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Abstract

For a finite metric space V with a metric ρ, let V n be the metric space in which the distance
between (a1, . . . , an) and (b1, . . . , bn) is the sum

∑n
i=1 ρ(ai, bi). We obtain an asymptotic formula

for the logarithm of the maximum possible number of points in V n of distance at least d from a
set of half the points of V n, when n tends to infinity and d satisfies d�

√
n.

1 The Main Results

Let V be a finite metric space with metric ρ and with probability measure µ. On the set V n define
naturally the product probability measure

µn(a1, . . . , an) =
n∏
i=1

µ(ai)

and the L1 metric

ρn((a1, . . . , an), (b1, . . . , bn)) =
n∑
i=1

ρ(ai, bi).

For any S ⊆ V n and d ≥ 0 define the closed ball

B[S, d] = {u ∈ V n : ∃ v ∈ S, ρn(u, v) ≤ d}.

We are interested in minimizing µn(B[S, d]) over all sets S with µn(S) ≥ 1
2 . In our range of interest

this quantity will be nearly 1 so we instead define

fn(d) = max
µn(S)≥ 1

2

µn(B[S, d] ).
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In this paper we obtain tight bounds on the asymptotic behavior of fn(d) for every fixed V , ρ, and µ,
when n and d/

√
n tend to infinity. In this range, our estimates provide an asymptotic formula

for ln fn(d), with the right constant. It is convenient to deal separately with the case d = o(n),
which is somewhat simpler, and the case d = Ω(n). The results are described in the following two
subsections.

1.1 Sublinear Distances

Our bounds on fn(d) for n� d�
√
n depend upon a constant c (dependent on V, ρ, µ but not on n)

that we call the spread constant of (V, ρ, µ). Call X:V → R Lipschitz if

|X(v)−X(w)| ≤ ρ(v, w)

for all v, w ∈ V . Any such function can be considered a random variable over the probability
space (V, µ) and as such has a variance Var[X].

Definition: The spread constant c is the maximum possible Var[X] over all Lipschitz X.

The spread constant appears to be new and may well be of independent interest. Alekseev [2]
and Engel [13, 14] used a somewhat similar constant to estimate the width of a product of partial
orders.

We call X optimal if it is Lipschitz with maximum possible variance. Since any continuous
function attains its maximum in any compact domain, there are optimal X, that is, the supremum
of Var[X] is in fact a maximum. Translating X preserves the Lipschitz condition and the variance so
that, when convenient, we may assume the optimal X has mean 0. The following theorem determines
the asymptotic behavior of fn(d) for all d satisfying n� d�

√
n .

Theorem 1.1 For n1/2 � d� n,

fn(d) = e−
d2

2cn
(1+o(1)) ,

with c the spread constant defined above.

1.2 Linear Distances

The asymptotic behavior of fn(d) for d = Θ(n) is somewhat more complicated than that for the
sublinear case. Define the maximum average distance m by

m = max
µ(v)>0

E[ρ(v, w)],

where w is a random variable with distribution µ. It is not hard (see Theorem 3.16) to show that
d ≥ mn+

√
cn (or even just d ≥ m(n+ 3)) implies fn(d) = 0. In other words, for d just a little more
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than mn, our problem becomes uninteresting. We develop an asymptotic formula for the logarithm
of fn(d) for all d a little less than mn. More precisely, suppose that d�

√
n and mn− d�

√
n. For

a real number λ, define L(λ) to be the maximum of ln E[eλX ] over all Lipschitz functions X:V → R
with E[X] = 0. For a real number t, define R(t) by

R(t) = sup
λ∈R

[λt− L(λ)]. (1)

The following theorem determines the asymptotic behavior of fn(d) for a wide range of d.

Theorem 1.2 For d�
√
n and mn− d�

√
n, we have

fn(d) = e−R(d/n)n(1+o(1)) ,

where R is defined in Equation (1). In particular, for fixed t ∈ (0,m) and d ∼ tn, we have

fn(d) = e−R(t)n(1+o(1)) .

We note that it is not difficult to show that for all values of n and d,

fn(d) ≤ exp[−Θ(d2/n)].

See, for example, [20, 5, 22, 21, 11, 27]. The new aspect of the present work is the finding of the
correct constant, giving an asymptotic formula with the right constant for ln fn(d). For a different
approach that can yield related results, see [1].

As an example illustrating Theorem 1.2 consider the metric space V consisting of three points with
equal probability, where the distance between any two is 1. A simple though tedious computation
gives that here e−R(t) = 2(2 − 3t)t−2/3(6t + 2)−1/3−t for all 0 ≤ t < 2/3. This supplies a tight
isoperimetric inequality for the space of all vectors of length n over the alphabet {1, 2, 3} with the
Hamming metric, and can be used, for example, to improve the estimate for ε in one of the explicit
constructions of [4] of a K4-free graph on N vertices in which any set of at least N1−ε vertices
contains a triangle.

1.3 Large Deviations

Theorems 1.1 and 1.2 are closely related to known results in the theory of Large Deviations, although
we do not see any simple way of deriving them from these known results. The statement of Theorem
1.1 resembles the known probabilistic statement that if Y = X1 + X2 + . . . + Xn is the sum of
independent, identically distributed, bounded random variables each having mean 0 and variance 1,
then for

√
n << d << n,

Pr[Y > d] = e−d
2/2n(1+o(1)).

(See, e.g., [24], Theorem 5.2.2 or [7], Chapter 6, Theorem 3.1 for a more general result). The main
part of our proof of Theorem 1.1 is its reduction to a large deviation inequality for martingales
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which is very similar to the one above. For the sake of completeness we include a short proof of this
inequality as well.

The statement of Theorem 1.2 is closely related to the statement of Cramér’s Theorem (see,
e.g., [28], pp. 7-10, or [25], p. 35), which asserts that for bounded, identically distributed random
variables X1, . . . , Xn all having distribution X, their sum Y satisfies

Pr(Y > d) = e−R(d/n)n(1+o(1)),

where
R(t) = sup

λ∈R
[λt− ln E[eλX ]].

The situation in our case is more complicated, as we are dealing with the maximum over all possible
choices of X, and not with a single, given X. Here, too, our presentation is self contained.

