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Abstract. The direct product of graphs G1, . . . , Gn is the graph with vertex set V (G1) × · · · ×
V (Gn) in which two vertices (g1, . . . , gn) and (g′1, . . . , g

′
n) are adjacent if and only if gi is adjacent to

g′i in Gi for all i. Building off of the recent work of Brakensiek, we prove an optimal vertex isoperi-
metric inequality for direct products of complete multipartite graphs. Applying this inequality, we
derive a stability result for independent sets in direct products of balanced complete multipartite
graphs, showing that every large independent set must be close to the maximal independent set
determined by one of the coordinates to be constant. Armed with these isoperimetry and stability
results, we prove that the upper irredundance number of a direct product of balanced complete
multipartite graphs is equal to its independence number in all but at most 37 cases. This proves
most of a conjecture of Burcroff that arose as a strengthening of a conjecture of the second author
and Iyer. We also propose a further strengthening of Burcroff’s conjecture.

1. Introduction

All graphs in this paper are assumed to be simple. We denote the vertex set and edge set of a
graph G by V (G) and E(G), respectively. The letter µ will denote the uniform probability measure
on V (G). That is, µ(S) = |S|/|V (G)| for all S ⊆ V (G). The direct product (also called the tensor
product, Kronecker product, weak product, or conjunction) of graphs G1, . . . , Gn, denoted by either
G1 × · · · ×Gn or

∏n
i=1Gi, is the graph with vertex set V (G1 × · · · ×Gn) = V (G1)× · · · × V (Gn)

in which two vertices (g1, . . . , gn) and (g′1, . . . , g
′
n) are adjacent if and only if {gi, g′i} ∈ E(G) for

all i ∈ [n]. We also use the product notation
∏
iGi to denote a direct product of a collection of

graphs. Much of this paper is devoted to studying direct products of balanced complete multipartite
graphs, which are complete multipartite graphs in which the partite sets all have the same size.
More precisely, if K[u, t] denotes the complete multipartite graph consisting of t partite sets of size
u, then we are concerned with graphs of the form

∏n
i=1K[ui, ti].

One motivation for studying these graphs comes from the investigation of unitary Cayley graphs,
which are specific graphs associated to commutative rings with unity. Unitary Cayley graphs have
become a popular topic over the past few decades [4,13,18–21,25,31,33,34], in part because of their
connection with a theorem of Erdős and Evans [22] that led to the notion of the representation
number of a graph [1–3, 23, 24, 26, 35] (see Section 7.6 of [26] for more details). The authors of [4]
have used a structure theorem for Artinian rings to show that the unitary Cayley graph of a finite
ring is isomorphic to a direct product of balanced complete multipartite graphs.

Hundreds of papers in graph theory have studied what is called the domination chain; this is
a collection of graph parameters that always satisfy a certain chain of inequalities. The aim is
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usually to show that these inequalities are actually equalities for certain types of graphs. We only
discuss three of these graph parameters and refer the interested reader to Section 3.5 of [30] for
more information about the domination chain. The first parameter we consider is the independence
number of a graph G, denoted α(G), which is the largest size of an independent set in G. A related
notion is that of the independence ratio of a graph, which is defined by β(G) = α(G)/|V (G)|.
The closed neighborhood of a set S ⊆ V (G), denoted N [S], is the union of S with all of the
neighbors of the vertices in S. We say S is dominating if N [S] = V (G). We say S is irredundant if
N [S\{v}] 6= N [S] for all v ∈ S. The upper domination number of G, denoted Γ(G), is the maximum
size of an irredundant dominating set in G. The upper irredundance number of G, denoted IR(G),
is the maximum size of an irredundant set in G. Every maximal independent set is an irredundant
dominating set, and every irredundant dominating set is obviously an irredundant set. Therefore,
we always have the chain of inequalities

α(G) ≤ Γ(G) ≤ IR(G),

which comprises the upper portion of the domination chain. One of the notable results concerning
these parameters is a theorem of Cheston and Fricke, which shows that α(G) = IR(G) whenever G
is strongly perfect [15].

Suppose now that G =
∏n
i=1K[ui, ti] is a direct product of balanced complete mulipartite graphs,

where t1 ≥ · · · ≥ tn. It is straightforward to check that α(G) = |V (G)|/tn (alternatively, β(G) =
1/tn). While studying domination parameters of unitary Cayley graphs, the second author and
Iyer were led to conjecture that for these graphs α(G) = Γ(G) [20]. They proved this conjecture
in the cases tn ≤ 2 and n ≤ 3. Burcroff observed that none of the arguments proving those cases
of the conjecture used the fact that the sets under consideration were dominating [13]. In other
words, α(G) = IR(G) when tn ≤ 2 or n ≤ 3. She then made the following stronger conjecture.

