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Abstract

We consider the problem of learning a labeled graph from a given family of graphs on n vertices
in a model where the only allowed operation is to query whether a set of vertices induces an edge.
Questions of this type are motivated by problems in molecular biology. In the deterministic
nonadaptive setting, we prove nearly matching upper and lower bounds for the minimum possible
number of queries required when the family is the family of all stars of a given size or all cliques
of a given size. We further describe some bounds that apply to general graphs.

1 Introduction

Let H be a family of labeled graphs on the set V = {1, 2, . . . , n}, and suppose H is closed under
isomorphism. Given a hidden copy of some H ∈ H, we have to identify it by asking queries of the
following form. For F ⊆ V , the query QF is: does F contain at least one edge of H? Our objective
is to identify H by asking as few queries as possible. We say that a family F solves the H-problem if
for any two distinct members H1 and H2 of H, there is at least one F ∈ F that contains an edge of
one of the graphs Hi and does not contain any edge of the other. Obviously, any such family enables
us to learn an unknown member of H deterministically and non-adaptively, by asking the questions
QF for each F ∈ F . Note that for any family H, the set of all pairs of vertices solves the H-problem.
Note also that the information theoretic lower bound implies that we need at least log |H| queries,
where here and throughout the paper, all logarithms are in base 2, unless otherwise specified, and
we omit all floor and ceiling signs, when these are not crucial.

There are some families of graphs for which the above problem has been studied, motivated by
applications in molecular biology. These include matchings ([1]) and Hamiltonian cycles ([5, 6]).
The biological problem is to find, given a set of molecules, pairs that react with each other. Here
the vertices correspond to the molecules, the edges to the reactions, and the queries correspond to
experiments of putting a set of molecules together in a test tube and determining whether a reaction
occurs. The problem of finding a hidden matching is the one encountered by molecular biologists
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when they apply multiplex PCR in order to close the gaps left in a DNA strand after shotgun
sequencing. See [1] and its references for more details.

The previous works in this field study the minimum number of queries needed to identify a hidden
graph, from various families of graphs. Some of these works consider different query models than
the one described above. The authors of [1] study the hidden subgraph problem for the family of
matchings. In that paper it is shown that under the deterministic and non-adaptive model, the
minimum number of queries that one has to ask in order to identify a hidden matching is Θ(n2), that
is, one can do better than the trivial algorithm of asking all pairs only by a constant factor. It is also
proved that Ω(n2) queries are needed in order to find a hidden copy of any bounded-degree graph with
a linear size matching. The authors further present randomized non-adaptive algorithms that use
Θ(n log n) random queries, and deterministic k-round algorithms, that ask O(n1+1/(2(k−1))polylogn)
queries. Grebinski and Kucherov [5, 6] study the family of Hamiltonian cycles. A few query models
are discussed in those papers. Besides the model presented above, they consider the additive model,
in which the answer to a query is not just “yes” or “no” but the number of edges in the subset.
Both models are considered also when the size of the queries is bounded. They present matching
lower and upper bounds under each of these models, where some of the upper bounds are achieved
by 2-round algorithms, and the other algorithms are fully adaptive. In [7], Grebinski and Kucherov
study the problem for low degree graphs, and prove matching lower and upper bounds under the
additive non-adaptive model.

In the present paper we consider only the deterministic non-adaptive model, where the answers
are only “yes” or “no”. The main families considered are families of stars and families of cliques.
We study both families of stars or cliques of a given size, and the families of all cliques or all stars.
It is shown that the trivial upper bound of

(n
2

)
is tight up to a 1 + o(1)-multiplicative term for the

families of stars of k edges, for all n
2
3 log

2
3 n << k ≤ n − 2. For smaller stars, we show that less

queries suffice, and give upper and lower bounds on the minimum number of queries needed. These
bounds are tight up to some polylogn factor for all sizes of stars, and they are of order k3, up to the
polylogn factors. We show that the problem is easier when the hidden subgraph is a clique. In fact,
even for the family of all cliques, the problem can be solved using O(n log2 n) queries. We study,
as in the case of stars, the problem of a hidden clique of size k, for all values of k. In all cases, we
prove upper and lower bounds that are tight up to some polylogn factor, and are of order k2, up to
the polylogn factors. We also consider the case where the family of graphs consists of all the graphs
isomorphic to a given general graph G, and give a lower bound that depends on the maximum size
of an independent set in G. From this general bound, we obtain a lower bound of Ω( n2

log2 n
) for the

random graph G(n, 1
2).

In Section 2 we study the hidden subgraph problem where the hidden graph is a star, in Section
3 we consider the case where the hidden graph is a clique, and in Section 4 we prove a result for
general graphs. Section 5 contains some concluding remarks and open problems.
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2 Stars

In this section we consider the case where the graphs in H are stars. Denote by Sk the family of
all graphs on V = {1, 2, . . . , n} that consist of a copy of K1,k and n − k − 1 isolated vertices. Let
S = ∪n−1

k=1Sk. We begin with the following simple claim.

Proposition 2.1 The minimum size of a family F that solves the S-problem is exactly
(n
2

)
.

Proof: We show that any family F that solves the S-problem must contain all pairs of vertices. Let
u and v be two distinct vertices in V . Let S1 be the star whose center is u and whose leaves are all
other vertices of V , and let S2 be the star whose center is u, and whose leaves are all other vertices
of V except for v. Clearly, the answer to a query QF where F does not contain u is “no” for both
S1 and S2, and the answer to a query QF with F containing u and another vertex of both stars is
“yes” in both cases. Therefore F must contain the query {u, v}, or otherwise it cannot distinguish
between S1 and S2. 2

Note that the proof actually shows that even the solution of the Sn−2 ∪ Sn−1-problem requires(n
2

)
queries. We now consider the case where the size of the star is known, and prove the following

theorem, which gives lower and upper bounds on the minimum size of a family that solves the
Sk-problem. These bounds are tight in all cases up to some polylogn factor.