It is also worth noting that our proof of Theorem 1.2 contains the assertion of Theorem 1.1, but
since the proof of Theorem 1.1 is much simpler we prefer to describe it separately.

2 Sublinear Distances

In this section we consider the case d = o(n), prove Theorem 1.1, and establish several results on
the spread constant.

2.1 Graphs

The special case where V is the vertex set of a connected graph G, the metric ρ is the distance metric
of G, and µ is uniform on V , is of particular interest and was our original motivation. In this case,
the following theorem holds.

Theorem 2.1 There is an optimal X with X(v) integral for all v. Moreover, there is always an
optimal X for which there is a set of vertices U and an assignment of a sign s(C) ∈ {1,−1} to every
connected component of V − U so that for every vertex v in U , we have X(v) = 0 and for every
vertex v in a component C as above, X(v) is the product of s(C) and the distance between v and U .

Proof. We first prove that there is an integral optimal X. Note that for a metric given by a graph,
the assumption that X is Lipschitz is equivalent to assuming that |X(u)−X(v)| ≤ 1 for every edge
{u, v}. By translating if necessary we find an optimal X with X(v) = 0 for some vertex v. Define
a graph H on V by letting v, w be adjacent if they are adjacent in G and X(v) − X(w) = ±1. It
suffices to show that H is connected. If H were not connected let C ⊂ V be a connected component
of H and set Xε(v) = X(v) + ε if v ∈ C; set Xε(v) = X(v) otherwise. For each subset S ⊆ V let
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X(S) denote the sum
∑
s∈S X(s). As a function of ε,

Var[Xε] = Var[X] +
2εX(C) + ε2|C|

|V |
− 2ε|C|X(V ) + ε2|C|2

|V |2

= Var[X] +
2ε|C|
|V |

(
X(C)
|C|

− X(V )
|V |

) + ε2
|C|
|V |

(1− |C|
|V |

). (2)

As the coefficient of ε2 is strictly positive, ε = 0 cannot be a local maximum. But Xε is Lipschitz for
some open interval of ε centered at 0, contradicting the optimality of X. This contradiction proves
the first part of the theorem.

Next we prove the second part. Note that in the formula (2), the coefficient of the linear term
in ε is positive iff the average value of X over C exceeds its average over V . Fix an optimal X
that attains only integral values, and let s denote the unique integer in the semi-closed interval
[E[X] − 1/2,E[X] + 1/2). For each integer t, let Ut denote the set of all vertices u for which
X(u) = t. We claim that for each t > s and each u ∈ Ut, there is a vertex v ∈ Ut−1 with uv being an
edge. Indeed, otherwise we could modify X to Xε by defining Xε(w) = X(w) + ε for all w satisfying
X(w) ≥ t, and by leaving Xε(w′) = X(w′) for each other vertex w′. Note that if ε is a sufficiently
small positive real, then Xε is Lipschitz. However, by formula (2) for Var[X] (where now C is the set
of all vertices u satisfying X(u) ≥ t), if ε is positive and sufficiently small, then Var[Xε] > Var[X],
contradicting the optimality of X. This contradiction proves the claim.

By repeatedly applying the assertion of the claim we conclude that if u ∈ Ut with t > s, then
the distance between u and Us is at most t − s. However, the distance cannot be smaller, as X is
Lipschitz, showing that in this case X(u) is precisely s plus the distance between Us and u. The
same argument implies that if u ∈ Ut and t < s then the distance between u and Us is precisely s− t.
Replacing X by X − s (which has the same variance) we obtain an optimal X whose value on the
set of vertices U = Us is 0, such that for every vertex v in V − U , the absolute value of X(v) is
precisely the distance between v and U . Thus X(v) is either that distance or its negation. It remains
to show that there are no two vertices v and v′ in a component of V − U , with X(v) being the
distance between v and U and X(v′) being the negation of the distance between v′ and U . However,
if there are two such vertices then there are two adjacent vertices with this property, contradicting
the Lipschitz condition. This contradiction completes the proof. 2

Remark. The Laplace matrix of a graph G = (V,E) is the matrix L = (`u,v) whose rows and
columns are indexed by the vertices of G, in which `v,v is the degree of v for all v ∈ V and for
each two distinct u, v in V , we have `u,v = −1 if uv ∈ E and `u,v = 0 otherwise. This matrix
is symmetric, and thus has real eigenvalues. Its smallest eigenvalue is 0, and its second smallest
eigenvalue, denoted by λ1, is strictly positive iff G is connected. This eigenvalue appears in certain
isoperimetric inequalities for G; see [5]. The discussion in [5, p. 76] easily implies that the spread
constant c of G satisfies c ≤ |E|/λ1.
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When G is an edge on the vertices 0, 1 an optimal X has X(0) = 0, X(1) = 1. This is the
isoperimetric problem in the Hamming cube, for which the precise result is known for all |S| and
all d by the work of Harper [18]; see also [16]. In particular, the set S of (a1, . . . , an) ∈ {0, 1}n with∑n
i=1 ai ≤ r has the minimal |B[S, d]| among all S of that size. More generally let G be a path

on vertices 0, 1, . . . , k − 1, in that order. It is not difficult to prove that X(i) = i for all i is an
optimal X. Here Bollobás and Leader [11] have given the precise isoperimetric result for all |S| and
all d. In particular, the set S of (a1, . . . , an) with

∑n
i=1X(ai) ≤ r has the minimal |B[S, d]| among

all S of that size. When G is an even cycle, Bollobás and Leader [10] have again given the precise
isoperimetric result.

Our results are more general but less precise. This tradeoff leads to a tantalizing speculation.
Given any connected graph G with an optimal X, is it possible that for n sufficiently large and d, r in
appropriate ranges the set S of (a1, . . . , an) with

∑n
i=1X(ai) ≤ r has the minimum possible |B[S, d]|

among all S of that size?

2.2 The Lower Bound

For convenience, technical results on Large Deviations for both the lower and the upper bounds in
Theorem 1.1 have been placed in § 2.4 and § 2.5.

Fix an optimal X with E[X] = 0. Define W :V n → R by

W (a1, . . . , an) =
n∑
i=1

X(ai).