Conjecture 1.1 ([13]). If G =
∏n
i=1K[ui, ti] is a direct product of balanced complete multipartite

graphs, then α(G) = IR(G).

Making progress toward this conjecture, Burcroff proved the following theorem.

Theorem 1.1 ([13]). If G =
∏n
i=1K[ui, ti], where t1 ≥ · · · ≥ tn ≥ 2, then

IR(G) ≤ min

{
α(G) + 2t2 · · · tn,

t2n
2tn − 1

α(G)

}
.

In this article, we prove most of Conjecture 1.1. More precisely, we explicitly list 37 graphs
Z1, . . . , Z37 in Section 3 and prove the following theorem.

Theorem 1.2. Let G =
∏n
i=1K[ui, ti] be a direct product of balanced complete multipartite graphs.

If G is not one of the graphs Z1, . . . , Z37 listed in Section 3, then

α(G) = IR(G).

The proof of this theorem requires three main ingredients that are interesting in their own right.
For the first ingredient, we consider the even more general family of graphs that can be written
as a direct product of (not necessarily balanced) complete multipartite graphs. In Section 2, we
prove the following theorem via a simple application of the polynomial method. Observe that this
theorem both strengthens and generalizes Theorem 1.1.

Theorem 1.3. Let G =
∏n
i=1Hi, where each graph Hi is a complete multipartite graph. If S ⊆

V (G) is an irredundant set, then there exist sets Lon(S), Soc(S) ⊆ S such that Lon(S)∩Soc(S) = ∅,
Lon(S) ∪ Soc(S) = S, Lon(S) is an independent set in G, and | Soc(S)| ≤ 2n. In particular,
IR(G) ≤ α(G) + 2n.
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The second ingredient in the proof of Theorem 1.2 involves determining an optimal isoperimet-
ric inequality for direct products of complete multipartite graphs. Isoperimetric inequalities are
ubiquitous in extremal combinatorics and graph theory [5, 7–11, 14, 16, 17, 28, 29, 32, 36]. For every
graph G and every set S ⊆ V (G), the vertex boundary ∂S is defined by

∂S = {w ∈ V (G) : {v, w} ∈ E(G) for some v ∈ S}.
Note that ∂S can include elements of S itself, but it is also possible to have elements of S that are
not in ∂S. The vertex isoperimetric profile of a graph G with respect to a measure τ on V (G) is
the function Φτ (G, ·) : [0, 1]→ [0, 1] defined by

Φτ (G, ν) = min{τ(∂S) : S ⊆ V (G), τ(S) ≥ ν}.
If we do not specify the measure τ , then we assume τ is the uniform measure µ by default. That
is, Φ(G, ν) := Φµ(G, ν).

Brakensiek essentially gave a recursive formula for Φ(G, ν) in the case where G is a direct product
of complete graphs that all have the same size [12]. It turns out that his proof method generalizes
substantially. Our proof of the following theorem, given in Section 4, closely follows Brakensiek’s
argument, which comprises Appendix B of [12].

Theorem 1.4. Let H1, . . . ,Hn be complete multipartite graphs such that β(H1) ≤ · · · ≤ β(Hn) and∏
k∈A

1− β(Hk)

β(Hk)
≥ 1− β(Hn)

β(Hn)

for all nonempty A ⊆ [n− 1]. We have

Φ(H1, ν) =


0, if ν = 0;

1− β(H1), if 0 < ν ≤ β(H1);

1, if β(H1) < ν ≤ 1.

If n ≥ 2, then

Φ(H1×· · ·×Hn, ν) =


0, if ν = 0;

(1− β(Hn))Φ

(
H1 × · · · ×Hn−1,

ν

β(Hn)

)
, if 0 < ν ≤ β(Hn);

1− β(Hn) + β(Hn)Φ

(
H1 × · · · ×Hn−1,

ν − β(Hn)

1− β(Hn)

)
, if β(Hn) < ν ≤ 1.

Remark 1.1. The hypothesis in Theorem 1.4 that
∏
k∈A

1− β(Hk)

β(Hk)
≥ 1− β(Hn)

β(Hn)
for all nonempty

A ⊆ [n− 1] is not a huge restriction. For example, this condition is satisfied if β(Hi) ≤ 1/2 for all
i ∈ [n− 2]. In particular, it holds whenever the complete multipartite graphs Hi are balanced.

We also prove the following useful corollary in Section 4.