Theorem 2.2 For all k ≤ n− 2 and n > 2, there exists a family of size min(dn(n−2)
2 e, O(k3 log n))

that solves the Sk-problem, and every family that solves the Sk-problem either contains (1− o(1))
(n
2

)
pairs, or it is of size at least Ω( k3

log2 n
). Moreover, if k ≤

√
n, then the size of any family that solves

the Sk-problem is at least Ω(k3 log n
log k ). For k = n − 1, the minimum size of such a family is exactly

dlog ne.

The best bounds we get, for various values of k, are summarized in Table 1. In the rest of this
section we prove these results.

Proposition 2.3 For all n > 2, the minimum size of a family F that solves the Sn−1-problem is
exactly dlog ne.

Proof: The family Sn−1 is of size n, so we clearly need at least dlog ne queries. To prove that
dlog ne queries suffice, we construct the following family that solves the Sn−1-problem. Note that we
only need to identify the center of the star. Assign distinct vectors of length dlog ne over {0, 1} to
the vertices in V . For all 1 ≤ i ≤ dlog ne, let Fi be the set of all vertices whose ith bit is 1, and let
F = {Fi | 1 ≤ i ≤ dlog ne}. The answer to a query QFi is “yes” if and only if Fi contains the center.
Thus, for all i, we can obtain the ith bit of the center from the answer to QFi . 2

Proposition 2.4 The minimum size of a family F that solves the Sn−2-problem is 2 for n = 3, it
is 5 for n = 4, and dn(n−2)

2 e for all n ≥ 5
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Table 1: Bounds on the size of a family that solves the Sk-problem.

k Lower bound Upper bound

k ≤
√

n Ω(k3 log n
log k ) O(k3 log n)

√
n < k < n2/3

(2 log n)1/3 Ω( k3

log2 n
) O(k3 log n)

n2/3

(2 log n)1/3 ≤ k ≤ O(n2/3 log2/3 n) Ω( k3

log2 n
) dn(n−2)

2 e

k = ω(n2/3 log2/3 n), k ≤ n− 3 (1− o(1))
(n
2

)
dn(n−2)

2 e

k = n− 2 dn(n−2)
2 e dn(n−2)

2 e

k = n− 1 dlog ne dlog ne

Proof: Let F be a family that solves the Sn−2-problem. Let u, v and w be three distinct vertices
in V . Let S1 be the star whose center is u and in which the isolated vertex is v, and let S2 be the
star whose center is u, and the isolated vertex is w. The only sets that distinguish between S1 and
S2 are {u, v} and {u,w}, hence F must contain at least one of them. Thus F must contain all pairs
of vertices but a matching, and hence |F| ≥ dn(n−2)

2 e. Moreover, it is easy to check directly that for
n = 3, 2 pairs are necessary and suffice, and so are 5 pairs for n = 4.

On the other hand, assume n ≥ 5, take a maximum matching M on V , and let F be the family
of all pairs of vertices besides those in M . Since |M | = bn

2 c, |F| = dn(n−2)
2 e. All the edges but those

of M are obtained directly from the queries. Since n ≥ 5, the center of the star can be identified by
these edges, and then the only edge that may be in the graph and was not asked is the edge in M

incident with the center, if there is such an edge in M . We can now decide whether this edge exists
or not by the size of the star that was found. 2

Note that the above upper bound holds for all Sk, where 3 ≤ k ≤ n− 2.
We now give some general upper and lower bounds on the minimum size of a family that solves

the Sk-problem. These bounds are tight up to some polylogn factor. From now on we assume,
throughout the section, that n is large.

Proposition 2.5 For every k, there exists a family F of size O(k3 log n) that solves the Sk-problem.

Proof: Let m = ck3 log n for some absolute constant c, and let F1, F2, ..., Fm be m random subsets of
V , chosen independently as follows. For every Fi, every v ∈ V is chosen to be in Fi independently with
probability 1

k . Let S1 and S2 be two stars of size k, such that |E(S1) \E(S2)| = |E(S2) \E(S1)| = 1.
Let u be the center of S1 and S2, let u1, ..., uk−1 be the other common vertices, and let v be the
additional vertex of S1, and w the additional vertex of S2. Fi distinguishes between S1 and S2 if and
only if u ∈ Fi, uj /∈ Fi for all 1 ≤ j ≤ k − 1, and exactly one vertex among v and w is in Fi. Thus

4



the probability that Fi distinguishes between S1 and S2 is

2
k2

(
1− 1

k

)k

= Ω
(

1
k2

)
.

Therefore, the probability that no Fi distinguishes between S1 and S2 is[
1− Ω

(
1
k2

)]m
< n−(2k+2)

provided c is sufficiently large. For two stars that differ in more edges, this probability is smaller.
The number of pairs of stars is smaller than n2k+2, and hence, there is a family F = {F1, F2, ..., Fm}
that solves the Sk-problem. 2

We show that the upper bound given in Proposition 2.5 is tight up to a factor of polylogn. More
precisely, we show that for every k ≤ n − 2, a family F that solves the Sk-problem either contains
(1− o(1))

(n
2

)
pairs, or it is of cardinality Ω( k3

polylogn).