The function W , viewed as a random variable on the probability space (V n, µn), has the same
distribution as

∑n
i=1Xi, where the Xi are independent copies of X. Thus W has mean 0 and

variance nc. We take either S = {a ∈ V n : W (a) ≤ 0} or S = {a ∈ V n : W (a) ≥ 0}, whichever has
µn(S) ≥ 1

2 . By symmetry assume it’s the first case. Since X is Lipschitz, for all a = (a1, . . . , an), b =
(b1, . . . , bn) ∈ V n, we have

|W (a)−W (b)| ≤
n∑
i=1

|X(ai)−X(bi)| ≤
n∑
i=1

ρ(ai, bi) = ρn(a, b),

so that
B[S, d] ⊇ {b ∈ V n : W (b) > d},

and hence
µn(B[S, d] ) ≥ Pr[W > d].

The Large Deviation result of § 2.5, Equation (5), gives that this probability is at least exp[− d2

2cn(1+
o(1))] for

√
n� d� n, which is the lower bound for Theorem 1.1.
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2.3 The Upper Bound

Fix S ⊆ V n with µn(S) ≥ 1
2 and define a random variable Y on V n by

Y (a) = ρn(a, S) = min
b∈S

ρn(a, b).

The random variable Y generates a martingale Y0, Y1, . . . , Yn exposing one coordinate at a time.
Thus Yn = Y , Y0 = E[Y ], and

Yi(a1, . . . , an) = E[Y (a1, . . . , ai, xi+1, . . . , xn)],

where the xi are independent, each with distribution µ. Fix i and a1, . . . , ai and consider the
distribution of Z = Yi+1 − Yi. The function Z depends only on the i + 1-st coordinate so we may
consider Z:V → R, with Z(α) = Z(a1, . . . , ai, α, . . .). The martingale property (considering Z as a
random variable over the probability space (V, µ)) ensures that E[Z] = 0. Now for the crucial idea.
Changing the i+1-st coordinate from α to β can change Y by at most ρ(α, β): the closest point of S
from α is at most ρ(α, β) further away from β. (Note that we need here that ρ is a metric space.)
Therefore

|Z(α)− Z(β)| ≤ ρ(α, β).

The definition of the spread constant c gives

Var[Z] ≤ c.

Furthermore |Z| ≤ K for all i, a1, . . . , ai where K is the diameter of (V, ρ). The Martingale inequality
of § 2.4, Equation (4), now gives

Pr[|Y − E[Y ]| > d] < e−
d2

2cn
(1+o(1))

for n1/2 � d� n. Further, for some large constant K1,

Pr[|Y − E[Y ]| > K1n
1/2] <

1
2
.

As Pr[Y = 0] = µn(S) ≥ 1
2 , this inequality implies E[Y ] ≤ K1n

1/2. Thus

Pr[Y > d] ≤ Pr[|Y − E[Y ]| ≥ d−K1n
1/2].

When d� n1/2 we can write d−K1n
1/2 = d(1 + o(1)) so that

Pr[Y > d] < e−
d2

2cn
(1+o(1))

as claimed.
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2.4 Large Deviation Inequalities via Martingales

The following discussion is similar to the ones in [6, 19, 3]. Let X be a random variable with E[X] = 0,
Var[X] = 1, and |X| ≤ K. For any λ,

E[eλX ] = 1 +
λ2

2
+
∑
i≥3

λi

i!
E[Xi].

Now suppose λ = o(1). As |E[Xi]| ≤ Ki,∣∣∣∣∣∣
∑
i≥3

λi

i!
E[Xi]

∣∣∣∣∣∣ ≤
∑
i≥3

(Kλ)i

i!
= O(λ3),

so that

E[eλX ] = 1 +
λ2

2
+O(λ3) = e

λ2

2
(1+o(1)). (3)

Now let n1/2 � d� n and consider a martingale E[Y ] = Y0, Y1, . . . , Yn = Y with |Yi+1−Yi| ≤ K
and E[(Yi+1 − Yi)2|Yi, . . . , Y0] ≤ 1. Set, with foresight, λ = d

n . As d� n, we have λ = o(1). Then

E[eλ(Yi+1−Yi)|Yi, . . . , Y0] ≤ e
λ2

2
(1+o(1)),

so that
E[eλ(Y−E[Y ])] ≤ e

nλ2

2
(1+o(1))

and
Pr[Y − E[Y ] > d] < e

nλ2

2
(1+o(1))−λd = e−

d2

2n
(1+o(1))

by our (optimal) choice of λ.
By symmetry the same bound holds for Pr[Y −E[Y ] < −d]. When Var[X] = c we can apply this

result to Xc−1/2, resulting in an additional c in the denominator of the exponent:

Pr[Y − E[Y ] > d] ≤ e−
d2

2cn
(1+o(1)). (4)

2.5 Lower Bounds for Large Deviations

Let X have E[X] = 0, Var[X] = 1, and |X| ≤ K, and set Y = X1 + · · · + Xn with the Xi

independent copies of X. Let n1/2 � d � n. We want to bound Pr[Y > d] from below. Of course,
when d = Cn1/2 (for constant C), the Central Limit Theorem says that the limiting probability is
the probability that the standard normal distribution is at least C.

For λ = o(1), by Equation (3), we have

E[eλXi ] = e
λ2

2
(1+o(1)).

Set λ = d
n , so that

E[eλY ] = e
d2

2n
(1+o(1)).
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Let ε > 0 be arbitrarily small. For x > d(1 + ε) we have eλx ≤ eλ(1+ε)xe−λdε(1+ε), so that

E[eλY [Y > d(1 + ε)]] ≤ e−λdε(1+ε)E[eλ(1+ε)Y ]

≤ exp[
d2

2n
(1 + ε)2(1 + o(1))− d2

n
ε(1 + ε)]

= exp[
d2

2n
(1− ε2)(1 + o(1))].

(Here [S] denotes the indicator of the Boolean value S.) Similarly for x < d(1 − ε) we have eλx ≤
eλ(1−ε)xeλdε(1−ε), so that

E[eλY [Y < d(1− ε)]] ≤ eλdε(1−ε)E[eλ(1−ε)Y ]

= exp[
d2

2n
(1− ε)2(1 + o(1)) + λdε(1− ε)]

= exp[
d2

2n
(1− ε2)(1 + o(1))].