Corollary 1.1. If H1, . . . ,Hn are complete multipartite graphs with β(H1) ≤ · · · ≤ β(Hn) ≤ 1/2,
then

Φ(H1 × · · · ×Hn, ν) ≥ νlogβ(Hn)(1−β(Hn)).

The final ingredient needed in the proof of Theorem 1.2 is a result concerning stability of inde-
pendent sets in direct products of complete multipartite graphs. One of the first instances of such a
result is due to the first author, Dinur, Friedgut, and Sudakov [6] and concerns graphs of the form
Kn
t (the direct product of n copies of the complete graph Kt). They show that the maximum-sized
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independent sets in such a graph are precisely the sets of vertices obtained by fixing one of the
coordinates of the vertices to be constant. Furthermore, they show that every independent set
whose size is almost maximal must be close to one of these maximum-sized independent sets. More
precisely, they prove the following.

Theorem 1.5 ([6]). For each integer t ≥ 3, there exists a constant M(t) with the following property.

If I ⊆ V (Kn
t ) is an independent set with µ(I) =

1

t
(1 − ε), then there exists a maximum-sized

independent set J such that µ(I∆J) ≤M(t)ε, where I∆J = (I \ J) ∪ (J \ I).

Ghandehari and Hatami [27] improved upon Theorem 1.5 and made it explicit by showing that
if t ≥ 20 and ε ≤ 10−9, then one can take M(t) = 40/t. Brakensiek greatly improved upon these
results with the following theorem.

Theorem 1.6 ([12]). Let t ≥ 3 be an integer. If I ⊆ V (Kn
t ) is an independent set with µ(I) =

1

t
(1− ε) > 3t− 2

t3
, then there exists a maximum-sized independent set J such that

µ(I \ J) ≤ 4εlog t/ log(t/(t−1)).

In order to prove Theorem 1.2, we will need to generalize Theorem 1.6 so that it applies to direct
products of balanced complete multipartite graphs that might be of different sizes. First, we fix
some notation. If G =

∏n
i=1Hi, where the graphs Hi are complete multipartite graphs, we let

Xi(1), . . . , Xi(ti) be the partite sets of Hi. Let

Ja,j = {(x1, . . . , xn) ∈ V (G) : xj ∈ Xj(a)}.
Let

η(t) =
log t

log
(

t
t−1

) = t log t+ Θ(log t)

and

ω(t) =


37/81− (1/2)(5/81)1/η(3) ≈ 0.2779, if t = 3;

85/256− (1/3)(7/256)1/η(4) ≈ 0.1741, if t = 4;
4t− 3

t3
if t ≥ 5

for all integers t ≥ 3.

Theorem 1.7. Let G =
∏n
i=1K[ui, ti], where t1 ≥ · · · ≥ tn ≥ 3. Let I ⊆ V (G) be an independent

set with µ(I) =
1

tn
(1− ε) > ω(tn). There exist j ∈ [n] and a ∈ [tj ] such that

tj <
tn

1− ε
and µ(I \ Ja,j) < 4εη(tn).

As with Theorem 1.3, our proof of Theorem 1.7 closely follows Brakensiek’s arguments from
Section 3.2 of [12]. We have attempted to focus on the analysis that is needed to transfer the
proofs to the setting in which the graphs in the product are not identical.

The proofs of Theorem 1.3, Corollary 1.1, and Theorem 1.7 are somewhat technical, so we have
decided to place them in Sections 4 and 5, which are after the proof of Theorem 1.2. Finally, we
strengthen Burcroff’s Conjecture 1.1 by removing the assumption that the complete multipartite
graphs in the direct product are balanced.

Conjecture 1.2. If H1, . . . ,Hn are complete multipartite graphs and G =
∏n
i=1Hi, then

α(G) = IR(G).
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2. Near Independence of Irredundant Sets

There is an alternative characterization of irredundant sets of a graph G that follows immediately
from the definition. Specifically, if S ⊆ V (G), then S is irredundant if and only if for every v ∈ S,
one of the following holds:

(a) No element of S is adjacent to v.
(b) There exists w ∈ V (G) \ S such that v is the only neighbor of w in S.

If S is an irredundant set, then we say a vertex v ∈ S is lonely if no element of S is adjacent to
v. Otherwise, we say v is social. If v is social, then it must satisfy condition (b) in the above
characterization. In this case, we say the vertex w is a private neighbor of v. Let pn[v;S] denote
the set of private neighbors of the social vertex v. Let Lon(S) and Soc(S) denote the set of lonely
vertices in S and the set of social vertices in S, respectively. Observe that Lon(S) is an independent
set.