Proposition 2.6 For every k ≤ n − 2, if F is a family that solves the Sk-problem, then F either
contains (1− o(1))

(n
2

)
pairs, or it is of cardinality at least Ω( k3

log2 n
).

Proof: Let F be a family that solves the Sk-problem. Then, for every u ∈ V and A,B ⊆ V \ {u}
such that |A| = 2, |B| = k− 1 and A∩B = ∅, there exists a set F ∈ F such that u ∈ F , |F ∩A| = 1
and F ∩B = ∅. Indeed, otherwise F would not distinguish between the two stars whose center is u,
which share the vertices of B, and where the additional vertex of one star is one vertex of A, and the
additional vertex of the other one is the other vertex of A. Denote by F0 the family of all sets F ∈ F
of size 2. Let m = c · n log n

k , and define F1 = {F ∈ F | 2 < |F | ≤ m}, and F2 = F \ (F0 ∪ F1). We
show that for any constant ε > 0, if |F0| ≤ (1− ε)

(n
2

)
then |F1 ∪F2| > c1ε

3 · k3

log2 n
for some constant

c1 that depends only on c. Suppose |F0| ≤ (1− ε)
(n
2

)
and |F1 ∪ F2| ≤ c1ε

3 · k3

log2 n
. For every u ∈ V ,

denote by Vu the set of vertices v ∈ V \{u} such that {u, v} /∈ F0. Let V ′ = {u ∈ V | |Vu| ≥ ε
2(n−1)}.

Since |F0| ≤ (1− ε)
(n
2

)
, |V ′| ≥ ε

2n. Otherwise, since the pairs of vertices that are not in F0 are pairs
{u, v} such that v ∈ Vu, and since v ∈ Vu if and only if u ∈ Vv, we have

|F0| =

(
n

2

)
− 1

2

∑
u∈V

|Vu|

=

(
n

2

)
− 1

2

∑
u∈V ′

|Vu|+
∑

u∈V \V ′

|Vu|


>

(
n

2

)
− 1

2

[
|V ′|(n− 1) + |V \ V ′| ε

2
(n− 1)

]

>

(
n

2

)
− 1

2

[
ε

2
n(n− 1) + n

ε

2
(n− 1)

]

= (1− ε)

(
n

2

)
.
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Choose uniformly a vertex u ∈ V ′, and then choose uniformly a subset A = {v, w} ⊆ Vu. Define
F ′

1 = {F ∈ F1 | u ∈ F, |F ∩A| = 1}. For each F ∈ F1

Pr(F ∈ F ′
1) ≤

|F |(|F | − 1)(n− |F |)
ε
2n
( ε

2
(n−1)

2

) ≤ 16
ε3

· |F |
2

n2
.

Therefore,

E[|F ′
1|] ≤

16
ε3

∑
F∈F1

|F |2

n2
≤ 16

ε3
|F1|

m2

n2
,

and hence, there is a choice of u and A such that

|F ′
1| ≤ 16

ε3
|F1|

m2

n2

≤ 16c1c
2 · k3

log2 n
· n2 log2 n

k2n2

≤ k

2
− 1

provided c1c
2 is sufficiently small. Thus, there exists a subset B1 ⊆ V \ ({u} ∪A) of size k

2 − 1 that
intersects every F ∈ F ′

1. Choose a random subset B2 ⊆ V of size k
2 . For every F ∈ F2

Pr(F ∩B2 = ∅) =

(n−|F |
k
2

)
(n

k
2

)
≤

(
1− |F |

n

) k
2

≤ e−
km
2n

= n−c2

for some constant c2 = Θ(c). Therefore, if c is sufficiently large, with high probability, u /∈ B2,
A∩B2 = ∅ and ∀F ∈ F2 F ∩B2 6= ∅. Denote B′ = B1∪B2. B′ ⊆ V \({u}∪A) and |B′| ≤ k−1. Let
B be an arbitrary extension of B′ to a subset of V \ ({u} ∪A) of size k − 1. Consider the following
two stars S1 and S2; u is the center of S1 and S2, they share the vertices of B, the additional vertex
of S1 is v, and the additional vertex of S2 is w. Since A was chosen from Vu, the pairs {u, v} and
{u, w} are not in F0, and thus no set in F0 can distinguish between S1 and S2. Neither can the sets
in F1 that do not contain u, nor those whose intersection with A is not of size 1. All other sets in
F1, i.e. sets F ∈ F1 such that u ∈ F , and |F ∩A| = 1, and all the sets in F2, contain a vertex of B,
so they cannot distinguish between these two stars either. Thus F cannot distinguish between S1

and S2, contradicting the assumption that it solves the Sk-problem. 2

We now prove a better lower bound for k ≤
√

n. This bound is tight up to a factor of log k. For
the proof of the this bound, we need a variant of a lemma proved in [8, 4].
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Definition 2.7 Let A be a family of subsets of a set S. We say that A is r-cover-free if no set in
A is contained in the union of any r other sets in A.

Lemma 2.8 Let S be a set of size m, and let A be a family of n subsets of S. Suppose A is
r-cover-free, where r ≤ 2

√
n. Then,

m >
r2 log(n− r

2)
10 log r

.

In [8], it is proved that for fixed r and large n ≥ n(r), log n
m ≤ 8 · log r

r2 . A simple modification of
that proof described below shows that the lemma as stated above holds for every r ≤ 2

√
n.