Since d� n1/2, the contribution to E[eλY ] is asymptotically all from d(1− ε) < Y < d(1 + ε), and so

E[eλY [d(1− ε) < Y < d(1 + ε)]] = e
d2

2n
(1+o(1)).

In this range eλY ≤ eλd(1+ε), so

Pr[d(1− ε) < Y < d(1 + ε)] ≥ e
d2

2n
(1+o(1))− d

2

n
(1+ε).

Replacing d by d/(1− ε) gives

Pr[d < Y ] ≥ exp

[
d2

2n(1− ε)2
(1 + o(1))− d2(1 + ε)

n(1− ε)2

]
.

As ε is arbitrarily small we absorb it into the o(1) term giving

Pr[d < Y ] ≥ exp

[
− d

2

2n
(1 + o(1))

]
as desired.

A simple linear transformation gives that if Y = X1 + · · ·+Xn with the Xi independent copies
of a random variable X having E[X] = 0, Var[X] = c, and |X| ≤ K, then

Pr[Y > d] ≥ e−
d2

2cn
(1+o(1)) (5)

for n1/2 � d� n.

3 Linear Distances

In this section we mainly consider the case d = Θ(n) and prove Theorem 1.2. Along the way we
establish several auxiliary results.
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3.1 The Log-Moment Function

Let X be a random variable. Define its log-moment function LX : R→ R by

LX(λ) = ln E[eλX ].

The first derivative of LX is

L′X(λ) =
E[XeλX ]
E[eλX ]

. (6)

The second derivative of LX is

L′′X(λ) =
E[X2eλX ]

E[eλX ]
− L′X(λ)2 .

The third derivative of LX is

L′′′X(λ) =
E[X3eλX ]

E[eλX ]
− 3

E[X2eλX ]
E[eλX ]

L′X(λ) + 2L′X(λ)3 .

In particular, LX(0) = 0, L′X(0) = E[X], and L′′X(0) = Var[X]. We can rewrite the formula (6) for
the first derivative as

E[(X − L′X(λ))eλX ] = 0. (7)

By expanding (X − L′X(λ))2, we get another formula for the second derivative:

L′′X(λ) =
E[(X − L′X(λ))2eλX ]

E[eλX ]
. (8)

By expanding (X − a)2, and then minimizing over a, we get yet another formula for the second
derivative:

L′′X(λ) = min
a∈R

E[(X − a)2eλX ]
E[eλX ]

. (9)

By expanding (X − L′X(λ))3, we get another formula for the third derivative:

L′′′X(λ) =
E[(X − L′X(λ))3eλX ]

E[eλX ]
. (10)

By Jensen’s inequality (see [17]), if E[X] = 0 then LX is nonnegative. By Equation (8), the
second derivative of LX is nonnegative, so LX is convex. By Hölder’s inequality (see [17]), the
function X 7→ LX(λ) is convex on RV . Being convex and finite, the function X 7→ LX(λ) is
automatically continuous (Rockafellar [23, Corollary 10.1.1]).

Let V be a finite set, ρ be a metric on V , and µ be a probability distribution on V . Let
G = (V, ρ, µ). Let Ω be the set of Lipschitz X:V → R with E[X] = 0. Define the log-moment
function LG: R → R as follows: LG(λ) is the maximum of LX(λ) over all X ∈ Ω. Say that X ∈ Ω
is λ-optimal if LX(λ) = LG(λ).
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Observe that the set Ω is a (bounded) convex polytope in RV . Let Ω0 denote the finite set of
extreme points of this polytope. As the function X 7→ LX(λ) is convex, its supremum over Ω is
attained on Ω0; hence we may give a finite expression

LG(λ) = max
X∈Ω0

LX(λ).

In what follows we may restrict λ-optimal X to be from Ω0. Note further that Ω, and hence Ω0,
depends on (V, ρ) but is essentially independent of the probability distribution µ; only the condition
E[X] = 0 creates a dependence on µ. Had we so desired, we could have defined Ω to not depend
on µ at all. (Namely, replace the condition E[X] = 0 with

∑
v∈V X(v) = 0; in the definition of LG,

replace LX(λ) with LX−E[X](λ).)
Because all LX vanish at 0, so does LG. Because all LX (with E[X] = 0) are nonnegative, so

is LG. Because all LX are convex, so is LG. Because X is Lipschitz iff −X is Lipschitz, LG is even.
Being convex and finite, LG is continuous and, further, is left-differentiable and right-differentiable

(Rockafellar [23, Theorem 23.1]). Because Ω is compact, LX is convex and differentiable, and X 7→
LX(λ) is continous, it follows from Dem’yanov and Vasil’ev [12, p. 160] that the right derivative
Lr
G(λ) is the maximum of L′X(λ) over all λ-optimal functions X. Similarly, the left derivative L`G(λ)

is the minimum of L′X(λ) over all λ-optimal functions X.
We will need a bound on the first derivative of the log-moment function. First we remind the

reader of the definition of maximum average distance. Given a point v ∈ V , define Dv:V → R by
Dv(w) = ρ(v, w). By the triangle inequality, Dv is Lipschitz. Define the maximum average distance
of G by

mad(G) = max
µ(v)>0

E[Dv].

Say that a point v ∈ V is remote if µ(v) > 0 and E[Dv] = mad(G).

Theorem 3.1 Let X:V → R be a Lipschitz function with E[X] = 0, and let λ ∈ R. Then

L′X(λ) ≤ mad(G) .

Proof. First we claim that X ≤ mad(G) with probability 1. Let v ∈ V be a point with µ(v) > 0.
Because X is Lipschitz, for every point w ∈ V we have

X(v) ≤ X(w) +Dv(w). (11)

Now let w be a random variable with distribution µ. Taking expected values of both sides of
Equation (11) shows that

X(v) ≤ E[X] + E[Dv] = E[Dv] ≤ mad(G),

which was our claim.
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Using Equation (6) and the claim, we get

L′X(λ) =
E[XeλX ]
E[eλX ]

≤ E[mad(G)eλX ]
E[eλX ]

= mad(G) .

