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Abstract.

Solving an old conjecture of Szele we show that the maximum number of directed Hamiltonian

paths in a tournament on n vertices is at most c · n3/2 · n!
2n−1 , where c is a positive constant

independent of n.
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1. Introduction.

A tournament T is an oriented complete graph. A Hamiltonian path in T is a spanning

directed path in it. Let P (T ) denote the number of Hamiltonian paths in T . For n ≥ 2, define

P (n) = max P (T ), where T ranges over all tournaments on n vertices. More than forty years ago,

Szele [Sz] showed that

(1.1) P (n) ≥ n!/2n−1 .

His proof is considered to be the first application of the probabilisitic method in combinatorics,

and is thus mentioned in the beginning of most books and survey-articles on this method, (see,

e.g., [ES, pp. 11-12], [Sp, pp. 7-8]). This proof is extremely simple; one just has to observe that by

linearity of expectation the expected number of Hamiltonian paths in a random tournament on n

vertices is n!/2n−1. In the same paper, Szele also established an upper bound for P (n) by proving

that

(1.2) P (n) ≤ c1n!/2
3
4n ,

where c1 is a positive constant independent of n.

Notice that the gap between the upper and lower bounds provided by (1.1) and (1.2) which

have both not been improved since 1943 is exponential in n. In the present note we improve the

upper bound and prove the following theorem.

Theorem 1.1.

The maximum number, P (n), of Hamiltonian paths in a tournament on n vertices satisfies

(1.3) P (n) ≤ c2 · n3/2 n!
2n−1

,

where c2 > 0 is independent of n.

Therefore, P (n) does not exceed the average number of Hamiltonian paths in a tournament

on n vertices by more than a small polynomial factor (in n). In particular, (1.1) and (1.3) imply,

together with Stirling’s formula, that

lim
n→∞

(P (n))1/n =
n

2e
.

This equality was conjectured by Szele in 1943 ([Sz], see also [Mo, page 28]).

Our short proof of Theorem 1.1 is based on Minc’s Conjecture [Mi], (proved by Brégman [Br]),

that supplies an upper bound for permanents of (0,1)-matrices. This proof is presented in Section

2. Section 3 contains some concluding remarks and open problems.
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2. Permanents and Hamiltonian paths and cycles.

A Hamiltonian cycle in a tournament T is a spanning directed cycle in T . A 1-factor of T is a

spanning subgraph of T in which every indegree and every outdegree is 1, i.e., a spanning union of

vertex disjoint directed cycles. Let C(T ) and F (T ) denote the number of Hamiltonian cycles and

the number of 1-factors of T , respectively. Since every Hamiltonian cycle is also a 1-factor,

(2.1) C(T ) ≤ F (T ) .

Define C(n) = max{C(T ) : T is a tournament on n vertices}

and F (n) = max{F (T ) : T is a tournament on n vertices}. By (2.1)

(2.2) C(n) ≤ F (n) .

The adjacency-matrix A = AT of a tournament T = (V,E) on the set of vertices V = {1, 2, . . . , n}

is the n by n (0,1)-matrix A = (aij) defined by aij = 1 if (i, j) ∈ E and aij = 0 otherwise.

It is easy to check that the permanent Per AT of AT satisfies

(2.3) Per AT = F (T ) .

Inequalities (2.1) and (2.3) enable us to apply any known upper bound for permanents of

(0,1)-matrices to obtain an upper bound for the number of Hamiltonian cycles in tournaments.

The following upper bound for permanents was conjectured by Minc [Mi] and proved by Brégman

[Br]. See also [Sc] for an extremely simple (and clever) proof.

Lemma 2.1 (Minc’s conjecture).

Let A be an n by n (0,1)-matrix, and let ri denote the number of ones in row i of A, 1 ≤ i ≤ n.

Then

Per A ≤
n∏
i=1

(ri!)1/ri .

We also need the following simple but somewhat technical lemma.

Lemma 2.2.

For every two integers a, b satisfying b ≥ a+ 2 > a ≥ 1 the inequality

(a!)1/a · (b!)1/b < ((a+ 1)!)1/(a+1)((b− 1)!)1/(b−1)

holds.
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Proof.

Define f(a) = (a!)1/a/((a + 1)!)1/(a+1). Then the assertion is simply that f(a) < f(b − 1).

Since b− 1 > a it suffices to show that for every integer x ≥ 2 f(x− 1) < f(x). Substituting the

expressions for f and raising both sides to the power x(x− 1)(x+ 1) we conclude that it suffices to

show that for x ≥ 2

((x− 1)!)x(x+1) · ((x+ 1)!)x(x−1) < (x!)2(x2−1) ,

i.e.,

(x!)2(x+ 1)x
2−x < xx

2+x

or

(
xx

x!
)2 > (

x+ 1
x

)x(x−1) .

The last inequality holds for x = 2, since 22 > (3/2)2. For x ≥ 3, we use the facts that

4x > ex+1 and that x! < (x+1
2 )x to conclude that

(
xx

x!
)2 >

22x

(x+1
x )2x

>
4x

e2
>
ex+1

e2
= ex−1 > [

x+ 1
x

]x(x−1) .

This completes the proof.

Corollary 2.3.

Define g(x) = (x!)1/x. For every integer S ≥ n the maximum of the function
n∏
i=1

g(xi) subject

to the constraints
n∑
i=1

xi = S and xi ≥ 1 are integers, is obtained iff the variables xi are as equal as

possible, (i.e. iff each xi is either bS/nc or dS/ne).

Proof.