Proof: Let S and A be as defined in the lemma, and suppose that m ≤ r2 log(n− r
2
)

10 log r . As long as A
contains a set A of size greater than 2m

r , we remove A from A, and its members from S and from all
other sets in A. Since |S| = m, this process stops after at most r

2 steps. Thus, we now have a subset
S′ of S, and a family A′ of subsets of S′, where each subset is of size at most 2m

r . Denote by m′ the
size of S′, and by n′ the size of A′. Clearly, n′ ≥ n− r

2 . No set A ∈ A′ is contained in the union of
r
2 others, or otherwise, the original set from which A was obtained, would be contained in the union
of these r

2 sets and the sets that were removed. Thus, every set in A′ has a subset of size at most
d4m

r2 e that is not contained in any other set in A′. Otherwise, if there were a set A ∈ A′ for which
the above did not hold, then, since |A| ≤ 2m

r , the set A would have been covered by r
2 other sets in

A′, which is impossible. Therefore, there are n′ distinct sets of size at most d4m
r2 e. Thus,

n′ ≤
(

m′

d4m
r2 e

)
.

If 4m
r2 < 1 then the right hand side of this inequality is m′, and thus we have n′ ≤ m′, and hence

n ≤ m, contradicting the assumption that

m ≤
r2 log(n− r

2)
10 log r

≤ 4n

5
(1 + o(1)).

Thus, 4m
r2 ≥ 1, and we have

n− r

2
≤ n′ ≤

(
m′

d4m
r2 e

)
≤
(

m

d4m
r2 e

)
< 2

10m log r

r2 ,

and hence

m >
r2 log(n− r

2)
10 log r

,

contradicting the assumption. 2

We use the above lemma to improve the lower bound, for k ≤
√

n.

Proposition 2.9 For every k ≤
√

n, if F is a family the solves the Sk-problem, then |F| =
Ω(k3 log n

log k ).
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Proof: Let F be a family that solves the Sk-problem. Choose, randomly, A,B ⊆ V , such that
|A| = 2, |B| = k

2 − 1, and A ∩B = ∅. Define G = {F ∈ F | |F ∩A| = 1, F ∩B = ∅}. Clearly,

Pr(F ∈ G) =
|F |(n− |F |)(n

2

)
(n−|F |−1

k
2
−1

)
(n−2

k
2
−1

)
=

2|F |
n

(n−|F |
k
2

)
(n−1

k
2

)
≤ 2|F |

n

(
1− |F | − 1

n− 1

) k
2

≤ 2|F |
n

e−
k|F |
4n .

If |F | ≤ 4n
k then

Pr(F ∈ G) ≤ 8
k
.

If |F | > 4n
k , denote x = k|F |

4n . Since x > 1 we have

Pr(F ∈ G) ≤ 8
k
xe−x <

8
ek

.

Hence, for all F ,
Pr(F ∈ G) ≤ c

k

for some constant c, and thus the expected size of G is c · |F|
k . Therefore, there exists a choice of A and

B for which |G| ≤ c · |F|
k . Denote V ′ = V \ (A ∪B), and consider the family G′ = {F ∩ V ′ | F ∈ G}.

Since F solves the Sk-problem, for all u ∈ V ′, and every C ⊆ V ′ \ {u} of size k
2 , there is a set F ∈ G′

such that u ∈ F and F ∩ C = ∅. Otherwise, F would not distinguish between the two stars whose
center is u, that share the k − 1 vertices of B ∪ C, and for which the additional vertex of one of
them is one element of A, and the additional vertex of the other one is the other element of A. Let
m = |G′|, n′ = |V ′| = n − k

2 − 1, and let M be the m by n′ matrix whose rows are the incidence
vectors of the sets in G′. Now let us look at the columns of M as the incidence vectors of subsets
of another set, of size m. For every column i, and every set J of k

2 columns such that i /∈ J , there
exists a row in which the ith coordinate is 1, and for all j ∈ J , the jth coordinate is 0. Thus, no
subset corresponding to a column is contained in the union of k

2 subsets correspond to any other k
2

columns, and by Lemma 2.8,

|G′| = m >
(k
2 )2 log(n′ − k

4 )
10 log k

2

= Ω

(
k2 log n

log k

)
,

and hence

|F| ≥ Ω(k|G|) ≥ Ω(k|G′|) ≥ Ω

(
k3 log n

log k

)
.

2
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3 Complete Graphs

In this section we consider the case where the hidden graphs are complete graphs. Denote by Ck the
family of all graphs on V = {1, 2, . . . , n}, that consist of a copy of Kk, and n − k isolated vertices.
Let C = ∪n

k=2Ck.
In the following theorem, we prove lower and upper bounds on the minimum size of a family that

solves the C-problem.

Theorem 3.1 Any family that solves the C-problem is of size at least Ω(n log n), and there exists a
family of size O(n log2 n) that solves the C-problem.

Proposition 3.2 The minimum size of a family F that solves the C-problem is at least Ω(n log n).

