k) and keep it
intersecting. Such a hypergraph is described in [EL75].
Here is the construction; the set of vertices consists
of two disjoint sets, Xk of size 2k − 2, and Yk of size
1
2

(
2k−2
k−1

)
, whose elements are indexed by the partitions

of Xk into two disjoint parts of equal size. The edges
are all k-subsets of Xk, together with

(
2k−2
k−1

)
additional

edges: for each partition of Xk into two equal parts

A and B, the sets A ∪ {y} and B ∪ {y} are edges of
Hk, where y is the element of Y corresponding to the
partition (A,B).

There are at least
(
N
ak

)
copies of Hk on subsets of the

set of vertices [N]. For every question F : [N] 7→ {0, 1}
of B, and for each copy H of Hk, the player A can
always save H (namely, ensure that each edge of it can
still serve as a valid set of k secrets) by an appropriate
answer. Indeed, as H is intersecting, there cannot be
an edge of H in F−1(0) and another one in F−1(1), and
hence either each edge of H intersects F−1(0) and then
A can answer 0 and save H, or each edge intersects
F−1(1), and then answering 1 will save H. This implies
that the player A can save, in each question, at least half
of the copies of Hk left after the previous questions. As
B cannot finish the guessing game as long as more than
one copy of Hk is still valid (because the maximality
of Hk ensures that the union of every two copies is
not intersecting) it follows that the number of questions
required is at least

log
((N

ak

))
≥ ak logN − ak log ak,

as needed. 2

As mentioned in [CGL01], the question of guessing
secrets may also be of interest when the questions have
more than two possible answers. We conclude the paper
by pointing out that several aspects of this variant have
been studied by various researchers under the name
parent identifying codes. For more details, see, e.g.,
[CFN94], [HLLT98], [BCE+01], [AFS01].

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni
Naor, and Ronny Roth. Construction of asymptot-
ically good low-rate error-correcting codes through
pseudo-random graphs. IEEE Transactions on Infor-
mation Theory, 38:509–516, 1992.

[AFS01] Noga Alon, Eldar Fischer and Mario Szegedy.
Parent-identifying codes. J. Combinatorial Theory, Se-
ries A, 95:349–359, 2001.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and
Réne Peralta. Simple constructions of almost k-wise
independent random variables. Random Structures and
Algorithms, 3:289–304, 1992.

[BCE+01] Alexander Barg, Gerard Cohen, Sylvia Encheva,
Gregory Kabatiansky and Gillés Zémor. A hypergraph
approach to the identifying parent property: the case
of multiple parents, to appear.

[CES01] Gérard D. Cohen, Sylvia B. Encheva, and Hans G.
Schaathun. On separating codes. Technical Report,
ENST, Paris, 2001.

[CFN94] Benny Chor, Amos Fiat and Moni Naor. Tracing
traitors. Proceedings of Crypto’94 LNCS 839 (1994),
pp. 257–270.

[CGL01] Fan Chung, Ron Graham, and Tom Leighton.
Guessing secrets. The Electronic Journal of Combi-
natorics, 8(1):R13, 2001.

[EL75] Paul Erdős and Láslzo Lovász, Problems and re-
sults on 3-chromatic hypergraphs and some related
questions, Infinite and Finite Sets (Colloq., Keszthely,
1973; dedicated to P. Erdős on his 60th Birthday), vol.
II, pp. 609-627. Colloq. Math. Soc. Janos Bolyai, vol
10, North-Holland, Amsterdam, 1975.

[GS99] Venkatesan Guruswami and Madhu Sudan. Im-
proved Decoding of Reed-Solomon and Algebraic-
geometric codes. IEEE Transactions on Information
Theory, 45 (1999), pp. 1757-1767.

[GS00] Venkatesan Guruswami and Madhu Sudan. List de-
coding algorithms for certain concatenated codes. Proc.
of the 32nd Annual ACM Symposium on Theory of
Computing, May 2000, pp. 181-190.

[HLLT98] H.D. Hollmann, J.H. van Lint, J.-P. Linnartz and
L.M. Tolhuizen. On codes with the identifiable parent
property. J. Combinatorial Theory, Series A, 82 (1998)
pp. 121–133.

[I52] I’ve Got a Secret. A classic ’50’s
and ’60’s television gameshow. See
http://www.timvp.com/ivegotse.html.

[KS88] János Körner and Gábor Simonyi. Separating parti-
tion systems and locally different sequences. SIAM J.
Discrete Math., 1 (1988), pp. 355-359.

[KS73] Daniel J. Kleitman and Joel Spencer. Families of k-
independent sets, Discrete Mathematics, 6 (1973), pp.
255-262.

[MS01] Daniele Micciancio and Nathan Segerlind. Using
prefixes to efficiently guess two secrets. Manuscript,
July 2001.

[NN93] Joseph Naor and Moni Naor. Small-bias probability
spaces: Efficient constructions and applications. SIAM
Journal on Computing, 22(4):838–856, 1993.

[NH99] Rasmus R. Nielsen and Tom Hφholdt. Decoding
Reed-Solomon codes beyond half the minimum dis-
tance. Coding Theory, Cryptography and Related areas,
(eds. Buchmann, Hoeholdt, Stichtenoth and H. tapia-
Recillas), pages 221–236, 1999.

[RR00] Ronny Roth and Gitit Ruckenstein. Efficient decod-
ing of Reed-Solomon codes beyond half the minimum
distance. IEEE Transactions on Information Theory,
46(1):246–257, January 2000.

[Seg94] Yu L. Segalovich. Separating systems. Problems of
Information Transmission, 30(2):105–123, 1994.

[vL99] J. H. van Lint. Introduction to Coding Theory.
Graduate Texts in Mathematics 86, (Third Edition)
Springer-Verlag, Berlin, 1999.

