
Optimizing Budget Allocation Among Channels and Influencers

Noga Alon∗ Iftah Gamzu† Moshe Tennenholtz‡

Abstract

Brands and agencies use marketing as a tool to influence customers. One of the major decisions
in a marketing plan deals with the allocation of a given budget among media channels in order
to maximize the impact on a set of potential customers. A similar situation occurs in a social
network, where a marketing budget needs to be distributed among a set of potential influencers
in a way that provides high-impact. We introduce several models to capture the above scenarios,
and study the corresponding computational problems. As these problems are NP-hard, we focus
on developing efficient approximation algorithms. Notably, some of our algorithms are optimal.

∗Tel Aviv University and Microsoft Israel R&D Center. Email: nogaa@tau.ac.il.
†Tel Aviv University and Microsoft Israel R&D Center. Email: iftah.gamzu@cs.tau.ac.il.
‡Microsoft Israel R&D Center and Technion-Israel Institute of Technology. Email: moshet@microsoft.com.

mailto:nogaa@tau.ac.il
mailto:iftah.gamzu@cs.tau.ac.il
mailto:moshet@microsoft.com

1 Introduction

Brands and agencies use marketing as a tool to influence customers and make them into loyal buyers.
One of the major decisions in a marketing plan deals with the allocation of a given budget among
media channels in order to maximize the impact on a set of potential customers. Several examples of
media channels are TV, newspapers, billboards, and websites. In many cases, a fine-grained decision
is needed regarding the budget allocated within a specific channel, e.g., how to distribute the budget
for radio commercials among the different major radio channels. In some cases, there are additional
constraints on the amount of budget that can be spent on any specific outlet.

An underlying assumption is that the amount of budget allocated to a channel determines the
chances of influencing particular customers. As a result, one may model this setting as a bipartite
graph in which one side is the set of possible marketing channels, and the other is the population
of customers. An edge between channel i and a customer j indicates that j may influence i with
some probability that depends on the budget allocated to j. We emphasize that a similar situation
occurs in a social network, where a marketing budget needs to be distributed among a set of potential
influencers in a way that provides high-impact. Given that an influencer can effect the decisions of
her neighbors in the network, and that her level of effort depends on the budget allocated to her, we
get a setting that is similar to the one described above.

Both of the above-mentioned scenarios deal with the allocation of budget among different chan-
nels. A convenient way for modelling the fact that the probability of a channel to influence a customer
depends on its allocated budget is by focusing on discrete budgets. The allocation of k units of bud-
get to channel j corresponds to k attempts made by channel j to influence each of its corresponding
customers. We note that each such attempt may have a different probability to influence a customer.
These probabilities depend on the underlying model, as formally described in Subsection 1.1. We
emphasize that all these models leave much freedom in the way one measures the expected number
of customers that are influenced by a particular budget allocation. We like to point out two major
differences between our models and previous work (e.g., [8, 17, 18, 22, 2]):

1. Budgets – previous work on so-called budget allocation in similar contexts have only focused
on the selection of a subset of influencing nodes. In particular, the allocation of budget among
nodes was not treated. We believe this to be a central issue, essential in the context of an
algorithmic approach to marketing.

2. Propagation of influence – our work does not deal with the propagation of influence, which may
happen in social networks. We emphasize that this is due to the fact that a major motivation
for our work is the distribution of budget among marketing channels, although we believe that
our models are applicable to social networks as well.

1.1 The influence models

We primarily focus on two models: a source-side influence model and a target-side influence model.
The common setting in both models consists of a bipartite graph G = (S, T,E), where S and T are
collections of source and target nodes, respectively, and E ⊆ S × T is an edge set. Each source node
s has a capacity cs ∈ N+, and there is a (global) budget B ∈ N+. The objective is to distribute the
budget among the source nodes in a discrete way that respects the capacities of nodes, and maximizes
the expected number of target nodes that become active (or influenced). Specifically, each source
node s should be allocated a budget bs ∈ {0, 1, . . . , cs} such that

∑
s∈S bs ≤ B. The process in which

target nodes become active depends on the underlying model:

1

• Source-side influence model – Each source node s ∈ S has a probability vector ps, where
ps = 〈ps1, . . . , pscs〉 ∈ [0, 1]cs . A source node s that is allocated a budget of bs makes bs indepen-
dent trials to activate each neighboring target node t. The probability that t is activated by s
in the ith trial is psi . Thus, if the set of source nodes Γ(t) designates the neighbors of t in G
then the probability that t becomes active is

1−
∏

s∈Γ(t)

bs∏

i=1

(1− psi) .

We note that all the trials that s makes (to all its neighboring nodes) are independent.

• Target-side influence model – Each target node t ∈ T has a probability vector pt, where
pt = 〈pt1, . . . , ptB〉 ∈ [0, 1]B. Suppose the set of source nodes Γ(t) designates the neighbors of t
in G, and let Bt =

∑
s∈Γ(t) bs. Then, the probability that t becomes active is

1−
Bt∏

i=1

(1− pti) .