Proof: Let F be a family that solves the C-problem. Let u ∈ V , and V1 = V \ {u}. In order to
distinguish between the complete graph on V1 and the complete graph on V1 ∪ {u}, F must contain
a query F1(u) = {u, v1} for some v1 ∈ V1. Now let V2 = V1 \ {v1}. In order to distinguish between
the complete graph on V2 and the complete graph on V2 ∪ {u}, F must contain a query F2(u) such
that u ∈ F2(u) and |F2(u) ∩ V2| = 1. Denote by v2 the vertex in F2(u) ∩ V2. We can continue in
this way and define for all 1 ≤ i ≤ n − 2 a set Vi = Vi−1 \ {vi−1}, and find a set Fi(u) ∈ F that
distinguishes between the complete graph on Vi and the complete graph on Vi∪{u}. Then u ∈ Fi(u),
and |Fi(u) ∩ Vi| = 1. Denote by vi the vertex in Fi(u) ∩ Vi. For all 1 ≤ i ≤ n− 2, |Vi| = n− i, and
since |Fi(u) ∩ Vi| = 1, |Fi(u)| ≤ i + 1. Furthermore, all the sets Fi(u) for 1 ≤ i ≤ n− 2 are distinct,
since the vertices vi are distinct, and vi ∈ Fi(u), but for all j < i, vi /∈ Fj(u). F contains these sets
Fi(u) for all u ∈ V . For every vertex u ∈ V , and all 1 ≤ i ≤ n− 2, assign a weight to the pair (u, i),
defined by w(u, i) = 1

|Fi(u)| . For a set F ∈ F , there are at most |F | vertices u (the vertices in F ) such
that F = Fi(u) for some i. Thus the total weight corresponding to a set F ∈ F is at most 1, that is,∑

(u,i):Fi(u)=F

w(u, i) ≤ |F | · 1
|F |

= 1.

Therefore,

|F| ≥
∑
F∈F

∑
(u,i):Fi(u)=F

w(u, i)

=
∑
u∈V

n−2∑
i=1

w(u, i)

=
∑
u∈V

n−2∑
i=1

1
|Fi(u)|

≥
∑
u∈V

n−2∑
i=1

1
i + 1

= Ω(n log n).
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2

Proposition 3.3 There exists a family F of cardinality O(n log2 n) that solves the C-problem.

Proof: We construct the family F recursively as follows. First, the set V is in F . Now partition
V into two halves V1 and V2 and find the part of the clique in each half. The clique is the union of
the cliques found in V1 and V2. This works as long as the part of the clique in each Vi is of size 0
or of size at least 2. But if the part of the clique in Vi is of size 1, then the answer to QVi is “no”,
and we need some additional queries to find this vertex. Suppose that the clique has one vertex in
V1. We show that we can find this vertex by the following queries. Assign distinct vectors of length
dlog |V1|e over {0, 1} to the vertices in V1. For all 1 ≤ i ≤ dlog |V1|e, j ∈ {0, 1} and u ∈ V2, we have
the following set F (i, j, u) = {v ∈ V1 | the ith bit of v is j} ∪ {u} in F . If the answer to QV is “yes”
and the answer to QV1 is no, then there is at least one vertex u of the clique in V2. If there are no
vertices of the clique in V1 then the answers to all QF (i,j,u) are “no”. Otherwise, there is precisely
one vertex v of the clique in V1. The answer to QF (i,j,u) is “yes” if and only if u is in the clique,
and the ith bit of v is j. Since there is at least one vertex of the clique in V2, we can obtain v from
these queries. We should have similar queries for the case that V2 contains one vertex of the clique.
Denote by f(n) the number of queries needed for n vertices. Then, by the above discussion,

f(n) ≤ 4 · n

2
· log

n

2
+ 2f(

n

2
) + 1 = O(n log2 n).

2

We now give upper and lower bounds for cliques of a given size. These results are tight up to a
factor of polylogn for all admissible sizes.

Theorem 3.4 For every k, there exists a family F of size O(k2 log n) that solves the Ck-problem,
and every family that solves the Ck-problem either contains Ω(n) pairs, or it is of size at least Ω( k2

log n).

Moreover, for all k ≤ n
1
3 , the size of any family that solves the Ck-problem is at least Ω(k2 log n

log k ), and
for all k ≤

√
n it is at least Ω(k2). In addition, for all s, there exists a family of size (s + 1)dn

2 e that
solves the Cn−s-problem.

The best bounds we have, for various values of k, are summarized in Table 2. In the rest of this
section we prove these results.

Proposition 3.5 For every k, there exists a family F of size O(k2 log n) that solves the Ck-problem.

Proof: Let m = ck2 log n for some absolute constant c, and let F1, F2, ..., Fm be m random subsets
of V , chosen independently as follows. For every Fi, every v ∈ V is chosen to be in Fi independently
with probability 1

k . Let C1 and C2 be two complete graphs of size k such that |V (C1) \ V (C2)| =
|V (C2) \ V (C1)| = 1. Let v1, ..., vk−1 be the common vertices of C1 and C2, and let ui be the
additional vertex of Ci for i = 1, 2. Fi distinguishes between C1 and C2 if and only if exactly one

10



Table 2: Bounds on the size of a family that solves the Ck-problem.

k Lower bound Upper bound

k ≤ n
1
3 Ω(k2 log n

log k ) O(k2 log n)

n
1
3 < k ≤

√
n Ω(k2) O(k2 log n)

√
n < k <

√
n log n Ω( k2

log n) O(k2 log n)
√

n log n ≤ k ≤ n− log2 n Ω(n) O(n log2 n)

k = n− s, s < log2 n Ω(n) (s + 1)dn
2 e

vertex among u1 and u2, and exactly one vertex among v1, ..., vk−1 are in Fi. Thus the probability
that Fi distinguishes between C1 and C2 is

2
k
· k − 1

k

(
1− 1

k

)k−1

= Ω
(

1
k

)
.

Therefore, the probability that no Fi distinguishes between C1 and C2 is[
1− Ω

(
1
k

)]m
≤ n−2k

for an appropriate value of c. For two cliques that differ in more vertices, this probability is smaller.
The number of pairs of cliques is smaller than n2k, and hence, there is a family F = {F1, F2, ..., Fm}
that solves the Ck-problem. 2

Proposition 3.6 For every k, if F is a family the solves the Sk-problem, then F either contains
Ω(n) pairs, or it is of cardinality at least Ω( k2

log n).