That is the inequality we wanted. 2

Next we will prove a bound on the second derivative of the log-moment function. Define the
(effective) diameter of G by

diam(G) = max
µ(v)>0
µ(w)>0

ρ(v, w).

Theorem 3.2 Let X:V → R be a Lipschitz function, and let λ ∈ R. Then

L′′X(λ) ≤ 1
4

diam(G)2 .

Proof. Define m = minµ(v)>0X(v) and M = maxµ(v)>0X(v). For every x between m and M , we
have

(x− m+M

2
)2 ≤ (

M −m
2

)2 . (12)

Because X is Lipschitz, we have

M −m = max
µ(v)>0
µ(w)>0

X(v)−X(w)

≤ max
µ(v)>0
µ(w)>0

ρ(v, w)

= diam(G). (13)

By Equations (9), (12), and (13), we have

L′′X(λ) ≤
E[(X − m+M

2 )2eλX ]
E[eλX ]

≤
E[(M−m2 )2eλX ]

E[eλX ]

= (
M −m

2
)2

≤ diam(G)2

4
.

That is the inequality we wanted. 2

As a corollary, we get the following bound on the log-moment function itself.
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Corollary 3.3 For every λ ∈ R, we have

LG(λ) ≤ diam(G)2

8
λ2 .

Proof. Let X:V → R be a Lipschitz function with mean 0. By Taylor’s theorem, there is a real
number α such that

LX(λ) = LX(0) + L′X(0)λ+ L′′X(α)
λ2

2
. (14)

The first two terms vanish, because LX(0) = 0 and L′X(0) = E[X] = 0. Simplifying Equation (14)
and using Theorem 3.2, we get

LX(λ) = L′′X(α)
λ2

2
≤ diam(G)2

8
λ2 .

Maximizing over X finishes the proof. 2

Next we will prove a bound on the third derivative of the log-moment function.

Theorem 3.4 Let X:V → R be a Lipschitz function, and let λ ∈ R. Then

|L′′′X(λ)| ≤ 1
4

diam(G)3 .

Proof. Define m = minµ(v)>0X(v) and M = maxµ(v)>0X(v). We have m ≤ X ≤ M with
probability 1. It follows from Equation (6) that m ≤ L′X(λ) ≤ M . Recall from Equation (13) that
M −m ≤ diam(G). Hence by Equations (10) and (8), and Theorem 3.2, we have

|L′′′X(λ)| =
|E[(X − L′X(λ))3eλX ]|

E[eλX ]

≤ E[|X − L′X(λ)|3eλX ]
E[eλX ]

≤ (M −m)E[(X − L′X(λ))2eλX ]
E[eλX ]

= (M −m)L′′X(λ)

≤ diam(G)L′′X(λ)

≤ diam(G)
1
4

diam(G)2

=
1
4

diam(G)3 .

That is the inequality we wanted. 2

As a corollary, we get the following connection between LG and the spread constant c(G).

Corollary 3.5
(a) LG(λ) ≤ c(G)λ2/2 + diam(G)3|λ|3/24.

(b) LG(λ) ≥ c(G)λ2/2− diam(G)3|λ|3/24.

(c) limλ→0 LG(λ)/λ2 = c(G)/2.
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Proof.
(a) Let X:V → R be a Lipschitz function with mean 0. By Taylor’s theorem, there is a real

number α such that

LX(λ) = LX(0) + L′X(0)λ+ L′′X(0)
λ2

2
+ L′′′X(α)

λ3

6
.

The first two terms vanish, because LX(0) = 0 and L′X(0) = E[X] = 0. The third coefficient is
L′′X(0) = Var[X]. Using Theorem 3.4, we get

LX(λ) = Var[X]
λ2

2
+ L′′′X(α)

λ3

6

≤ Var[X]
λ2

2
+

diam(G)3

4
|λ|3

6

= Var[X]
λ2

2
+ diam(G)3 |λ|3

24
.

Maximizing over X gives

LG(λ) ≤ c(G)
λ2

2
+ diam(G)3 |λ|3

24
.

That inequality completes part (a).

(b) Similar to part (a).

(c) Follows from parts (a) and (b). 2

Let G = (VG, ρG, µG) and H = (VH , ρH , µH) be two spaces. Define the product space G×H by

G×H = (VG × VH , ρG ⊕ ρH , µG ⊗ µH),

where ρG ⊕ ρH is the L1 metric

(ρG ⊕ ρH)((a, b), (a′, b′)) = ρG(a, a′) + ρH(b, b′)

and µG ⊗ µH is the product distribution

(µG ⊗ µH)(a, b) = µG(a)µH(b).

The next theorem shows that the log-moment function “tensorizes”.

Theorem 3.6 LG×H = LG + LH .

Proof. The lower bound LG×H ≥ LG + LH is easy. Let Y :VG → R and Z:VH → R be Lipschitz
functions with mean 0. Define X:VG × VH → R by

X(a, b) = Y (a) + Z(b).

14



It is easy to see that X is also Lipschitz with mean 0. Hence LG×H ≥ LX = LY + LZ . Maximizing
over all Y and Z completes the lower bound.

The upper bound LG×H ≤ LG + LH is more difficult. Let X:VG × VH → R be a Lipschitz
function of mean 0. Define Y :VG → R by

Y (a) = E[X(a, b)],

where b is a random variable with distribution µH . Because X is Lipschitz with mean 0, so is Y .
For each a ∈ VG, define Za:VH → R by

Za(b) = X(a, b)− Y (a). (15)

Again it is easy to see that Za is Lipschitz with mean 0. Rearranging Equation (15), we get

X(a, b) = Y (a) + Za(b). (16)

Let a and b be independent random variables with distributions µG and µH , respectively. By Equa-
tion (16), we have

E[eλX ] = E[eλX(a,b)]

= E[E[eλX(a,b) | a]]

= E[E[eλ(Y (a)+Za(b)) | a]]

= E[eλY (a)E[eλZa(b) | a]]

= E[eλY (a)eLZa (λ)]

≤ E[eλY (a)eLH(λ)]

= E[eλY (a)]eLH(λ)

= eLY (λ)eLH(λ)

≤ eLG(λ)eLH(λ)

= eLG(λ)+LH(λ) .