We are now able to prove Theorem 1.3, which not only generalizes and improves upon Theorem
1.1, but also turns out to be a crucial ingredient in the proof of Theorem 1.2.

Proof of Theorem 1.3. Let H1, . . . ,Hn be complete multipartite graphs, and let G =
∏n
i=1Hi. Let

S be an irredundant set in G. We have seen that Lon(S) and Soc(S) form a partition of S and
that Lon(S) is independent. Hence, we need only show that |Soc(S)| ≤ 2n. As in the introduction,
let Xi(1), . . . , Xi(ti) denote the partite sets of the complete multipartite graph Hi. For each vertex
v = (v1, . . . , vn) ∈ V (G), let cv(i) be the unique integer in [ti] such that vi ∈ Xi(cv(i)). Furthermore,
let fv(x1, . . . , xn) ∈ Q[x1, . . . , xn] be the polynomial defined by fv(x1, . . . , xn) =

∏n
i=1(xi − cv(i)).

For each v ∈ Soc(S), choose some vertex pv ∈ pn[v;S]. Note that the vertices pv for v ∈ Soc(S)
are all distinct by the definition of the sets pn[v;S]. For any y, z ∈ Soc(S), we know that py
is not adjacent to z. This means that there is an index i ∈ [n] such that cpy(i) = cz(i), so
fpy(cz(1), . . . , cz(n)) = 0. On the other hand, fpy(cy(1), . . . , cy(n)) 6= 0 because py is adjacent to
y. These conditions easily imply that the polynomials fpy for y ∈ Soc(S) are linearly independent.
These polynomials are multilinear, so they lie in the 2n-dimensional space spanned by the monomials
of the form

∏
i∈A xi for A ⊆ [n]. This implies that |Soc(S)| ≤ 2n as desired. �

3. The Proof of Most of Burcroff’s Irredundance Conjecture

In this section, we prove Theorem 1.2. We will need Theorem 1.3, which we proved in the previous
section, along with Corollary 1.1 and Theorem 1.7, which we prove in the following sections. Recall
the definitions of η(t) and ω(t) from the introduction. Note that if G =

∏n
i=1K[ui, ti], where

t1 ≥ · · · ≥ tn ≥ 2, then Corollary 1.1 tells us that

(1) Φ(G, ν) ≥ ν1/η(tn)

for all ν ∈ [0, 1].

Theorem 1.2 states that Conjecture 1.1 holds for all but 37 exceptional graphs Z1, . . . , Z37.
These exceptional graphs are not necessarily counterexamples to the conjecture; they are simply
the graphs that our proof technique cannot handle. These exceptional graphs are the following:
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K4
3 K[2, 3]×K3

3 K[3, 3]×K3
3 K4 ×K3

3

K[2, 4]×K3
3 K4 ×K[2, 3]×K2

3 K2
4 ×K2

3 K[2, 4]×K4 ×K2
3

K2
4 ×K[2, 3]×K3 K3

4 ×K3 K5 ×K3
3 K[2, 5]×K3

3

K5 ×K[2, 3]×K2
3 K5 ×K4 ×K2

3 K5 ×K2
4 ×K3 K2

5 ×K2
3

K6 ×K3
3 K6 ×K4 ×K2

3 K6 ×K2
4 ×K3 K6 ×K5 ×K2

3

K7 ×K3
3 K7 ×K4 ×K2

3 K8 ×K3
3 K8 ×K4 ×K2

3

K9 ×K3
3 K10 ×K3

3 K5
3 K[2, 3]×K4

3

K4 ×K4
3 K2

4 ×K3
3 K3

4 ×K2
3 K5 ×K4

3

K5 ×K4 ×K3
3 K6 ×K4

3 K7 ×K4
3 K6

3

K4 ×K5
3

Proof of Theorem 1.2. Let G =
∏n
i=1K[ui, ti], where t1 ≥ · · · ≥ tn. As mentioned in the intro-

duction, this theorem was proven in [20] in the cases tn ≤ 2 and n ≤ 3 (although it was Burcroff
who observed that the proof showing that α(G) = Γ(G) actually proves the stronger fact that
α(G) = IR(G)). Hence, we may assume tn ≥ 3 and n ≥ 4. Assume G is not one of the 37 ex-
ceptional graphs listed above. Let S ⊆ V (G) be a maximum-sized irredundant set. We must have
µ(S) ≥ β(G) = 1/tn.

Consider the set Lon(S) of lonely vertices in S and the set Soc(S) of social vertices in S, as
defined in Section 2. Since Lon(S) is an independent set, we know that µ(Lon(S)) ≤ 1/tn. Write

µ(Lon(S)) =
1

tn
(1− ε). Let

ε0 =
2ntn
|V (G)|

=
2n

u1 · · ·unt1 · · · tn−1
.