Proof: Clearly, we may assume that k2 > log n, since otherwise there is nothing to prove. Let F
be a family that solves the Ck-problem. Then, for all A,B ⊆ V such that |A| = 2, |B| = k − 1 and
A ∩ B = ∅, there exists a set F ∈ F such that |F ∩ A| = 1 and |F ∩ B| = 1. Indeed, otherwise
F would not distinguish between the complete graph on B and one vertex of A, and the complete
graph on B and the other vertex of A. Denote by F0 the family of all sets F ∈ F of size 2. Let
m = c · n log n

k , and define F1 = {F ∈ F | 2 < |F | ≤ m}, and F2 = F \ (F0 ∪ F1). We show that
if, say, |F0| ≤ 1

10n then |F1 ∪ F2| > c1 · k2

log n for some constant c1 that depends only on c. Suppose

|F0| ≤ 1
10n and |F1 ∪ F2| ≤ c1 · k2

log n . Choose uniformly a subset A = {u, v} ⊆ V , and define
F ′

1 = {F ∈ F1 | |F ∩A| = 1}. For each F ∈ F1

Pr(F ∈ F ′
1) = 2 · |F |

n
· n− |F |

n− 1
≤ 2 · |F |

n

11



Therefore,

E[|F ′
1|] ≤ 2

∑
F∈F1

|F |
n

≤ 2|F1|
m

n
.

By Markov’s inequality, the probability that |F ′
1| > 4|F1|mn is at most 1

2 . Since |F0| ≤ 1
10n, the

probability that there is a set F ∈ F0 such that F ∩A 6= ∅ is less than 2
5 . Thus, there exists a choice

of A such that for all F ∈ F0, F ∩A = ∅ and |F ′
1| ≤ 4|F1|mn . For such a choice of A, and appropriate

values of c and c1,

|F ′
1| ≤ 4|F1| ·

m

n

≤ 4c1c ·
k2

log n
· n log n

kn

≤ k − 1
4

.

Thus, there exists a subset B1 ⊆ V \A of size k−1
2 such that for every F ∈ F ′

1, |F ∩B1| ≥ 2. Choose
a random subset B2 ∈ V of size k−1

2 . For all F ∈ F2

Pr(|F ∩B2| ≤ 1) =

(n−|F |
k−1
2

)
( n

k−1
2

) +
k − 1

2
· |F |

n
·

( n−|F |
k−1
2

−1

)
( n−1

k−1
2

−1

)
≤

(
1− |F |

n

) k−1
2

+
k − 1

2
· |F |

n
·
(

1− |F | − 1
n− 1

) k−1
2

−1

≤ e−
k−1
2

·m
n +

k − 1
2

· n

n
· e−( k−1

2
−1)m−1

n−1

≤ n−c2

for some constant c2 = Θ(c). Therefore, if c is sufficiently large, then, with high probability, A∩B2 =
∅ and for every F ∈ F2, |F ∩ B2| ≥ 2. Denote B′ = B1 ∪ B2. B′ ⊆ V \ A and |B′| ≤ k − 1. Let B

be an arbitrary extension of B′ to a subset of V \A of size k − 1. Let C1 be the complete graph on
B ∪ {u}, and let C2 be the complete graph on B ∪ {v}. Since for every F ∈ F0 u, v /∈ F , no set in
F0 can distinguish between C1 and C2. Neither can sets in F1 that contain both u and v, or that
contain none of them. All other sets in F1, i.e. sets that contain exactly one vertex among u and v,
and all the sets in F2, contain at least two vertices of B, so they cannot distinguish between these
two cliques either. Thus F cannot distinguish between C1 and C2, contradicting the assumption
that it solves the Ck-problem. 2

We now prove a better lower bound for k ≤ n
1
3 . This bound is tight up to a factor of log k.

Lemma 3.7 Let S be a set of size m, and let A be a family of n subsets of S. Suppose that there
are no distinct A,B1, ..., Br, C1, ..., Cr ∈ A for which

A ⊆
r⋃

i=1

Bi

12



and

A ⊆
r⋃

i=1

Ci,

where r ≤ n
1
3 . Then m = Ω( r2 log n

log r ).

Proof: Let B = ∅. As long as there exist A,B1, ..., Br ∈ A such that

A ⊆
r⋃

i=1

Bi,

remove A,B1, ..., Br from A, and add A to B. Let A′ be the family obtained from A at the end
of this process, and denote the size of B by l. Then, |A′| = n − l(r + 1), and both A′ and B are
r-cover-free. A′ is clearly r-cover-free, or otherwise the above process would not stop. B is also
r-cover-free, because if there were A,C1, ..., Cr ∈ B such that

A ⊆
r⋃

i=1

Ci,

then, there are also B1, ..., Br ∈ A, that were removed from A together with A, such that

A ⊆
r⋃

i=1

Bi,

contradicting the assumption. If l ≥ n
2
3

4 , then, since r ≤ n
1
3 , we have by Lemma 2.8,

m >
r2 log(l − r

2)
10 log r

= Ω

(
r2 log n

log r

)
.

Otherwise l < n
2
3

4 , and thus, since r < n
1
3 , |A′| = n− l(r + 1) > n

2 . Hence, by Lemma 2.8,

m >
r2 log(n

2 −
r
2)

10 log r
= Ω

(
r2 log n

log r

)
.

2

Proposition 3.8 For every k ≤ n
1
3 , if F is a family that solves the Ck-problem, then |F| =

Ω(k2 log n
log k ).