Taking logarithms and then maximizing over all X concludes the proof. 2

Let Gn = (V n, ρn, µn) be the nth power of the space G = (V, ρ, µ). As a corollary of the previous
theorem, we deduce the following connection between LGn and LG.

Corollary 3.7 LGn = nLG.

Proof. Follows from Theorem 3.6 and induction on n. 2

As another corollary, we deduce that the spread constant tensorizes. Bobkov and Houdré [8]
proved a similar result.
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Corollary 3.8 c(G×H) = c(G) + c(H). In particular, c(Gn) = c(G)n.

Proof. Follows from Corollary 3.5, Theorem 3.6, and Corollary 3.7. 2

3.2 The Rate Function

Given the space G = (V, ρ, µ), define the rate function RG: R→ R ∪ {∞} by

RG(t) = sup
λ∈R

[λt− LG(λ)].

We have borrowed the term “rate function” from the theory of Large Deviations, where a similar
concept appears; see Shwartz and Weiss [26] for an introduction. Because LG is a nonnegative
function that vanishes at 0, for t ≥ 0 we need to take the supremum only over λ ≥ 0. Because LG
is a nonnegative function that vanishes at 0, so is RG. Because LG is even, so is RG. Being the
supremum of linear functions, RG is convex.

Say that λ is t-extreme if it attains the supremum in the definition of RG(t). There might not
exist a t-extreme value, because the supremum might not be attained. Even worse, the value of RG(t)
might be ∞. The next theorem will identify the domain on which RG is finite.

Theorem 3.9 If |t| ≤ mad(G), then RG(t) is finite.

Proof. Let v be a remote point. Let λ be arbitrary. If λ ≥ 0, then define X = E[Dv]−Dv; otherwise,
define X = Dv − E[Dv]. Note that X is a Lipschitz function with mean 0. We have

λt− LG(λ) ≤ λt− ln E[eλX ]

≤ λt− ln(µ(v)e|λ|mad(G))

= λt− |λ|mad(G)− lnµ(v)

≤ − lnµ(v).

Taking the supremum over all λ shows that RG(t) ≤ − lnµ(v). 2

Theorem 3.10 If |t| < mad(G), then there is a t-extreme value.

Proof. Let λ be arbitrary. We have

λt− LG(λ) = λ[t−mad(G)] + [λmad(G)− LG(λ)]

≤ λ[t−mad(G)] +RG(mad(G)).

Taking the limit as λ→∞ gives
lim
λ→∞

λt− LG(λ) = −∞.
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Symmetrically, we have
lim

λ→−∞
λt− LG(λ) = −∞.

Thus in finding the supremum of λt− LG(λ), we may restrict λ to a compact interval. Because LG
is continuous, it follows that the supremum is attained; there is a t-extreme value. 2

The next theorem provides a general lower bound on the rate function.

Theorem 3.11 For every t ∈ R, we have

RG(t) ≥ 2t2

diam(G)2
.

Proof. With foresight, choose λ := 4t/diam(G)2. Using Corollary 3.3, we get

RG(t) ≥ λt− LG(λ)

≥ λt− diam(G)2

8
λ2

=
2t2

diam(G)2
.

That is the inequality we wanted. 2

Next, we prove a better estimate on the rate function for t� 1.

Theorem 3.12 limt→0RG(t)/t2 = 1/(2c(G)).

Proof. For each t ∈ R, define the function ht: R→ R by

ht(λ) = λt− LG(λ).

Using Corollary 3.5, we have

lim
t→0

ht(t/c(G))
t2

=
1

2c(G)
.

Because RG(t) = supλ ht(λ) ≥ ht(t/c(G)), we have proved a lower bound on the desired limit.
For the upper bound, we will consider the limit only as t approaches 0 from the right; the left

limit is similar. Using Corollary 3.5 again, we have

lim
t→0

ht(2t/c(G))
t2

= 0 .

In particular, ht(t/c(G)) ≥ ht(2t/c(G)) for all sufficiently small t. Because LG is convex, ht is concave.
Thus for t small, we may restrict λ in the supremum for RG(t) to the interval 0 < λ ≤ 2t/c(G).
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Using Corollary 3.5 once again, we get

lim
t↓0

RG(t)
t2

= lim
t↓0

sup
0<λ≤2t/c(G)

λt− LG(λ)
t2

≤ lim
t↓0

sup
0<λ≤2t/c(G)

λ2

4LG(λ)

= lim
λ↓0

λ2

4LG(λ)

=
1

2c(G)
.

That inequality finishes the upper bound. 2

Next, we will argue that RG has nice “continuity” properties. Suppose that s < t < mad(G).
Because RG is convex, we have

RG(t)−RG(s)
t− s

≤ RG(mad(G))−RG(s)
mad(G)− s

.

Hence we have

RG(t)−RG(s) ≤ t− s
mad(G)− s

· [RG(mad(G))−RG(s)]

≤ t− s
mad(G)− s

·RG(mad(G)) (17)

≤ t− s
mad(G)− t

·RG(mad(G)).

3.3 The Second Moment

We will need the following generalization of the usual second-moment method.

Theorem 3.13 Let X be a random variable, let λ ≥ 0, and let a > 0. Then

Pr[X > L′X(λ)− a] ≥ eLX(λ)−λ[L′X(λ)+L′′X(λ)/a] · a2

L′′X(λ) + a2
.

Proof. Define the function g: R→ R by

g(x) =
e−λx

x− L′X(λ) + a
.

It is easy to check that g is

• negative on (−∞, L′X(λ)− a) and positive on (L′X(λ)− a,∞),

• decreasing on (L′X(λ)− a,∞), and

18



• convex on (L′X(λ)− a,∞).

With foresight, choose t = L′X(λ) + L′′X(λ)/a. (Note that t > L′X(λ) − a.) We claim that for
every x ∈ R,

[x > L′X(λ)− a] ≥ g(t)
g(x)

+
g′(t)(x− t)

g(x)
. (18)

The proof of the claim divides into three cases.

Case x > L′X(λ)− a: Because g is convex on (L′X(λ)− a,∞), we have

g(x) ≥ g(t) + g′(t)(x− t).

Dividing by g(x) finishes this case.

Case x = L′X(λ)− a: This case holds with equality, provided that we interpret 1/g(L′X(λ)− a)
as 0.

