Piercing d-intervals

Noga Alon *

Abstract

A (homogeneous) d-interval is a union of d closed intervals in the line. Using topological methods, Tardos and Kaiser proved that for any finite collection of d-intervals that contains no $k+1$ pairwise disjoint members, there is a set of $O\left(d^{2} k\right)$ points that intersects each member of the collection. Here we give a short, elementary proof of this result.

A (homogeneous) d-interval is a union of d closed intervals in the line. Let \mathcal{H} be a finite collection of d-intervals. The transversal number $\tau(\mathcal{H})$ of \mathcal{H} is the minimum number of points that intersect every member of \mathcal{H}. The matching number $\nu(\mathcal{H})$ of \mathcal{H} is the maximum number of pairwise disjoint members of \mathcal{H}. Gyárfás and Lehel [3] proved that $\tau \leq O\left(\nu^{d!}\right)$ and Kaiser [4] proved that $\tau \leq O\left(d^{2} \nu\right)$. His proof is topological, applies the Borsuk-Ulam theorem and extends and simplifies a result of Tardos [5]. Here we give a very short, elementary proof of a similar estimate, using the method of [2].

Theorem 1 Let \mathcal{H} be a finite family of d-intervals containing no $k+1$ pairwise disjoint members. Then $\tau(\mathcal{H}) \leq 2 d^{2} k$.

Proof. Let \mathcal{H}^{\prime} be any family of d-intervals obtained from \mathcal{H} by possibly duplicating some of its members, and let n denote the cardinality of \mathcal{H}^{\prime}. Note that \mathcal{H}^{\prime} contains no $k+1$ pairwise disjoint members. Therefore, by Turán's Theorem, there are at least $n(n-k) /(2 k)$ unordered intersecting pairs of members of \mathcal{H}^{\prime}. Each such intersecting pair supplies at least 2 ordered pairs (p, I), where p is an end point of one of the intervals in a member of \mathcal{H}^{\prime}, I is a different member of \mathcal{H}^{\prime}, and p lies in I. Since there are altogether at most $2 d n$ possible choices for p, there is such a point that lies in at least $\frac{n(n-k)}{k 2 d n}$ members of \mathcal{H}^{\prime} besides the one in which it is an endpoint of an interval, showing that there is a point that lies in at least $\frac{n}{2 d k}$ of the members of \mathcal{H}^{\prime}. This implies that for any rational weights on the members of \mathcal{H} there is a point that lies in at least a fraction $\frac{1}{2 d k}$ of the total weight. By the min-max theorem it follows that there is a collection of m points so that each member of \mathcal{H} contains at least $m /(2 d k)$ of them, and thus contains an interval that contains at least $m /\left(2 d^{2} k\right)$ of the points. Order the points from left to right, and take the set of all points whose rank in this ordering is divisible by $\left\lceil m /\left(2 d^{2} k\right)\right\rceil$. This is a set of at most $2 d^{2} k$ points that intersects each member of \mathcal{H}, completing the proof.
Remarks. It may be possible to improve the constant factor in the above proof. Kaiser's estimate is indeed better by roughly a factor of $2 ; \tau(\mathcal{H}) \leq\left(d^{2}-d+1\right) \nu(\mathcal{H})$. It will be interesting to decide if the quadratic dependence on d is indeed best possible. Higher dimensional extensions are possible, using the techniques in [2], [1].

[^0]
References

[1] N. Alon and G. Kalai, Bounding the piercing number, Discrete and Computational Geometry 13 (1995), 245-256.
[2] N. Alon and D. J. Kleitman, Piercing convex sets and the Hadwiger Debrunner (p, q)-problem, Advances in Mathematics 96 (1992), 103-112.
[3] A. Gyárfás and J. Lehel, A Helly-type problem in trees, in Combinatorial Theory and its Applications, Eds. P. Erdős, A. Rényi and V.T. Sós, North-Holland, Amsterdam 1970, 571-584.
[4] T. Kaiser, Transversals of d-intervals, Discrete and Computational Geometry, to appear.
[5] G. Tardos, Transversals of 2-intervals, a topological approach, Combinatorica 15, 1 (1995), 123134.

[^0]: *Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Research supported in part by a USA-Israeli BSF grant and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. Email: noga@math.tau.ac.il.