We emphasize that the probability that a target node t becomes active is a function of the
overall budget Bt allocated to its neighbors.

1.2 Our results

We study both influence models and attain the following results:

Source-side influence model. We devise a efficient deterministic algorithm that has an approx-
imation ratio of 1 − 1/e ≈ 0.632 for influence maximization in the source-side model. We observe
that this result is best possible under the assumption that P 6= NP. Specifically, this result matches
the NP-hardness bound of 1 − 1/e, which already holds for the special setting of maximum cov-
erage [9]. We also discuss several generalizations of our model and techniques. In particular, we
demonstrate that our approach can be employed in a general setting where the underlying graph is
arbitrary and each source node has a different influence on each of its neighbors. This latter setting
is well-motivated as it may abstract the question of influence maximization in social networks.

Target-side influence model. We demonstrate that influence maximization in this model extends
both the maximum edge biclique and the dense k-subgraph problems. Consequently, we attain
among some additional hardness results that our problem is hard to approximate within a factor of
Ω(1/Bε) for some ε > 0, assuming a certain hypothesis about the average-case hardness of random
3SAT [10]. This implies that influence maximization in the target-side model is provably harder
than in the source-side model. In light of the above state of affairs, we then focus our attention on
a modified model in which there are no capacity constraints on the source nodes. We develop an
efficient deterministic algorithm that achieves a logarithmic approximation ratio. This establishes a
computational separation between the two target-side models, and proves that the budget capacity
constraints underlie the hardness of the problem in the former model.

1.3 Related work

Previous work dealing with influence in multi-agent systems considered issues such as finding a set
of most influential individuals, and understanding the effects of the social structure on emergent

2

behavior (see, e.g., [20] and the reference therein). More generally, the diffusion and spreading of
opinions in societies has long been a topic of study in the social sciences [25, 14], and later got
the attention of game-theorists [30, 21, 16] and AI researchers [27] among others. While a main
interest in this research concerns with the need to influence individuals, the related literature does
not consider the distribution of budgets among those individuals; rather, it primarily concentrates
on issues such as information propagation. Our work seems to be the first to optimize the budget
distribution beyond deciding the identity of the individuals that should be approached. Our notion of
a budget is a discrete one. This is consistent with common practices in organizations (e.g., working in
multiplications of some fixed value) and related simulations [26]. Other work relating to the subject
of budget constraints in markets appears in [5, 13, 7, 4, 28, 6].

2 A Source-Side Influence Model

In this section, we devise an efficient deterministic algorithm that has an approximation ratio of
1− 1/e ≈ 0.632 for the problem of maximizing the influence in the source-side model. This result is
best possible under the assumption that P 6= NP. Specifically, this result matches the NP-hardness
bound of 1 − 1/e, which already holds for the special setting of maximum coverage [9]. The latter
setting is equivalent to the case in which all the probability vectors are of the form 〈1, ∗, . . . , ∗〉,
where each ∗ can be any valid value. In this case, the objective reduces to selecting B source nodes
in a way that maximizes the cardinality of their neighbor set.

We note that our algorithm and analysis has similarities with the algorithm for maximizing a
nondecreasing submodular set function subject to a knapsack constraint [29]. We emphasize that our
problem is not an instance of the latter problem. In particular, in our problem, one may select a node
multiple times (i.e., allocate it a budget other than 0 or 1), and these selections may not satisfy a
decreasing marginal influence property as required for submodularity. Informally, our problem does
not admit a decreasing marginal influence property since adding an extra unit of budget to some
node may have a higher marginal influence with respect to prior budget increments.

Definition 2.1. Let {bs}s∈S be a feasible budget allocation to the source nodes, and let s and Γ(s)
be a source node and its neighbors in G, respectively. The marginal influence of adding a feasible
budget of k to s is the expected increase in the number of target nodes that become active. One can
easily verify that this amounts to

∆({bs}s∈S , s, k) =
∑

t∈Γ(s)

 ∏

v∈Γ(t)

bv∏

i=1

(1− pvi) ·
(
1−

k∏

j=1

(1− psbs+j)
)

 .

In accordance, the per unit marginal influence of adding a budget of k to s is ∆({bs}s∈S , s, k)/k.

2.1 The algorithm

Let ` ≥ 3 be a fixed integer, and let P be the set of all solutions in which at most ` source nodes
are allocated feasible budgets. Specifically, in each such solution, the allocated budgets respect the
capacities of the corresponding nodes, and the overall allocated budget is at most B. One can easily
verify that the cardinality of the set P is O(|S|`B`), that is, polynomial in the parameters of the
problem as long as ` is fixed.