By Theorem 1.3, we know that | Soc(S)| ≤ 2n, so

(2) ε = 1− tnµ(Lon(S)) = 1− tn(µ(S)− µ(Soc(S))) ≤ 1− tn
(

1

tn
− 2n

|V (G)|

)
= ε0.

Let us assume for the moment that G 6= K7
3 ; we will return to the case G = K7

3 later. We claim
that

(3)
1

tn
(1− ε0) > ω(tn).

We first prove this claim when tn ≥ 4. Because n ≥ 4, we have

1

tn
(1− ε0) =

1

tn
− 2n

u1 · · ·unt1 · · · tn
≥ 1

tn
− 2n

tnn
≥ 1

tn
−
(

2

tn

)4

.

It is easy to check that
1

tn
−
(

2

tn

)4

> ω(tn) when tn ≥ 4.
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We now prove that (3) holds when tn = 3. We wish to see that
1

3
(1− ε0) > ω(3), which we can

rewrite as

(4)
2n

u1 · · ·unt1 · · · tn−1
< 1− 3ω(3) ≈ 0.166285.

If n ≥ 8, then
2n

u1 · · ·unt1 · · · tn−1
≤ 2n

3n−1
< 1− 3ω(3),

so we may assume n ≤ 7.

Suppose n = 4. It is easy to check that (3) holds whenever t1 ≥ 11 or u1 · · ·un ≥ 4, so we may
assume t1 ≤ 10 and u1 · · ·un ≤ 3. This leaves us with only finitely many graphs. We can now
check by hand that among the remaining graphs, the claim fails precisely for those appearing in
our list of exceptional graphs. In other words, we can use the assumption that G is not in that list
to verify that (4) holds.

The proofs of the cases n = 5, n = 6, and n = 7 are similar to the proof of the case n = 4. For
the case n = 7, we must also use the assumption that G 6= K7

3 .

We now know that Lon(S) is an independent set satisfying

µ(Lon(S)) =
1

tn
(1− ε) ≥ 1

tn
(1− ε0) > ω(tn),

so we can apply Theorem 1.7 to see that there exist j ∈ [n] and a ∈ [tj ] such that

(5) tj <
tn

1− ε
and µ(Lon(S) \ Ja,j) < 4εη(tn).

For every v ∈ Soc(S), choose a vertex pv ∈ pn[v;S]. Let

P =
⋃

v∈Soc(S)∩Ja,j

{pv} and Y = (S \ Ja,j) ∪ P.

If v ∈ Soc(S), then pv is adjacent to v. Because Ja,j is independent, P is disjoint from Ja,j . It
follows that Y is disjoint from Ja,j . By the definition of a private neighbor given in Section 2, the
vertices pv for v ∈ Soc(S) ∩ Ja,j are distinct and do not lie in S. Consequently,

µ(Y ) = µ(S \ Ja,j) + µ(P ) = µ(S \ Ja,j) + µ(Soc(S) ∩ Ja,j)

= µ(Soc(S) ∪ (Lon(S) \ Ja,j)) = µ(Soc(S)) + µ(Lon(S) \ Ja,j) <
2n

|V (G)|
+ 4εη(tn).

Using (2) and the definition of ε0, we find that

(6) µ(Y ) < ε0/tn + 4ε
η(tn)
0 .

Since Y is disjoint from Ja,j , we have

(7) µ((∂Y ) ∩ Ja,j) ≥
1

tj
µ(∂Y ) ≥ 1

tj
µ(Y )1/η(tn),

where we have used Corollary 1.1 in the form of equation (1). By the definition of a private
neighbor, ∂P is disjoint from Lon(S) ∩ Ja,j . We also know that ∂(Lon(S) \ Ja,j) is disjoint from
Lon(S) ∩ Ja,j , so (∂Y ) ∩ Ja,j ⊆ Ja,j \ Lon(S). Hence,

µ((∂Y ) ∩ Ja,j) ≤ µ(Ja,j)− µ(Lon(S) ∩ Ja,j) ≤
1

tn
− µ(Lon(S) ∩ Ja,j) ≤ µ(S)− µ(Lon(S) ∩ Ja,j)
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(8) = µ(S \ Ja,j) + µ(Soc(S) ∩ Ja,j) = µ(S \ Ja,j) + µ(P ) = µ(Y ).

