Set systems with no union of cardinality 0 modulo

N. Alon, IBM Almaden and Tel Aviv University
D. Kleitman, MIT
R. Lipton, Princeton University
R. Meshulam, MIT
M. Rabin, Hebrew University and Harvard University
J. Spencer, Courant Institute

Abstract

Let q be a prime power. It is shown that for any hypergraph $\mathcal{F}=\left\{F_{1}, \ldots, F_{d(q-1)+1}\right\}$ whose maximal degree is d, there exists $\emptyset \neq$ $\mathcal{F}_{0} \subset \mathcal{F}$, such that $\left|\bigcup_{F \in \mathcal{F}_{0}} F\right| \equiv 0 \quad(\bmod q)$.

For integers $d, m \geq 1$ let $f_{d}(m)$ denote the minimal t such that for any hypergraph $\mathcal{F}=\left\{F_{1}, \ldots, F_{t}\right\}$ whose maximal degree is d, there exists $\emptyset \neq \mathcal{F}_{0} \subset \mathcal{F}$, such that $\left|\bigcup_{F \in \mathcal{F}_{0}} F\right| \equiv 0 \quad(\bmod m)$.
Here we determine $f_{d}(m)$ when m is a prime power, and remark on the general case.

Example: Let $A_{i j} 1 \leq i \leq m-1,1 \leq j \leq d$, be pairwise disjoint sets, each of cardinality m, and let $\left\{v_{1}, \ldots, v_{m-1}\right\}$ be disjoint from all the $A_{i j}$'s. Now $\mathcal{F}=\left\{A_{i j} \cup\left\{v_{i}\right\}: 1 \leq i \leq m-1,1 \leq j \leq d\right\}$ satisfies $|\mathcal{F}|=d(m-1)$ but $\left|\bigcup_{F \in \mathcal{F}_{0}}\right| \not \equiv 0(\bmod m)$ for any $\emptyset \neq \mathcal{F}_{0} \subset \mathcal{F}$. Hence $f_{d}(m) \geq d(m-1)+1$.

Theorem 1: If q is a prime power then $f_{d}(q)=d(q-1)+1$.
Proof: Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{t}\right\}, t=d(q-1)+1$, be a hypergraph of degree $\leq d$, and consider the polynomial:

$$
p\left(x_{1}, \ldots, x_{t}\right)=\sum_{\emptyset \neq I \subset[t]}(-1)^{|I|+1} \cdot\left|\bigcap_{i \in I} F_{i}\right| \cdot \prod_{i \in I} x_{i} .
$$

We shall need the following result of Baker and Schmidt [2]. We sketch a short proof based on a method of Alon, Friedland and Kalai [1]:

Theorem 2 (Baker-Schmidt [2]): Let $q=p^{r}, p$ prime. If $t \geq$ $d(q-1)+1$ and $h\left(x_{1}, \ldots, x_{t}\right) \in \mathbf{Z}\left[x_{1}, \ldots, x_{t}\right]$ satisfies $h(0)=0$, and $\operatorname{deg} h \leq d$, then there exists an $0 \neq \epsilon \in\{0,1\}^{t}$ such that $h(\epsilon) \equiv 0$ $(\bmod q)$.

Proof: Suppose $h(\epsilon) \not \equiv 0(\bmod q)$ for all $0 \neq \epsilon \in\{0,1\}^{t}$, and let $u(x)=\prod_{i=1}^{q-1}(h(x)-i)$. Denote by s the smallest power of p that does not divide $(q-1)$!, i.e., $s=p \cdot \max \left\{p^{r}: p^{r} \mid(q-1)\right.$! $\}$.

The proof of the following simple fact is omitted:
Lemma 1: For every integer $a, \prod_{i=1}^{q-1}(a-i) \equiv 0 \quad(\bmod s)$ iff $a \not \equiv 0$ $(\bmod q)$.

By Lemma $1 u(\epsilon) \equiv 0(\bmod s)$ for all $0 \neq \epsilon \in\{0,1\}^{t}$, and $u(0) \not \equiv 0$ $(\bmod s)$. Let $\bar{u}(x)$ denote the multilinear polynomial obtained from $u(x)$ by replacing each monomial $x_{i_{1}}{ }^{\alpha_{1}} \cdots x_{i_{j}}{ }^{\alpha_{j}}, \alpha_{1}, \ldots, \alpha_{j} \geq 1$, by $x_{i_{1}} \cdots x_{i_{j}}$.
The following Lemma can be easily proved by induction on t :
Lemma 2 [1]: If $g\left(x_{1}, \ldots, x_{t}\right)$ is a multilinear polynomial in $\mathbf{Z}\left[x_{1}, \ldots, x_{t}\right]$ and $g(\epsilon) \equiv 0 \quad(\bmod s)$ for all $\epsilon \in\{0,1\}^{t}$, then $g\left(x_{1}, \ldots, x_{t}\right) \equiv 0$ $(\bmod s)$

Now $g(x)=\bar{u}(x)-u(0) \cdot \prod_{i=1}^{t}\left(1-x_{i}\right)$ satisfies the assumptions of Lemma 2, hence $\bar{u}(x) \equiv u(0) \cdot \prod_{i=1}^{t}\left(1-x_{i}\right) \quad(\bmod s)$, and so $\operatorname{deg} \bar{u} \geq t$. But $\operatorname{deg} \bar{u} \leq \operatorname{deg} u=(\operatorname{deg} h)^{q-1} \leq d(q-1)<t$, a contradiction.