Our algorithm enumerates over all the solutions in P, where each solution is utilized as an initial
budget allocation. Given some initial allocation, the algorithm completes it greedily. Specifically, let

3

{bs}s∈S be the initial allocation in which a set S′ ⊆ S was allocated an overall budget of B′ ≤ B.
The greedy procedure completes the budget allocation of nodes in S \ S′ as follows:

Algorithm 1 GreedyCompletion

Input: A feasible budget allocation {bs}s∈S , and a remaining budget K = B −B′

Output: An updated budget allocation

1: Q ← the set of all pairs 〈s, k〉 such that s ∈ S \ S′ and k ∈ {1, . . . ,min{K, cs − bs}}
2: while K ≥ 0 do
3: for all 〈s, k〉 ∈ Q do
4: δs,k ← ∆({bs}s∈S , s, k)/k
5: end for
6: let 〈s, k〉 ∈ Q be a pair with a maximal δs,k
7: if K ≥ k then
8: bs ← bs + k, K = K − k
9: modify all pairs 〈s, k′〉 ∈ Q to 〈s, k′ − k〉

10: remove all pairs 〈s, k′〉 ∈ Q such that k′ ≤ 0
11: else
12: remove 〈s, k〉 from Q
13: end if
14: end while

Once the enumeration phase ends, the algorithm considers all the resulting budget allocations
(each corresponds to some initial budget allocation from P), and outputs the one whose expected
influence is maximal.

2.2 Analysis

In what follows, we prove that our algorithm has an approximation ratio of 1− 1/e ≈ 0.632. This
result matches the NP-hardness bound of 1 − 1/e, which holds for the special setting of maximum
coverage [9]. We begin by introducing a notation and terminology that will be used later:

• Let A∗ = {〈s∗1, b∗1〉, . . . , 〈s∗r∗ , b∗r∗〉} be an optimal solution for a given input instance of the
problem. Here, each pair 〈s∗i , b∗i) ∈ S × N+ indicates that the source node s∗i is allocated a
(positive) budget of b∗i in the optimal solution. We assume that the pairs in A∗ are ordered
according to a non-increasing marginal influence. Namely, the marginal influence of the pair
〈s∗1, b∗1〉 with respect to the empty solution is the highest among all other pairs, the marginal
influence of the pair 〈s∗2, b∗2〉 with respect to the solution that consists of the pair 〈s∗1, b∗1〉 is the
highest among all remaining pairs, and so on.

• Let OPT = OPT1 +OPT2 be the expected number of target nodes that become active in the
optimal solution. Here, OPT1 indicates the overall marginal influence of the first ` pairs in A∗

(with respect to the empty solution), and OPT2 stands for the overall marginal influence of
the remaining pairs in A∗ (with respect to the solution that consists of the first ` pairs). Note
that if r∗ ≤ ` then OPT1 = OPT and OPT2 = 0.

Recall that our algorithm enumerates over all the (initial) solutions in which at most ` source
nodes are allocated feasible budgets. Hence, if r∗ ≤ ` then our algorithm finds an optimal budget

4

allocation. Accordingly, in the remainder of this subsection, we deal with the case that r∗ > `. We
concentrate on the solution A that our algorithm generates with respect to the initial solution which
consists of the first ` pairs inA∗. Namely, we assume thatA initially consists of {〈s∗1, b∗1〉, . . . , 〈s∗` , s∗`〉}.
Clearly, if we prove that this solution is a (1− 1/e)-approximation for the optimal outcome then our
algorithm is guaranteed to have (at least) the same approximation ratio.

Let ALG = ALG1 + ALG2 be the expected number of target nodes that become active in the
above-mentioned solution A. Here, ALG1 indicates the overall marginal influence of the first ` pairs
in A (with respect to the empty solution), and ALG2 stands for the overall marginal influence of
the remaining pairs in A (with respect to the solution that consists of the first ` pairs). Note that
ALG1 = OPT1 due to our assumption regarding the enumeration step. Hence, we are left to analyze
the performance of the solution of the greedy completion procedure.

Recall that the greedy procedure is built around one main loop. In each iteration i of that loop,
the algorithm extends the current solution with a pair 〈si, ki〉 whose per unit marginal influence is
maximal, namely, the budget of node si is increased by ki. We mark the per unit marginal influence
in that iteration by δi, and the corresponding marginal influence by ∆i = δiki. Notice that if the
required budget ki is more than the remaining budget then the algorithm cannot extend the current
solution. In such a case, the algorithm does not increase the budget of any node, the underlying pair
is removed, and the loop continues. Also note that the algorithm may increase the budget of any
node multiple times in different iterations.

Let 〈sL, kL〉 be the first pair for which the greedy procedure cannot extend the current solution.
For the sake of the analysis, we may assume without loss of generality that 〈sL, kL〉 involves an
increase towards the optimal solution. That is, suppose the current budget allocation is {bs}s∈S then
bs + kL ≤ b∗s. We note that our assumption is valid since if there is such a prior pair that does not
involve an increase towards the optimal solution then excluding it from the potential pairs list Q does
not change the greedy solution (with respect to the same initial solution), the optimal solution, and
the analysis. Note that such a pair may be excluded by initially adjusting the budget constraint of
the underlying node in an appropriate way. Lastly, we remark that in case that the greedy procedure
does not experience a situation in which it cannot extend the current solution then we denote the
last inspected pair by 〈sL, kL〉.
Lemma 2.2. ∆i ≥ ki/K · (OPT2 −

∑i−1
j=1∆j) in every iteration 1 ≤ i ≤ L.