We wish to show that S = Ja,j . Assume that this is not the case. Because µ(S) ≥ 1/tn ≥ µ(Ja,j),
S cannot be a proper subset of Ja,j . As a consequence, µ(Y ) ≥ µ(S \ Ja,j) > 0. Therefore, we can
combine (7) and (8) to see that

(9)
1

tj
≤ µ(Y )1−1/η(tn).

Note that we have divided each side of an inequality by µ(Y )1/η(tn); this is precisely where we have
used the fact that µ(Y ) > 0. We now use (2), (5), (6), and (9) to see that

1− ε0

tn
≤ 1− ε

tn
<

1

tj
≤ µ(Y )1−1/η(tn) <

(
ε0/tn + 4ε

η(tn)
0

)1−1/η(tn)

=

(
2n

u1 · · ·unt1 · · · tn
+ 4

(
2n

u1 · · ·unt1 · · · tn−1

)η(tn)
)1−1/η(tn)

≤

(
2n

tnn
+ 4

(
2n

tn−1
n

)η(tn)
)1−1/η(tn)

(10) ≤

(
16

t4n
+ 4

(
16

t3n

)η(tn)
)1−1/η(tn)

,

where we have used the fact that n ≥ 4 in the last step. This tells us that

1− ε0 < tn

(
16

t4n
+ 4

(
16

t3n

)η(tn)
)1−1/η(tn)

< (t2n)1−1/η(tn)

(
16

t4n
+ 4

(
16

t3n

)η(tn)
)1−1/η(tn)

=

(
16

t2n
+ 4t2n

(
16

t3n

)η(tn)
)1−1/η(tn)

.

This last expression is decreasing as a function of tn. If tn ≥ 5, then

1− ε0 <

(
16

52
+ 4 · 52

(
16

53

)η(5)
)1−1/η(5)

≈ 0.6809.

This contradicts the fact that

ε0 =
2n

u1 · · ·unt1 · · · tn−1
≤ 2n

tn−1
n
≤ 2n

5n−1
≤ 24

53
= 0.128.

Therefore, we may assume tn ∈ {3, 4}.

If tn = 4, then (10) tells us that

1− ε0

4
<

(
16

44
+ 4

(
16

43

)η(4)
)1−1/η(4)

≈ 0.1181.

This contradicts the fact that

ε0 =
2n

u1 · · ·unt1 · · · tn−1
≤ 2n

tn−1
n
≤ 2n

4n−1
≤ 24

43
= 0.25.

If tn = 3, then invoking (2), (3), and (5) yields

tj <
tn

1− ε
≤ tn

1− ε0
<

1

ω(3)
< 4.
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This tells us that tj = 3, so (9) becomes

(11)
1

3
<
(
ε0/3 + 4ε

η(3)
0

)1−1/η(3)
.

We saw in (4) that ε0 < 0.166285, which easily contradicts (11).

We have reached our desired contradiction in all cases except that in which G = K7
3 . In this

case, we have µ(Lon(S)) = 1
3(1− ε) ≥ 1

3(1− ε0) = 1
3(1− 27/36) > 7/27, so we can apply Theorem

1.6 to see that

µ(Lon(S) \ Ja,j) < 4εη(3)

for some j ∈ [7] and a ∈ [3]. The proof now proceeds exactly as before. We define the set Y as
before, assume that S 6= Ja,j , and deduce that (9) holds with tj = tn = 3. That is,

1

3
<
(
ε0/3 + 4ε

η(3)
0

)1−1/η(3)
=
((

27/36
)
/3 + 4

(
27/36

)η(3)
)1−1/η(3)

≈ 0.2256.

This is our final contradiction. �

Remark 3.1. Suppose G =
∏n
i=1K[ui, ti] is not one of the 37 exceptional graphs listed above. The

preceding proof of Theorem 1.2 shows that if t1 ≥ · · · ≥ tn ≥ 3 and n ≥ 4, then every irredundant
set of G of size IR(G) is actually an independent set.

4. Vertex Isoperimetry

In this section, we prove Theorem 1.4 and Corollary 1.1. Because deducing the corollary from
the theorem is quick, we will do this first.

Proof of Corollary 1.1. Assume H1, . . . ,Hn are complete multipartite graphs such that β(H1) ≤
· · · ≤ β(Hn) ≤ 1/2. By Remark 1.1, the hypotheses of Theorem 1.4 are satisfied. The proof of the
corollary is by induction on n. The case n = 1 is an immediate consequence of Theorem 1.4, so
assume n ≥ 2. The desired inequality is obvious if ν = 0, so we can also assume ν > 0.