Returning to the proof of Theorem 1, we note that $\operatorname{deg} p \leq d$ and $p(0)=0$. Hence by Theorem $2 p(\epsilon) \equiv 0(\bmod q)$ for some $0 \neq \epsilon \in$ $\{0,1\}^{t}$. Now by Inclusion - Exclusion $p(\epsilon)=\left|\bigcup_{\left\{i: \epsilon_{i}=1\right\}} F_{i}\right|$, and so $\left|\bigcup_{\left\{i: \epsilon_{i}=1\right\}} F_{i}\right| \equiv 0 \quad(\bmod q)$.

Following [2] let $g_{d}(m)$ denote the minimal t such that for any $h \in$ $\mathbf{Z}\left[x_{1}, \ldots, x_{t}\right]$ which satisfies $h(0)=0$, and $\operatorname{deg} h \leq d$, there exists an $0 \neq \epsilon \in\{0,1\}^{t}$ such that $h(\epsilon) \equiv 0 \quad(\bmod m)$. The proof of Theorem 1 shows that $f_{d}(m) \leq g_{d}(m)$. Hence Theorem 6 in [2], implies that for any $m, f_{d}(m) \leq C(d) \cdot m^{2^{d} d!}$.

We next prove the following proposition that shows that the number theoretic problem of determining $g_{d}(m)$ is equivalent to the combinatorial problem of determining $f_{d}(m)$.

Proposition: $f_{d}(m)=g_{d}(m)$.
Proof: It suffices to show that for any multilinear polynomial $h \in$ $\mathbf{Z}_{m}\left[x_{1}, \ldots, x_{t}\right]$ of degree $\leq d$ which satisfies $h(0)=0$, there exists a hypergraph $\mathcal{F}=\left\{F_{1}, \ldots, F_{t}\right\}$ of degree $\leq d$ such that h is realized by \mathcal{F}, i.e.,

$$
h\left(x_{1}, \ldots, x_{t}\right)=\sum_{\emptyset \neq I \subset[t]}(-1)^{|I|+1} \cdot\left|\bigcap_{i \in I} F_{i}\right| \cdot \prod_{i \in I} x_{i} \quad(\bmod m) .
$$

For any $\emptyset \neq J \subset[t]$, the polynomial

$$
u_{J}(x)=1-\prod_{j \in J}\left(1-x_{j}\right)=\sum_{\emptyset \neq I \subset J}(-1)^{|I|+1} \cdot \prod_{i \in I} x_{i}
$$

can clearly be realized by a hypergraph with maximal degree $|J|$. (Simply take $|J|$ pairwise disjoint sets of size m each and add a common point to all of them). To complete the proof it suffices to show that if h and g are realized by hypergraphs of degree $\leq d$, then so is $h+g$, and that any multilinear polynomial of degree $\leq d$ in $\mathbf{Z}_{m}\left[x_{1}, \ldots, x_{t}\right]$ that vanishes at 0 can be written as a linear combination (with \mathbf{Z}_{m} coefficients) of u_{J} 's with $J \subset[t]$ and $0<|J| \leq d$

If h is realized by the hypergraph $\mathcal{H}=\left\{H_{1}, \ldots, H_{t_{1}}\right\}$ and g is realized by $\mathcal{G}=\left\{G_{1}, \ldots, G_{t_{2}}\right\}$ and the degrees of both hypergraphs are at most d we first observe that we may assume that $t_{1}=t_{2}$ since otherwise we can add sufficiently many empty edges to one of the hypergraphs. Put $t=t_{1}=t_{2}$, assume the hypergraphs are realized on pairwise disjoint sets of vertices, and consider the hypergraph $\mathcal{F}=$ $\left\{H_{1} \cup G_{1}, \ldots, H_{t} \cup G_{t}\right\}$. It is easy to check that this hypergraph realizes the polynomial $h+g$.

It remains to show that any multilinear polynomial of degree $\leq d$ in $\mathbf{Z}_{m}\left[x_{1}, \ldots, x_{t}\right]$ that vanishes at 0 can be written as a linear combination (with \mathbf{Z}_{m} coefficients) of u_{J} 's with $J \subset[t]$ and $0<|J| \leq d$. Each such
polynomial can obviously be written as a linear combination of the above polynomials u_{J} and 1 . However, the coefficient of 1 must be 0 since our polynomial, as well as all the polynomials u_{J} vanish when all the variables are 0 .

It is worth mentioning that some (very weak) upper bounds for $f_{d}(m)$ can be obtained by applying Ramsey Theory. By the last proposition the same bounds follow for $g_{d}(m)$. Although these estimates are (much) weaker than the best known bounds for $g_{d}(m)$ this shows that it is conceivable that the number theoretic function $g_{d}(m)$ can be studied by purely combinatorial methods.

We conclude the note mentioning that by considering the dual of our Theorem 1 (or by applying a similar proof) we can prove the follwing result, whose detailed proof is left to the reader.

Theorem 3: If q is a prime power then any hypergraph with $n>$ $(q-1) d$ vertices and with e edges, each of size at most d, contains an induced sub-hypergraph on less than n vertices whose number of edges is congruent to e modulo q.

References

[1] N. Alon, S. Friedland and G. Kalai, Regular subgraphs of almost regular graphs, J. Combinatorial Theory, Ser. B. 37 (1980), 7991.
[2] R. C. Baker and W. M. Schmidt, Diophantine problems in variables restricted to the values 0 and 1, J. Number Theory 12 (1980), 460-486.