Proof. Let dq be the difference between the budget allocated to node s∗`+q in the optimal solution
and the budget allocated to it by the greedy procedure up to iteration i. In case the greedy procedure
allocated more budget to node s∗`+q than the optimal solution then we set dq = 0. Using a simple
counting argument, one can attain that there is a node s∗`+q∗ such that increasing its budget by dq∗

increases the overall influence by at least

dq∗∑r−`
q=1 dq

(
OPT2 −

i−1∑

j=1

∆j

)
≥ dq∗

K

(
OPT2 −

i−1∑

j=1

∆j

)
,

where the inequality follows since K is the overall budget allocated to the nodes s∗`+1, . . . , s
∗
r∗ by

the optimal solution. Since our greedy procedure selects a pair whose per unit marginal influence is
maximal and the pair 〈s∗`+q∗ , dq∗〉 ∈ Q, we get that δi ≥ (OPT2 −

∑i−1
j=1∆j)/K.

Lemma 2.3. OPT2 −
∑i

j=1∆j ≤
∏i

j=1(1− kj/K) ·OPT2 for every 0 ≤ i ≤ L.

5

Proof. We prove this lemma by induction on i. The lemma clearly holds when i = 0. Assume that
the lemma holds for i− 1 and notice that

OPT2 −
i∑

j=1

∆j ≤ OPT2 −
i−1∑

j=1

∆j − ki
K

·
(
OPT2 −

i−1∑

j=1

∆j

)

≤
(
1− ki

K

)
·
(
OPT2 −

i−1∑

j=1

∆j

)

≤
i∏

j=1

(
1− kj

K

)
·OPT2 ,

where the first inequality follows from Lemma 2.2, and the last inequality is due to the induction
hypothesis.

Corollary 2.4.
∑L

i=1∆i ≥ (1− 1/e) ·OPT2.

Proof. Let us define ϕ(x) = ln(1−x). Notice that ϕ is concave and monotonically decreasing in the
range (0, 1]. This implies that given x1, . . . , xL ∈ (0, 1], we know that

∑L
i=1 ϕ(xi)/L ≤ ϕ(

∑L
i=1 xi/L)

by Jensen’s inequality. Substituting each xi with ki/K, we obtain that

1

L

L∑

i=1

ln

(
1− ki

K

)
≤ ln

(
1−

∑L
i=1 ki
KL

)
,

or equivalently,
L∏

i=1

(
1− ki

K

)
≤

(
1−

∑L
i=1 ki
KL

)L

≤
(
1− 1

L

)L

,

where the last inequality follows as
∑L

i=1 ki/K ≥ 1. Now, using the lemma, we conclude that

OPT2 −
L∑

i=1

∆i ≤
L∏

i=1

(
1− ki

K

)
·OPT2 ≤

(
1− 1

L

)L

·OPT2 ≤ 1

e
OPT2 .

We are now ready to prove the main theorem of this section.

Theorem 2.5. ALG ≥ (1− 1/e) ·OPT.

Proof. Recall that ALG1 = OPT1 due to our assumption regarding the enumeration step. In
addition, notice that ALG2 ≥ ∑L−1

i=1 ∆i in case that the greedy procedure could not extend the

solution in iteration L, and ALG2 =
∑L

i=1∆i, otherwise. In the former case, one can easily verify
that ∆L ≤ OPT1/`. This follows since the pair 〈sL, kL〉 involves an increase towards the optimal
solution, and by our assumption regarding the enumeration step, the marginal influence of such an
increase cannot be higher than the marginal influence of extending the solution that consists of the

6

pairs
⋃i−1

j=1〈s∗j , b∗j 〉 with the pair 〈s∗i , b∗i 〉, for all 1 ≤ i ≤ `. As a result, ALG2 ≥ ∑L
i=1∆i −OPT1/`.

We can now conclude that

ALG = ALG1 +ALG2 ≥ OPT1 +
L∑

i=1

∆i − 1

`
OPT1

≥
(
1− 1

`

)
·OPT1 +

(
1− 1

e

)
·OPT2

≥
(
1− 1

e

)
·OPT ,

where the second inequality is due to Corollary 2.4, and the last inequality holds since ` ≥ 3.

2.3 Discussion and extensions

Generalized graph models. A natural generalization of our model is when the edges, rather than
the source nodes, are associated with probability vectors. In this setting, a source node s that is
allocated a budget of bs makes bs independent trials to activate each neighboring target node t; the
probability of activating t depends on the probability vector of the edge (s, t) in a similar way to the
original model. Notice that an instance of the original model can be translated to an instance of the
new model in which the probability vectors of all edges adjacent to any source node are identical. It
is not hard to verify that our algorithm from Subsection 2.1 can be applied in this generalized model,
attaining the same approximation ratio. In particular, one can easily validate that the counting
argument from the proof of Lemma 2.2 is also applicable in this latter model.