If there are i and j such that xi ≥ xj + 2 then, by Lemma 2.2, if x′i = xi − 1, x′j = xj + 1 and

x′e = xe for all e 6= i, j then
n∏
i=1

g(xi) <
n∏
i=1

g(x′i). The desired result follows.

Returning to tournaments, let T be a tournament on the n ≥ 3 vertices {1, 2, . . . , n} and let

A = AT = (aij) be its adjacency matrix. Let ri be the number of ones in row i of A, i.e., the

outdegree of the vertex i in T . Clearly
n∑
i=1

ri =
(
n
2

)
≥ n and by (2.3) F (T ) = Per A. If at least

one ri is 0 then F (T ) = Per A = 0. Otherwise, by Lemma 2.1 and Corollary 2.3, F (T ) is at most

the value of the function
n∏
i=1

(ri!)1/ri , where the integral variables ri satisfy
n∑
i=1

ri =
(
n
2

)
, and they

are as equal as possible. For odd n, n = 2k + 1, this value is

(k!)
2k+1
k = (1 + o(1))

k

e
· (k!)2 ≡ (1 + o(1))

k

e

(2k)!
22k

√
πk = (1 + o(1))

√
π√
2e

n3/2 (n− 1)!
2n

.
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For even n, n = 2k, this value is

(k!)k/k · (k − 1)!k/(k−1) = (1 + o(1))(
1
e

)(k!)2 = (1 + o(1))
1
e
· (2k)!

22k

√
πk

= (1 + o(1))
√
π√
2e
n3/2 (n− 1)!

2n
.

(In both cases we applied Stirling’s formula, which gives

(k!)1/k = (1 + o(1))
k

e
and

(2k)!
(k!)2

= (1 + o(1))
22k

√
πk

.)

We have thus proved the following theorem, which supplies an upper bound for F (n) and C(n).

Theorem 2.4.

For every tournament T on n vertices

C(T ) ≤ F (T ) ≤ (1 + o(1))
√
π√
2e
n3/2 (n− 1)!

2n
.

Notice that (n−1)!
2n is the expected number of Hamiltonian cycles in a random tournament on

n vertices and hence the result above shows that the maximum possible number of Hamiltonian

cycles is not very far from the average one.

It is not too difficult to deduce Theorem 1.1, which gives an upper bound for the number of

Hamiltonian paths in tournaments, from Theorem 2.4. This is done in the following proposition.

Proposition 2.5.

For every tournament T = (V,E) on n vertices there is a tournament T ′ on n + 1 vertices

satisfying;

C(T ′) ≥ P (T ) · bn
2/4c

2
(
n
2

) ≥ 1
4
P (T ) .

Therefore

P (n) ≤ 4C(n+ 1) ≤ (1 + o(1))
√
π√
2e
n3/2 n!

2n−1
.

Proof.

Let T ′ be the random tournament obtained from T by adding to T a new vertex y, choosing

a random subset V1 ⊂ V of cardinality |V1| = bn/2c and adding the directed edges {(y, v1) : v1 ∈

V1} ∪ {(v2, y) : v2 ∈ V \V1}. The expected number of Hamiltonian paths in T whose first vertex

lies in V1 and whose last vertex lies in V \V1 is bn
2/4c

2(n2)
· P (T ), and each such path corresponds to a

Hamiltonian cycle in T ′. Thus, the expected number of Hamiltonian cycles in T ′ is P (T ) · bn
2/4c

2(n2)
,

and the existence of the desired T ′ follows.
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3. Concluding remarks and open problems.

1.) By Theorem 2.4 the maximum number F (n) of 1-factors in a tournament on n vertices is

at most O(
√
n n!

2n ). Note that the expected number of 1-factors in such a tournament is not much

smaller, as it is n!/2n. It is worth noting that every regular tournament, i.e., every tournament in

which each indegree and each outdegree is (n− 1)/2, where n is odd, has almost the same number

of 1-factors. This is because if T is such a tournament then AT has precisely n−1
2 ones in each row

and each column. Thus 2
n−1AT is doubly stochastic and hence, by Van der Waerden’s Conjecture

(proved in [Fa] and [Eg])

F (T ) = Per(AT ) ≥ (
n− 1

2
)n · n!

nn
= (1 + o(1)) · 1

e
· n!

2n
.

Thus T has at least as many one factors as (1 + o(1)) · 1
e times the average number of 1-factors in

a touranment on n vertices.

2.) Szele’s lower bound for the maximum number P (n) of Hamiltonian paths in a tournament

on n vertices, stated in inequality (1.1), is probabilistic. It seems interesting to describe explicitly

tournaments with many Hamiltonian paths. Moser (cf. [Mo]) gave a construction of a tournament

with more than n!/3n Hamiltonian paths. In fact, it is not too difficult to give an explicit con-

struction of tournaments Tn on n vertices satisfying P (n) ≥ n!/(2 + o(1))n. Indeed, let Tn be the

tournament on the set of vertices Zn = {0, 1, . . . , n − 1}, in which (i, j) is a directed edge for all

i, j ∈ Zn satisfying

(i − j) (mod n) < n/2. (For even n, orient the edges connecting i and i + n
2 , (0 ≤ i < n

2 ),

arbitrarily). We can show that

(3.1) P (Tn) ≥ nC(Tn) > C(Tn) ≥ n!/(2 + o(1))n .

In particular, lim
n→∞

(P (Tn))1/n = lim
n→∞

(P (n))1/n = n
2e . We omit the detailed proof of (3.1). It seems

plausible that C(Tn) = C(n), but at the moment we are unable to prove or disprove this statement.

3.) The gap between our upper and lower bounds for P (n) is only O(n3/2). It would be

extremely interesting to close this gap and determine P (n) up to a constant factor.

Acknowledgment.
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