Case x < L′X(λ)− a: We have g(t) > 0, g′(t) < 0, and g(x) < 0. Hence both terms on the right
side of Equation (18) are negative, which finishes this case.

Having proved the claim, we plug x := X into Equation (18) and take expectations. We get

Pr[X > L′X(λ)− a] ≥ g(t) · E[
1

g(X)
] + g′(t) · E[

X − t
g(X)

] . (19)

Let us compute the two expected values on the right side of Equation (19). By Equation (7), the
first term is

E[
1

g(X)
] = E[(X − L′X(λ) + a)eλX ]

= aE[eλX ]

= aeLX(λ) .

By Equations (7) and (8), the second term cancels out:

E[
X − t
g(X)

] = E[(X − L′X(λ)− L′′X(λ)/a)(X − L′X(λ) + a)eλX ]

= E[(X − L′X(λ))2eλX ]− L′′X(λ)E[eλX ]

= L′′X(λ)E[eλX ]− L′′X(λ)E[eλX ]

= 0 .

Plugging these two values into Equation (19), we get

Pr[X > L′X(λ)− a] ≥ g(t) · aeLX(λ)

= e−λ[L′X(λ)+L′′X(λ)/a] · 1
L′′X(λ)/a+ a

· aeLX(λ)

= eLX(λ)−λ[L′X(λ)+L′′X(λ)/a] · a2

L′′X(λ) + a2
.
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That is the inequality we wanted. 2

As a corollary, we deduce the following well-known inequality, sometimes called the Chebyshev–
Cantelli inequality.

Corollary 3.14 (Chebyshev–Cantelli) Let X be a random variable and let a ≥ 0. Then

Pr[X > E[X]− a] ≥ a2

Var[X] + a2
.

Proof. Set λ := 0 in the previous theorem, and use the identities LX(0) = 0, L′X(0) = E[X], and
L′′X(0) = Var[X]. 2

As an application, we derive a useful bound on the expected distance of a random point from a
large set in our metric space G = (V, ρ, µ). Let S be a nonempty subset of V . Define DS :V → R by

DS(v) = min
w∈S

ρ(v, w).

By the triangle inequality, DS is Lipschitz.

Theorem 3.15 If µ(S) ≥ 1
2 , then E[DS ] ≤

√
c(G) .

Proof. Because DS is Lipschitz, Var[DS ] ≤ c(G). Let us apply the Chebyshev–Cantelli inequality
with X := DS and a := E[DS ]. We get

1
2
≥ 1− µ(S)

= Pr[DS > 0]

≥ E[DS ]2

Var[DS ] + E[DS ]2
.

Solving for E[DS ] gives
E[DS ] ≤

√
Var[DS ] ≤

√
c(G) ,

which completes the proof. 2

As another application, we show that fn(d) = 0 for d just a little larger than mad(G)n.

Theorem 3.16 If d ≥ mad(G)n+
√
c(G)n , then fn(d) = 0.

Proof. Suppose that d > mad(G)n +
√
c(G)n . (The case d = mad(G)n +

√
c(G)n will follow

from the right-continuity of fn.) Let S be a subset of V n with µn(S) ≥ 1
2 . We will show that
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µn(B[S, d] ) = 0. To do so, let v ∈ V n be an arbitrary point with µn(v) > 0; we will show that
v ∈ B[S, d]. By the definition of mad(G), we have

E[Dv] =
n∑
i=1

E[Dvi ]

≤
n∑
i=1

mad(G)

= mad(G)n. (20)

Also, because Dv is Lipschitz, we have

Var[Dv] ≤ c(Gn) = c(G)n. (21)

We will apply the Chebyshev–Cantelli inequality with X := −Dv and a := d − E[Dv]. By
Equations (20) and (21), we have a2 > c(G)n ≥ Var[Dv]. Hence we get

µn(B[v, d]) = Pr[Dv ≤ d]

= Pr[Dv ≤ E[Dv] + a]

≥ a2

Var[Dv] + a2

>
1
2
.

Because µn(B[v, d]) > 1
2 and µn(S) ≥ 1

2 , we have S ∩B[v, d] 6= ∅, which is equivalent to v ∈ B[S, d].
That is what we wanted to show. 2

In this theorem, we can weaken the hypothesis to d ≥ mad(G)(n + 3), using the Berry–Esseen
theorem (see Feller [15, Section XVI.5]). We omit the details.

3.4 Upper Bound

Let d be such that d�
√
n and mad(G)n−d�

√
n. Our goal is to show that ln fn(d) ∼ −nRG(d/n).

In this section we will prove the upper bound on ln fn(d).
Let S be a subset of V n with µn(S) ≥ 1

2 . Let λ ≥ 0 be arbitrary. By Theorem 3.15 and
Corollaries 3.7 and 3.8, we have

µn(B[S, d] ) = Pr[DS > d]

≤ e−λdE[eλDS ]

= e−λdeλE[DS ]E[eλ(DS−E[DS ])]

≤ e−λdeλE[DS ]eLGn (λ)

≤ e−λdeλ
√
c(Gn)eLGn (λ)

≤ e−λdeλ
√
c(G)neLG(λ)n

= e−n[λ(d/n−
√
c(G)/n )−LG(λ)].
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Taking the infimum over all λ ≥ 0 gives

µn(B[S, d] ) ≤ e−nRG(d/n−
√
c(G)/n ).

Set s = d/n −
√
c(G)/n and t = d/n. We just need to argue that RG(s) ∼ RG(t). The proof

divides into two cases.

Case d ≤ n5/6 : This case follows from Theorem 3.12.

Case d ≥ n5/6 : By Equation (17), we have

RG(t)−RG(s) ≤

√
c(G)
n
· RG(mad(G))

mad(G)− t
. (22)

The conditions d ≥ n5/6 and mad(G)n−d�
√
n imply t2(mad(G)− t)� 1/

√
n. Plugging back into

Equation (22), and using Theorem 3.11, we get

RG(t)−RG(s)� t2 ≤ diam(G)2RG(t)/2.

Hence RG(s) ∼ RG(t), which proves the upper bound.

3.5 Lower Bound

Again, let d be such that d�
√
n and mad(G)n−d�

√
n. We will prove a lower bound on ln fn(d).