An even more general model is when the underlying (directed) graph is arbitrary, rather than
bipartite. In this setting, a node s that is allocated a budget of bs makes bs independent trials to
activate each neighboring node t, where the probability of activating t depends on the probability
vector of the edge 〈s, t〉. Furthermore, any node s may become influenced as a result of the budget
allocated to it. This can be modelled by a self-loop in the underlying graph, that is, an edge 〈s, s〉,
where this edge has a probability vector having the same interpretation as before. This general
model is well-motivated as it may be used to abstract the question of influence maximization in
social networks. Similarly to before, one can verify that our algorithm from Subsection 2.1 can be
applied in this generalized model, attaining the same approximation ratio. Specifically, this case can
be reduced to the bipartite case by (1) creating a source node copy sv and a target node tv copy in
the bipartite graph for each graph node v, and (2) creating an edge (su, tv) in the bipartite graph
for each directed graph edge 〈u, v〉, having the same probability vector.

A tradeoff between running time and approximation. Our algorithm from Subsection 2.1,
although efficient, may not be practical due to the enumeration step. Nonetheless, one can utilize
it and its analysis to develop a simple algorithm that has a practical running time (essentially, the
running time of the greedy completion procedure) with a somewhat worse approximation guarantee.
This algorithm selects the budget allocation that achieves the maximal influence from |S|+1 solutions:
the first solution is obtained by executing the greedy procedure on the given input instance, and the
remaining |S| solutions are obtained by allocating the maximal possible budget to each single source
node. One can validate that this algorithm attains a (e−1)/(2e) ≈ 0.316-approximation. Specifically,
the outline of the analysis is the following: If the optimal solution has a single node whose marginal
influence (with respect to the empty solution) is at least (e − 1)/(2e) · OPT then we are clearly
through; otherwise, one can demonstrate that the greedy solution achieves an approximation ratio

7

of (1 − 1/e) − (e − 1)/(2e) = (e − 1)/(2e) by applying a similar reasoning to that presented in
Theorem 2.5, while noting that ∆L ≤ (e− 1)/(2e) ·OPT.

3 A Target-Side Influence Model

In this section, we prove that the problem of maximizing the influence in the target-side model is
provably harder than in the source-side model. This is done by demonstrating that both the maxi-
mum edge biclique and the dense k-subgraph problems can be reduced to our problem. As a result,
we attain that our problem is hard to approximate within a factor of Ω(1/Bε) for some ε > 0, assum-
ing a certain hypothesis about the average-case hardness of random 3SAT [10]. We also establish
some additional hardness results that depend on other computational complexity assumptions.

We then turn to consider a modified model in which there are no capacity constraints on the
source nodes, or equivalently, one may assume that each cs = B. We develop an efficient determin-
istic algorithm that achieves a logarithmic approximation ratio. This establishes a computational
separation between both models, and proves that the budget capacity constraints underlie the hard-
ness of the problem in the former model. We remark that this modified model is still NP-hard, and in
fact, it is NP-hard to approximate to within a factor better than 1− 1/e as it extends the maximum
coverage problem [9]. The latter problem is equivalent to the case in which all the probability vectors
are of the form 〈1, ∗, . . . , ∗〉, where each ∗ can be any valid value. In this case, there is no use for
allocating a budget greater than 1 to any of the source node. Consequently, the objective reduces to
selecting B source nodes in a way that maximizes the cardinality of their neighbor set.

3.1 Hardness results

A reduction from maximum edge biclique. We begin by demonstrating that our problem is as
hard to approximate as the maximum edge biclique problem. As input for maximum edge biclique,
we are given a bipartite graph G = (S, T,E). Our goal is to find a biclique in G having a maximum
number of edges. A vertex set S′ ∪T ′ such that S′ ⊆ S, T ′ ⊆ T is called a biclique if (s, t) ∈ E for all
s ∈ S′, t ∈ T ′. In what follows, we show a reduction to our problem from a variant of maximum edge
biclique in which the cardinality k of the optimal subset of S-vertices is known in advance. Notice
that the maximum edge biclique problem is polynomial-time reducible to this latter problem by
enumerating over all |S| possible values of k, and hence, this variant shares the same computational
hardness as maximum edge biclique.

Given an input instance of the above-mentioned variant of maximum edge biclique, we construct
an input instance of our problem that consists of the same bipartite graph G. Moreover, we set the
capacity of each source node s ∈ S to 1, the budget B = k, and the probability vector associated
with each target node t ∈ T to 〈0, . . . , 0, 1〉; here, the length of the prefix of 0’s is B − 1. Now,
one can easily verify that a solution S′ ∪ T ′ for maximum edge biclique with |S′||T ′| = k|T ′| edges
implies a budget allocation in the newly-created instance with an influence of |T ′|. Specifically, the
claimed influence is attained by allocating a unit of budget to each of the source nodes corresponding
to S′. Conversely, it is not difficult to verify that given a valid budget allocation, one can perform
a similar gap-preserving transformation in the opposite direction. In particular, notice that the
subgraph induced by the source nodes that are allocated a unit budget and the target nodes that
are influenced to an extent of 1 is indeed a biclique.