Proof: Let F be a family that solves the Ck-problem. Define m = |F|, and let M be the m by
n matrix whose rows are the incidence vectors of the sets in F . Consider the columns of M as
the incidence vectors of subsets of another set, of size m. For 1 ≤ i ≤ n, let Gi be the subset
corresponding to the ith column of M . Define the family G as follows. G = {G2i−1∪G2i | 1 ≤ i ≤ n

2 }.
We claim that there are no distinct sets A,B1, ..., B k−1

4
, C1, ..., C k−1

4
∈ G, such that

A ⊆
k−1
4⋃

i=1

Bi (1)
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and

A ⊆
k−1
4⋃

i=1

Ci. (2)

Suppose there were such sets. A is the union of two subsets corresponding to two distinct columns
of M . Let u and v be the vertices corresponding to these columns. Similarly, let w1, ..., wk−1 be the
vertices corresponding to B1, ..., B k−1

4
, C1, ..., C k−1

4
. The members of A are the queries that contain

u or v. Since (1) and (2) hold, each such query contains at least two vertices from w1, ..., wk−1.
Thus, no query distinguishes between the complete graph on u,w1, ..., wk−1 and the complete graph
on v, w1, ..., wk−1. Hence, there are no such sets in G, and therefore, by Lemma 3.7, with r = k−1

4

and A = G,

|F| = m = Ω

(
k2 log n

log k

)
.

2

We now prove that for all nΩ(1) ≤ k ≤
√

n, any family that solves the Ck-problem is of size at
least Ω(k2).

Definition 3.9 Let A be a subset of a set S, and let A be a family of subsets of S. We say that A

is covered twice by A if for all a ∈ A, there are at least two sets in A that contain a.

Lemma 3.10 Let S be a set of size m, and let A be a family of n subsets of S. Suppose that no set
in A is covered twice by any other r sets in A, where nΩ(1) ≤ r ≤

√
n. Then m = Ω(r2).

Proof: Suppose m ≤ εr2, for some small constant ε > 0. We show that if ε is sufficiently small,
then there is a set A ∈ A that is covered twice by some other r sets in A. As long as there exists
a ∈ S that belongs to one or two sets in A, remove these sets from A. After removing these sets, a

belongs to no set in A. Therefore, this process stops after at most m steps, and then every a ∈ S

belongs to zero or at least three sets. Let A′ be the family of the remaining sets, and denote its size
by n′. Thus n′ ≥ n − 2m ≥ n − 2εr2 ≥ (1 − 2ε)n. If there exists a set A ∈ A′ such that |A| ≤ r

2 ,
then it is covered twice by a family of at most r sets in A′ \ {A}, consisting of two arbitrarily chosen
sets that contain each member of A. Suppose now that every set A ∈ A′ is of size greater than r

2 .
Choose randomly r

2 sets B1, ..., B r
2
∈ A′. Let C be the set of all a ∈ S that belong to at most one set

from B1, ..., B r
2
. Now choose randomly another set A ∈ A′. If |A ∩ C| ≤ r

4 , then for all a ∈ A ∩ C,
choose two sets in A′ \ {A} that contain a. These sets, together with B1, ..., B r

2
, form a family of at

most r sets that cover A twice. We now show that E[|A∩C|] ≤ r
5 , and hence there exists a choice of

B1, ..., B r
2

and A 6= B1, ..., B r
2

for which |A ∩ C| ≤ r
4 . Therefore A is covered twice by r other sets,

contradicting the assumption. Let a ∈ S, and let k be the number of sets in A′ that contain a. The
probability that a ∈ A ∩ C is at most

k

n′

(n′−k
r
2

)
(n′

r
2

) +
k
(n′−k

r
2
−1

)
(n′

r
2

)
 =

k

n′

(n′−k
r
2

)
(n′

r
2

) +
kr

2n′

(n′−k
r
2
−1

)
(n′−1

r
2
−1

)
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≤ k

n′

(
1− k

n′

) r
2

+
k2r

2n′2

(
1− k − 1

n′ − 1

) r
2
−1

≤ k

n′ e
− kr

2n′ +
k2r

2n′2 e−
kr
4n′ .

We now show that this probability is at most c
r for some constant c. Let us first consider the

term k
n′ e

− kr
2n′ . If k ≤ 2n′

r then this term is at most 2
r . If k > 2n′

r , denote x = kr
2n′ . Since x > 1 we

have k
n′ e

− kr
2n′ = 2

rxe−x < 2
er . Consider now the term k2r

2n′2 e−
kr
4n′ . If k ≤ 8n′

r then this term is at most
32
r . If k > 8n′

r then denote x = kr
4n′ . Then x > 2, and k2r

2n′2 e−
kr
4n′ = 8

rx2e−x. It is easy to check that
x2e−x is decreasing for all x > 2, and hence 8

rx2e−x < 32
e2r

.
Thus the probability that a ∈ A ∩ C is at most c

r for some constant c. Therefore, we have

E[|A ∩ C|] ≤ cm

r
≤ cεr2

r
≤ r

5
provided ε is sufficiently small, completing the proof of the lemma. 2

Proposition 3.11 For every nΩ(1) ≤ k ≤
√

n, if F is a family that solves the Ck-problem, then
|F| = Ω(k2).