If ν ≤ β(Hn), then it follows from Theorem 1.4 and induction that

Φ(H1 × · · · ×Hn, ν) = (1− β(Hn))Φ

(
H1 × · · · ×Hn−1,

ν

β(Hn)

)

≥ (1− β(Hn))

(
ν

β(Hn)

)logβ(Hn−1)
(1−β(Hn−1))

≥ (1− β(Hn))

(
ν

β(Hn)

)logβ(Hn)(1−β(Hn))

= νlogβ(Hn)(1−β(Hn)).

By a similar token, if β(Hn) < ν ≤ 1, then

Φ(H1 × · · · ×Hn, ν) = 1− β(Hn) + β(Hn)Φ

(
H1 × · · · ×Hn−1,

ν − β(Hn)

1− β(Hn)

)

≥ β(Hn)logβ(Hn)(1−β(Hn)) + β(Hn)

(
ν − β(Hn)

1− β(Hn)

)logβ(Hn−1)
(1−β(Hn−1))

≥ β(Hn)logβ(Hn)(1−β(Hn)) + β(Hn)

(
ν − β(Hn)

1− β(Hn)

)logβ(Hn)(1−β(Hn))

.
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To ease notation, put β = β(Hn), c = logβ(1−β), and x = β/ν. Our assumption on ν implies that
β ≤ x < 1. We wish to show that

βc + β

(
ν − β
1− β

)c
≥ νc.

Dividing each side of this inequality by νc, we find that it is equivalent to

(12) xc + β

(
1− x
1− β

)c
≥ 1.

Observe that equality holds in (12) if x = β or x = 1. Noting that 0 < c ≤ 1, we find that
the left-hand side of (12) is concave down (or constant if c = 1) as a function of x in the range
β ≤ x < 1. Therefore, (12) holds throughout this range. �

We now turn our attention to proving Theorem 1.4. The theorem is easy if n = 1, so we can
assume n ≥ 2. Let H1, . . . ,Hn be as in the statement of the theorem, and let G =

∏n
i=1Hi. Let

Xi(1), . . . , Xi(ti) be the partite sets in Hi. We may assume that |Xi(1)| ≥ · · · ≥ |Xi(ti)|. Notice
that β(Hi) = |Xi(1)|/|V (Hi)|.

It will be convenient to work with complete graphs rather than complete multipartite graphs,
so we define a map coll that essentially collapses the partite sets. For each i, let H ′i be a copy
of the complete graph Kti with V (Hi) = [ti]. Let G′ =

∏n
i=1H

′
i. Define colli : V (Hi) → H ′i by

declaring that colli sends the elements of Xi(a) to a for every a ∈ [ti]. Let coll : V (G)→ V (G′) be
the product map coll = coll1× · · · × colln. We also let ρ = coll ∗ µ denote the pushforward of the
uniform probability measure µ on V (G) under the map coll. That is, ρ(T ) = µ(coll−1(T )) for all
T ⊆ V (G′). Alternatively, we can simply define ρ on the singleton sets by

ρ({(a1, . . . , an)}) =
|X1(a1)| · · · |Xn(an)|

|V (G)|
and extend its definition by additivity.

For every set T ⊆ V (G), we have ρ(coll(T )) = µ(coll−1(coll(T ))) ≥ µ(T ) and ρ(∂ coll(T )) =
µ(coll−1(∂ coll(T ))) = µ(∂ coll−1(coll(T ))) = µ(∂T ). It follows that

Φµ(G, ν) = min{ρ(∂S) : S ⊆ V (G′), ρ(S) ≥ ν}.
In other words, the vertex isoperimetric profile Φµ(G, ·) of G with respect to the uniform measure
µ is the same as the vertex isoperimetric profile Φρ(G

′, ·) of G′ with respect to the measure ρ.

We use the notation Ja,i from the introduction for the graph G′. More precisely, if i ∈ [n] and
a ∈ [ti], we put

Ja,i = [t1]× · · · × [ti−1]× {a} × [tj+1]× · · · × [tn] ⊆ V (G′).

Observe that ρ(Ja,i) = |Xi(a)|/|V (Hi)|; in particular, ρ(J1,i) = β(Hi). The following proposition is
crucial in establishing Theorem 1.4.

Proposition 4.1. Fix ν ∈ (0, 1], and choose a set S ⊆ V (G′) such that ρ(S) ≥ ν and ρ(∂S) =
Φρ(G

′, ν). Assume that S is chosen to maximize ρ(S). There exists a set S′ ⊆ V (G′) such that
ρ(S′) = ρ(S), ρ(∂S′) = ρ(∂S), and either S′ ⊆ J1,n or J1,n ⊆ S′.