As a result of this gap-preserving reduction, and in conjunction with the hardness results pre-
sented by Feige [10] and Feige and Kogan [11], we attain two inapproximability results. The first is
based on a certain hypothesis about the average-case hardness of random 3SAT [10].

8

Theorem 3.1. The influence maximization problem in the target-side model is hard to approximate
within a factor of Ω(1/Bε) for some ε > 0, assuming that there is no polynomial-time algorithm that
refutes most 3CNF formulas with n variables and ∆n clauses, and never wrongly refutes a satisfiable
formula, where ∆ is a sufficiently large constant independent of n.

The other is based on a plausible assumption that 3SAT has no subexponential algorithm [11].

Theorem 3.2. The influence maximization problem in the target-side model is hard to approximate
within a factor of Ω(1/2(logB)δ) for some δ > 0, assuming that there is no algorithm for 3SAT that

runs in time 2n
3/4+ε

for some ε > 0.

A reduction from dense k-subgraph. We proceed by presenting a simple reduction from the
dense k-subgraph problem to our problem. An input instance for the dense k-subgraph problem [12]
consists of a graph G = (V,E) on n vertices, and a parameter k ≤ n. The objective is to find a subset
V ′ ⊆ V of cardinality k that maximizes the number of edges having both endpoints in V ′. Up until
recently [1], the dense k-subgraph problem has “only” been shown not to admit a PTAS under various
computational complexity assumptions [10, 19]. Nevertheless, it is a notorious problem that so far
has resisted all attempts to provide good approximability results. In particular, the current best
approximation ratio for this problem is roughly Ω(1/n1/4) [3]. Consequently, the following reduction
proves that achieving a good approximation for our problem must result in a good approximation
for the dense k-subgraph problem. For example, developing a Ω(1/Bε)-approximation algorithm for
our problem would imply a Ω(1/kε)-approximation for dense k-subgraph.

Given an input instance of dense k-subgraph, we construct an input instance of our problem that
consists of a bipartite graph G′ = (S′, T ′, E′) such that S′ = V , T ′ = E, and its edge set is defined
as E′ = {(v, e) : v ∈ S′, e ∈ T ′, and v is one of the endpoints of e in G}. Furthermore, we set the
capacity of each source node to 1, the budget B = k, and the probability vector associated with each
target node to 〈0, 1〉. Now, one can easily verify that a solution V ′ for dense k-subgraph that covers
` edges implies a budget allocation in the newly-created instance with influence `. Specifically, one
should allocate a unit of budget to each of the source nodes corresponding to V ′. Conversely, it is
not difficult to verify that given a valid budget allocation, one can perform a similar value-preserving
transformation in the opposite direction.

As a result of this value-preserving reduction, and in conjunction with the hardness results
presented in [1], we attain the following inapproximability result. This result is based on a certain
hypothesis regarding the hardness of the hidden clique problem.

Theorem 3.3. The influence maximization problem in the target-side model is hard to approximate
within a factor of Ω(1/2(logB)2/3), assuming that there is no algorithm that runs in time no(logn) and
distinguished between a random graph G(n, 1/2) and a random graph G(n, 1/2) with a random clique
of size n1/3 placed in it.

3.2 An algorithm and analysis for a modified model

In light of the state of affairs presented in Subsection 3.1, we focus our attention on a modified model
in which there are no capacity constraints on the source nodes, but the budget constraint B is still
valid. We develop an efficient deterministic algorithm whose approximation ratio is logarithmic. We
begin by introducing the maximum thresholds coverage problem. Subsequently, we show that given
an instance of our problem, one can translate it to maximum thresholds coverage with multi-sets.

9

The maximum thresholds coverage problem. An input instance of the maximum thresholds
coverage problem consists of a ground set of n elements X = {e1, . . . , en}, a collection of m subsets
X1, . . . , Xm ⊆ X, and a budget B. Each element ei is associated with a positive threshold value di,
and a positive weight wi. The objective is to select at most B of the subsets in a way that maximizes
the overall weight of satisfied elements. An element ei is satisfied if it appears in at least di of the
selected subsets. When one is allowed to select multiple copies of any subset then this problem is
refereed to as maximum thresholds coverage with multi-sets. We emphasize that the overall number
of selected subset copies should be at most B in this case.

Given an input instance of our problem, we can translate it to maximum thresholds coverage with
multi-sets as follows: Each target node t is translated to a collection ofB elements Et = {et1, . . . , etB},
and each source node s is translated into a subset Xs that consists of all the elements corresponding
to each of its neighboring target nodes. For example, if t is a neighbor of s in the bipartite graph
then Xs consists of all the elements of Et. The threshold of each element etb is set to b, and its
weight is set to ft(b)− ft(b− 1), where ft(b) = 1−∏b

i=1(1− pti) defines the probability that a target
node t becomes active as a function of the overall budget b allocated to its neighbors.