Choose

t =
d

n
+
√
c(G)√
n

+
diam(G)

2
√
n

.

Note that 0 < t < mad(G) for sufficiently large n. Hence, by Theorem 3.10, there is a t-extreme
value; call it λ. Because the function α 7→ αt−LG(α) has a maximum at λ, its right derivative at λ
is at most 0, and its left derivative is at least 0. In other words, we have

L`G(λ) ≤ t ≤ Lr
G(λ). (23)

Because Lr
G(λ) ≥ t, there must be a λ-optimal function Y :V → R such that L′Y (λ) ≥ t. Because

L`G(λ) ≤ t, there must be a λ-optimal function Z:V → R such that L′Z(λ) ≤ t. Hence there is a
number p between 0 and 1 such that

pL′Y (λ) + (1− p)L′Z(λ) = t. (24)

Choose k = dpne. Define W :V n → R by

W (v) =
k∑
i=1

Y (vi) +
n∑

i=k+1

Z(vi). (25)

Because Y and Z are Lipschitz, so is W . Because Y and Z both have mean 0, so does W . Because
Y and Z (being Lipschitz) both have variance at most c(G), the variance of W is at most c(G)n.
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Consider the set
S = { v ∈ V n : W (v) <

√
c(G)n }. (26)

By the Chebyshev–Cantelli inequality (Corollary 3.14) applied to X := −W and a :=
√
c(G)n , we

have

µn(S) = Pr[W <
√
c(G)n ]

≥ c(G)n
Var[W ] + c(G)n

≥ c(G)n
c(G)n+ c(G)n

=
1
2
.

Because W is Lipschitz, Equation (26) implies that

B[S, d] ⊆ { v ∈ V n : W (v) <
√
c(G)n+ d },

and so
B[S, d] ⊇ { v ∈ V n : W (v) ≥

√
c(G)n+ d }.

Hence
µn(B[S, d] ) ≥ Pr[W ≥

√
c(G)n+ d]. (27)

To estimate this probability, we first obtain estimates on LW (λ), L′W (λ), and L′′W (λ). From
Equation (25), note that

LW = kLY + (n− k)LZ . (28)

In particular, because Y and Z are λ-optimal, we have

LW (λ) = kLY (λ) + (n− k)LZ(λ)

= kLG(λ) + (n− k)LG(λ)

= nLG(λ). (29)

By Equations (28) and (24), and the definition of k, we have

L′W (λ) = kL′Y (λ) + (n− k)L′Z(λ)

= pnL′Y (λ) + (1− p)nL′Z(λ) + (k − pn)[L′Y (λ)− L′Z(λ)]

= nt+ (dpne − pn)[L′Y (λ)− L′Z(λ)] . (30)

From the paragraph following Equation (23), we have L′Y (λ) ≥ L′Z(λ). Because LZ is convex, we
have L′Z(λ) ≥ L′Z(0) = E[Z] = 0. Also, by Theorem 3.1, we have L′Y (λ) ≤ mad(G). Summarizing,
we have

0 ≤ L′Y (λ)− L′Z(λ) ≤ mad(G).
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Plugging back into Equation (30) gives

nt ≤ L′W (λ) ≤ nt+ mad(G). (31)

By Theorem 3.2, we have

L′′W (λ) = kL′′Y (λ) + (n− k)L′′Z(λ)

≤ k
diam(G)2

4
+ (n− k)

diam(G)2

4

=
diam(G)2

4
n . (32)

Define a := diam(G)
√
n/2. Note that L′′W (λ) ≤ a2 by Equation (32). We will apply Theorem 3.13

with X := W . Using Equations (27), (31), and (29), we get

µn(B[S, d] ) ≥ Pr[W >
√
c(G)n+ d]

= Pr[W > nt− a]

≥ Pr[W > L′W (λ)− a]

≥ eLW (λ)−λ[L′W (λ)+L′′W (λ)/a] · a2

L′′W (λ) + a2

≥ enLG(λ)−λ[nt+mad(G)+diam(G)
√
n/2] · 1

2

≥ 1
2
e−nRG(t+diam(G)/(2

√
n )+mad(G)/n) .

We just need to argue that

RG(t+
diam(G)

2
√
n

+
mad(G)

n
) ∼ RG(

d

n
).

The proof of this asymptotic equation is essentially the same as the continuity argument at the end
of our proof of the upper bound. That observation completes the proof of the lower bound.

We can weaken the hypothesis mad(G)n − d �
√
n to d ≤ mad(G)(n − 10) and still prove the

asymptotic estimate ln fn(d) ∼ −RG(d/n)n. The proof replaces our second-moment method with
the Berry–Esseen theorem (see Feller [15, Section XVI.5]). We omit the details.

3.6 Game Theory

Our original solution of the linear-distance case was in terms of a game. Although our current
solution does not use this game, we describe the game here for its possible independent interest.

We call our game the Bernstein–Lipschitz game. Assume the space G = (V, ρ, µ) has been fixed.
The game involves a parameter t ∈ R. There are two players, Bernstein and Lipschitz. Bernstein
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chooses a real number λ. Lipschitz chooses a Lipschitz function X:V → R such that E[X] = 0.
Lipschitz pays to Bernstein the amount λt− ln E[eλX ].

The Bernstein–Lipschitz game is a two-person, zero-sum game. In general, such games have to
allow randomized strategies for both players, but our game is special. Note that the payoff function is
concave in λ. Hence Bernstein has an optimal strategy that is deterministic. Using that observation,
it is easy to see that the value of the game is exactly RG(t).

Note that Bernstein’s strategy domain is the 1-dimensional set R. From the main result of
Bohnenblust, Karlin, and Shapley [9], it follows that Lipschitz must have an optimal strategy that
is the mixture of only 2 deterministic strategies. In the proof of our lower bound, we have borrowed
some ideas from that paper, namely in our choice of the functions Y and Z and the “mixture” W .

We named Bernstein in honor of Sergei N. Bernstein (1880–1968), who was apparently the first
person to use the exponential-moment method to bound the tail of a random variable. We named
Lipschitz in honor of Rudolf O. S. Lipschitz (1832–1903), who developed the concept of Lipschitz
continuity.
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