Proof: For nΩ(1) ≤ k ≤ n1/3 the result follows from Proposition 3.8. We thus assume that k > n1/3.
Let F be a family that solves the Ck-problem. Define m = |F|, and let M be the m by n matrix
whose rows are the incidence vectors of the sets in F . Consider the columns of M as the incidence
vectors of subsets of another set, of size m. For 1 ≤ i ≤ n, let Gi be the subset corresponding to
the ith column of M . Define G = {G2i−1 ∪ G2i | 1 ≤ i ≤ n

2 }. We claim that there are no distinct
sets A,B1, ..., B k−1

2
∈ G, such that A is covered twice by B1, ..., B k−1

2
. Suppose there were such sets.

A is the union of two subsets corresponding to two distinct columns of M . Let u and v be the
corresponding vertices. Similarly, let w1, ..., wk−1 be the vertices corresponding to B1, ..., B k−1

2
. The

members of A are the queries that contain u or v. Since A is covered twice by B1, ..., B k−1
2

, each
such query contains at least two vertices from w1, ..., wk−1. Thus, no query distinguishes between
the complete graph on u, w1, ..., wk−1 and the complete graph on v, w1, ..., wk−1. Hence, there are no
such sets in G, and therefore, by Lemma 3.10,

|F| = m = Ω(k2).

2

We conclude the section with a simple upper bound, which improves our estimate for cliques that
contain almost all the vertices.

Proposition 3.12 For every s, there exists a family of size at most

(s + 1)dn
2
e

that solves the Cn−s-problem.

Proof: For each u ∈ V , ask s + 1 pairs that contain u. u is in the clique if and only if the answer
to at least one of these queries is “yes”. 2
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4 General Graphs

In this section we consider families that contain all the graphs on V isomorphic to a graph G. Denote
by HG the family of all graphs isomorphic to G.

Theorem 4.1 Let G = (V,E) be a graph on n vertices, and suppose that there are three vertices
u, v, w ∈ V , such that for every two of them, the sets of their neighbours except these vertices
themselves are distinct, i.e. N(u) \ {v} 6= N(v) \ {u}, N(u) \ {w} 6= N(w) \ {u}, and N(v) \ {w} 6=
N(w)\{v}. Then, the size of any family that solves the HG-problem is at least Ω( n2

α2(G)
), where α(G)

is the maximum size of an independent set in G.

Proof: For any two vertices x, y ∈ V , denote by A(x, y) the set of vertices z ∈ V \ {x, y} such that
z is a neighbour of both x and y, or of none of them. We show that there are two vertices among
u, v, and w, for which the size of this set is at least 1

3n − 1. Suppose that A(u, v) < 1
3n − 1. Then,

V \ (A(u, v)∪{u, v, w}) > 2
3n− 2, and each one of these vertices is a neighbour of exactly one vertex

among u and v. Thus, each one of these vertices is in A(u, w) or in A(v, w), and hence at least one
of these sets is of size at least 1

3n− 1. Assume, without loss of generality, that |A(u, v)| ≥ 1
3n− 1.

Let F be a family that solves the HG-problem, and let α = α(G). Assume that |F| < n2

12α2 . Every
set F ∈ F is of size at most α, or otherwise the answer to QF is “yes” (and is known in advance).
For every x ∈ V , denote by f(x) the number of sets F ∈ F such that x ∈ F .

∑
x∈V

f(x) =
∑
F∈F

|F | ≤ α|F| < n2

12α
. (3)

Let V ′ = {x ∈ V | f(x) < n
6α}. Then |V ′| ≥ n

2 , since otherwise

∑
x∈V

f(x) ≥
∑

x∈(V \V ′)

f(x) ≥ n

2
· n

6α
=

n2

12α
,

contradicting (3). For x ∈ V ′, the number of vertices z ∈ V such that there exists a set F ∈ F that
contains both x and z is at most ∑

F :x∈F

|F | ≤ f(x)α <
n

6
.

Let x, y ∈ V ′, and let A be the set of all vertices z ∈ V such that there exists a set F ∈ F that
contains x or y, and z.

|A| ≤
∑

F :x∈F

|F |+
∑

F :y∈F

|F | < n

3
.

Let G1 be a graph isomorphic to G, where u is mapped to x, v is mapped to y, and only vertices
from A(u, v) are mapped into A. Let G2 be the graph in which u is mapped to y, v is mapped to x,
and the rest of it is identical to G1. The only queries that could distinguish between G1 and G2 are
queries QF where F contains x or y, but then all the other vertices in F are in A(u, v), and thus,
the answer to QF is the same for G1 and G2. Therefore, F cannot distinguish between G1 and G2,
contradicting the assumption that it solves the HG-problem. 2
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Corollary 4.2 Let G = G(n, 1
2) be the random graph on n vertices. Then, almost surely, any family

that solves the HG-problem is of size at least Ω( n2

log2 n
).

Proof: The corollary follows from Theorem 4.1, since, almost surely, α(G) = O(log n) (see, for
example, [3] or [2]), and since obviously, there are, almost surely, three vertices u, v and w with
distinct sets of neighbours, as defined in the theorem. 2

5 Concluding Remarks

• It will be interesting to close the polylogarithmic gaps between the upper and the lower bounds
proved in this paper.

• Another intriguing challenge is to obtain a general way to estimate, for every graph G, the
number of queries needed to identify a hidden graph isomorphic to G. In particular, the
problem of characterizing all graphs for which the trivial upper bound of O(n2) is best possible
seems interesting. Our results enable us to prove an Ω(n2) lower bound for the number of
queries required to identify a hidden copy of any graph with at least one isolated vertex,
containing a vertex of degree 1 which is adjacent to a vertex of high degree. We omit the
details.

• The problems considered here can be investigated when more than one round is allowed, and
in case the algorithms are fully adaptive.
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