One can easily validate that a solution for our problem defines a solution for maximum thresholds
coverage with multi-sets whose overall weight is equal to the expected influence of the former solution.
Specifically, each unit of budget assigned to a source node s translates to a selection of a copy of the
subset Xs. In addition, notice that all the elements of each Et are covered the same number of times
as a result of our construction. Consequently, if the budget allocated to the neighbors of t was b then
each of the elements of Et are covered b times. Clearly, only the elements et1, . . . , etb are satisfied,
and their overall weight contribution is

∑b
i=1(ft(i)−ft(i−1)) = ft(b). Note that this is indeed equal

to the probability that t becomes active when a budget of b is allocated to its neighbors, as required.
Conversely, it is not difficult to verify that given a solution for maximum thresholds coverage with
multi-sets, one can perform a similar value-preserving transformation in the opposite direction.

A logarithmic approximation algorithm. In the remainder of this subsection, we focus on
the maximum thresholds coverage with multi-sets problem. We devise a Ω(1/ logB)-approximation
algorithm for this problem, which implies the same performance guarantee for influence maximization
in the target-side model by the above reduction. We emphasize that one may assume without loss of
generality that the minimal element weight is at least 1. This assumption holds as one can normalize
the weights (by dividing them with the minimal weight) without any consequences whatsoever. Our
algorithm employs a classify-and-select approach. Specifically, it works as follows:

• We partition an input instance into dlogBe classes based on the thresholds of the elements.
More precisely, the ith class defines an input instance which is induced by the elements whose
thresholds are in the range Ii = [2i−1, 2i). This input instance is identical to the original
instance with the modification that the collection of subsets is X ′

1, . . . , X
′
m, where each X ′

j

consists only of the elements of Xj whose thresholds are in the range Ii.

• We find an approximate solution for each modified input instance. Specifically, given the input
instance of class i, we consider a (weighted) coverage problem that consists of the same elements
and subsets, but has a budget of max{bB/2ic, 1}. Note that there are no thresholds in this
problem, and we are basically interested in maximizing the weight of covered elements. An
element is covered if it appears in at least one selected subset. We execute the well-known greedy
algorithm for coverage (see, e.g., [15]) on this problem to obtain a solution S ⊆ {X ′

1, . . . , X
′
m}.

As a solution for class i, we return min{2i, B} copies of each of the subsets in S.

10

• As the solution of our algorithm, we return the solution that maximizes the overall weight of
satisfied elements out of the dlogBe solutions computed for the classes.

We next prove the main theorem of this section.

Theorem 3.4. The above algorithm has an approximation ratio of Ω(1/ logB).

Proof. We prove that the solution that is computed for each class i attains a constant fraction of
the weight that the optimal solution yields from the elements whose thresholds are in the range Ii.
As a consequence, the above-mentioned approximation ratio follows since there is at least one class
for which the optimal solution yields Ω(1/ logB) of the optimal weight. For ease of presentation, it
would be convenient to assume that B is a power of 2, i.e., B = 2` for some ` ∈ N. We demonstrate
how to neglect this assumption later on.

Consider some class i. We next argue that an optimal solution which is restricted to select either
0 or 2i copies of any subset is only worse by some constant factor c from an optimal solution that can
select any number of copies of any subset. Notice that proving this argument completes the proof
of the theorem since our algorithm finds a constant factor approximation for the former setting.
Specifically, The former setting is equivalent to the coverage problem considered by our algorithm,
and the greedy algorithm is known to attain (1−1/e)-approximation for coverage [24, 23, 15]. Hence,
our algorithm obtains a c · (1− 1/e) fraction of the optimal weight for class i.

For the purpose of proving the above argument, we use a simple probabilistic argument. Let us
concentrate on the optimal solution S∗ for class i that can select any number of copies of any subset,
and let E∗ be the set of elements satisfied by this solution. We analyze the following approach: (1)
randomly select B/2i subsets from the multiset S∗, and (2) output a solution that consists of 2i

copies of any selected subset. Note that if several copies of a subset are selected, we still output only
2i copies of it. Clearly, the resulting solution is restricted in the sense that either 0 or 2i copies of
any subset are selected. Furthermore, the number of copies in the solution is at most B/2i · 2i = B.
Finally, the expected weight of the solution is at least

∑

e∈E∗
Pr

[
X such that e ∈ X

is selected

]
· we ≥

∑

e∈E∗

(
1−

(
B−2i−1

B/2i

)
(

B
B/2i

)
)
we

≥
∑

e∈E∗

(
1−

(
1− 1

2i

)2i−1
)
we ≥

(
1− 1√

e

) ∑

e∈E∗
we ,

that is, a constant fraction of the optimal weight of class i. As a result, the optimal solution which is
restricted to select either 0 or 2i copies of any subset is worse by at most a factor of 1−1/

√
e ≈ 0.393

from an optimal solution that can select any number of copies of any subset.
We now discuss how to deal with the general case that B is not a power of 2. Suppose that

