Piercing d-intervals

Noga Alon *

Abstract

A (homogeneous) *d*-interval is a union of *d* closed intervals in the line. Using topological methods, Tardos and Kaiser proved that for any finite collection of *d*-intervals that contains no k + 1pairwise disjoint members, there is a set of $O(d^2k)$ points that intersects each member of the collection. Here we give a short, elementary proof of this result.

A (homogeneous) d-interval is a union of d closed intervals in the line. Let \mathcal{H} be a finite collection of d-intervals. The transversal number $\tau(\mathcal{H})$ of \mathcal{H} is the minimum number of points that intersect every member of \mathcal{H} . The matching number $\nu(\mathcal{H})$ of \mathcal{H} is the maximum number of pairwise disjoint members of \mathcal{H} . Gyárfás and Lehel [3] proved that $\tau \leq O(\nu^{d!})$ and Kaiser [4] proved that $\tau \leq O(d^2\nu)$. His proof is topological, applies the Borsuk-Ulam theorem and extends and simplifies a result of Tardos [5]. Here we give a very short, elementary proof of a similar estimate, using the method of [2].

Theorem 1 Let \mathcal{H} be a finite family of d-intervals containing no k + 1 pairwise disjoint members. Then $\tau(\mathcal{H}) \leq 2d^2k$.

Proof. Let \mathcal{H}' be any family of *d*-intervals obtained from \mathcal{H} by possibly duplicating some of its members, and let *n* denote the cardinality of \mathcal{H}' . Note that \mathcal{H}' contains no k + 1 pairwise disjoint members. Therefore, by Turán's Theorem, there are at least n(n-k)/(2k) unordered intersecting pairs of members of \mathcal{H}' . Each such intersecting pair supplies at least 2 ordered pairs (p, I), where *p* is an end point of one of the intervals in a member of \mathcal{H}' , *I* is a different member of \mathcal{H}' , and *p* lies in *I*. Since there are altogether at most 2dn possible choices for *p*, there is such a point that lies in at least $\frac{n(n-k)}{k2dn}$ members of \mathcal{H}' besides the one in which it is an endpoint of an interval, showing that there is a point that lies in at least $\frac{n}{2dk}$ of the members of \mathcal{H}' . This implies that for any rational weights on the members of \mathcal{H} there is a point that lies in at least a fraction $\frac{1}{2dk}$ of the total weight. By the min-max theorem it follows that there is a collection of *m* points so that each member of \mathcal{H} contains at least $m/(2d^2k)$ of them, and thus contains an interval that contains at least $m/(2d^2k)$ of the points. Order the points from left to right, and take the set of all points whose rank in this ordering is divisible by $\lfloor m/(2d^2k) \rfloor$. This is a set of at most $2d^2k$ points that intersects each member of \mathcal{H} , completing the proof. \Box

Remarks. It may be possible to improve the constant factor in the above proof. Kaiser's estimate is indeed better by roughly a factor of 2; $\tau(\mathcal{H}) \leq (d^2 - d + 1)\nu(\mathcal{H})$. It will be interesting to decide if the quadratic dependence on d is indeed best possible. Higher dimensional extensions are possible, using the techniques in [2], [1].

^{*}Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Research supported in part by a USA-Israeli BSF grant and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. Email: noga@math.tau.ac.il.

References

- N. Alon and G. Kalai, Bounding the piercing number, Discrete and Computational Geometry 13 (1995), 245-256.
- [2] N. Alon and D. J. Kleitman, Piercing convex sets and the Hadwiger Debrunner (p, q)-problem, Advances in Mathematics 96 (1992), 103-112.
- [3] A. Gyárfás and J. Lehel, A Helly-type problem in trees, in *Combinatorial Theory and its Appli*cations, Eds. P. Erdős, A. Rényi and V.T. Sós, North-Holland, Amsterdam 1970, 571–584.
- [4] T. Kaiser, Transversals of d-intervals, Discrete and Computational Geometry, to appear.
- [5] G. Tardos, Transversals of 2-intervals, a topological approach, Combinatorica 15, 1 (1995), 123– 134.