` ∈ N is the first integer such that B < 2`. First notice that for class `, our algorithm computes a
greedy solution with a budget of 1 (i.e., selecting one subset whose elements have maximal weight),
and then returns the solution that consists of B copies of that subset. Arguments similar to those
presented in the above probabilistic argument, applied to the case in which one random subset of
S∗ is initially selected, can be used to prove that the weight of the optimal restricted solution for
that class is at least 1/2 of the weight of the optimal unrestricted solution. In fact, applying the
same probabilistic argument with respect to selecting just one random subset establishes that the
weight of the optimal restricted solution for class ` − 1 is at least 1/4 of the weight of the optimal
unrestricted solution. Focusing on the remaining classes i = 1, . . . , `− 2, one can demonstrate that

11

applying the probabilistic argument in which we initially select bB/2ic subsets from S∗ proves that
the weight of the optimal restricted solution for class i is at least 1− e−1/4 ≈ 0.221 of the weight of
the optimal unrestricted solution.

References

[1] N. Alon, S. Arora, R. Manokaran, D. Moshkovitz, and O. Weinstein. On the inapproximability
of the densest k-subgraph problem. Manuscript, 2011.

[2] S. Bharathi, D. Kempe, and M. Salek. Competitive influence maximization in social networks.
In Proceedings 3rd International Workshop on Internet and Network Economics, pages 306–311,
2007.

[3] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high
log-densities: an O(n1/4) approximation for densest k-subgraph. In Proceedings 42nd ACM
Symposium on Theory of Computing, pages 201–210, 2010.

[4] S. Bhattacharya, G. Goel, S. Gollapudi, and K. Munagala. Budget constrained auctions with
heterogeneous items. In Proceedings 42nd ACM Symposium on Theory of Computing, pages
379–388, 2010.

[5] C. Borgs, J. T. Chayes, N. Immorlica, M. Mahdian, and A. Saberi. Multi-unit auctions with
budget-constrained bidders. In Proceedings 6th ACM Conference on Electronic Commerce, pages
44–51, 2005.

[6] N. Chen, N. Gravin, and P. Lu. On the approximability of budget feasible mechanisms. In
Proceedings 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 685–699, 2011.

[7] S. Dobzinski, R. Lavi, and N. Nisan. Multi-unit auctions with budget limits. In Proceedings
49th Annual IEEE Symposium on Foundations of Computer Science, pages 260–269, 2008.

[8] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings 7th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 57–
66, 2001.

[9] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.

[10] U. Feige. Relations between average case complexity and approximation complexity. In Pro-
ceedings 34th ACM Symposium on Theory of Computing, pages 534–543, 2002.

[11] U. Feige and S. Kogan. Hardness of approximation of the balanced complete bipartite subgraph
problem. Technical report, Department of Computer Science and Applied Math., Weizmann
Institute, 2004.

[12] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica, 29(3):410–
421, 2001.

[13] J. Feldman, S. Muthukrishnan, M. Pál, and C. Stein. Budget optimization in search-based
advertising auctions. In Proceedings 8th ACM Conference on Electronic Commerce, pages 40–
49, 2007.

12

[14] M. Granovetter. Threshold models of collective behavior. American Journal of Sociology,
83:1420–1443, 1978.

[15] D. S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Publishing
Co., 1997.

[16] M. Jackson and L. Yariv. Diffusion on social networks. Economie Publique, 16:69–82, 2005.

[17] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social
network. In Proceedings 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 137–146, 2003.

[18] D. Kempe, J. M. Kleinberg, and É. Tardos. Influential nodes in a diffusion model for social
networks. In Proceedings 32nd International Colloquium on Automata, Languages and Program-
ming, pages 1127–1138, 2005.

[19] S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM
J. Comput., 36(4):1025–1071, 2006.

[20] J. Kleinberg. Cascading behavior in networks: Algorithmic and economic issues. In Algorithmic
Game Theory. Cambridge University Press, 2007.

[21] S. Morris. Contagion. Review of Economic Studies, 67:5778, 2000.

[22] E. Mossel and S. Roch. On the submodularity of influence in social networks. In Proceedings
39th Annual ACM Symposium on Theory of Computing, pages 128–134, 2007.

[23] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Math. Operations Research, 3(3):177–188, 1978.

[24] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions i. Mathematical Programming, 14:265–294, 1978.

[25] T. Schelling. Micromotives and Macrobehavior. Norton, 1978.

[26] H.-S. Shih and E. S. Lee. Discrete multi-level programming in a dynamic environment. In
Dynamical aspects in fuzzy decision making. Springer, 2001.

[27] Y. Shoham and M. Tennenholtz. On the emergence of social conventions: Modeling, analysis,
and simulations. Artif. Intell., 94(1-2):139–166, 1997.

[28] Y. Singer. Budget feasible mechanisms. In Proceedings 51st Annual IEEE Symposium on
Foundations of Computer Science, pages 765–774, 2010.

[29] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack con-
straint. Oper. Res. Lett., 32(1):41–43, 2004.

[30] H. P. Young. Individual Strategy and Social Structure: An Evolutionary Theory of Institutions.
Princeton University Press, 1998.

13