To prove Proposition 4.1, we follow [12] and define compressions.

Definition 4.1. For x = (x1, . . . , xn) ∈ [t1] × · · · × [tn], let x¬i = (x1, . . . , xi−1, xi+1, . . . , xn). For
T ⊆ [t1]× · · · × [tn], define the compression of T in the ith coordinate by

ci(T ) = {x ∈ [t1]× · · · × [tn] : xi ≤ |{y ∈ T : y¬i = x¬i}|}.
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The set T is called compressed if ci(T ) = T for all i ∈ [n].

Brakensiek proves some important facts about compressions that are stated as Remark 2, Claim
5, and Claim 6 in [12]. The proofs generalize immediately to our more general setting, so we will
not repeat them here. Instead, we state the results in the following lemmas and refer the reader to
Brakensiek’s paper for the proofs.

Lemma 4.1. If T ⊆ [t1]×· · ·× [tn], then there is a finite sequence i1, . . . , ik of elements of [n] such
that cik ◦ cik−1

◦ · · · ◦ ci1(T ) is compressed.

Lemma 4.2. If I is an independent set in G′ and i ∈ [n], then ci(I) is also independent.

Lemma 4.3. If T ⊆ V (G′), then ρ(∂ci(T )) ≤ ρ(∂T ) for all i ∈ [n].

Invoking Lemmas 4.1 and 4.3, we find that we can assume without loss of generality that the set
S in Proposition 4.1 is compressed.

Define

Π : V (G′)→ {0, 1}n

by requiring that Π(x)i is 0 if xi = 1 and is 1 otherwise. Because |Xi(1)|/|V (Hi)| = β(Hi), we have

(13) ρ(Π−1(z)) =
∏
zi=1

∏
zk=0

(1− β(Hi))β(Hk)

for all z ∈ {0, 1}n.

For z ∈ {0, 1}n, let ¬z be the Boolean complement of z. If T ⊆ V (G′) is compressed, then

(14) ∂T =
⋃

z∈Π(T )

Π−1(¬z).

This means that

(15) ρ(∂T ) =
∑

z∈Π(T )

ρ(Π−1(¬z)) =
∑

z∈Π(T )

∏
zi=1

∏
zk=0

β(Hi)(1− β(Hk)).

Consequently,

(16) ρ(∂T ) = ρ(∂Π−1(Π(T ))).

For every B ⊆ [n], define σB : {0, 1}n → {0, 1}n by σB(x)i = xi if i 6∈ B and σB(x)i = 1− xi if
i ∈ B. For A ⊆ [n− 1] and T ⊆ V (G′), let

FA(T ) = {x ∈ Π(S) : xi = 0 for all i ∈ A, xn = 1, σA∪{n}(x) 6∈ Π(S)}.

Following Brakensiek, we define the folding operators foldA for all A ⊆ [n− 1] by

foldA(T ) = Π−1((Π(T ) \ FA(T )) ∪ σA∪{n}(FA(T ))).

Note that foldA is idempotent in the sense that foldA(foldA(T )) = foldA(T ). We claim that if T
and foldA(T ) are both compressed, then ρ(T ) ≤ ρ(foldA(T )) and ρ(∂T ) ≥ ρ(∂ foldA(T )). First,
observe that if T is compressed, then F∅(T ) = ∅, so fold∅(T ) = Π−1(Π(T )). By (16), this proves
our claim in the case A = ∅. Now assume that A ⊆ [n − 1] is nonempty. If z ∈ FA(T ) and we let
z′ = σA∪{n}(z), then

ρ(Π−1(z)) =
∏
zi=1

∏
zk=0

(1− β(Hi))β(Hk) and ρ(Π−1(z′)) =
∏
z′i=1

∏
z′k=0

(1− β(Hi))β(Hk)
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by (13). Using the hypothesis of Theorem 1.4, we deduce that

ρ(Π−1(z))

ρ(Π−1(z′))
=

1− β(Hn)

β(Hn)

∏
k∈A

β(Hk)

1− β(Hk)
≤ 1.

This shows that ρ(Π−1(z)) ≤ ρ(Π−1(σA∪{n}(z))) for z ∈ FA(T ). Now,

ρ(T ) ≤ ρ(Π−1(Π(T ))) =
∑

z∈Π(T )

ρ(Π−1(z)) =
∑

z∈Π(T )\FA(T )

ρ(Π−1(z)) +
∑

z∈FA(T )

ρ(Π−1(z))

≤
∑

z∈Π(T )\FA(T )

ρ(Π−1(z)) +
∑

z∈FA(T )

ρ(Π−1(σA∪{n}(z))) =
∑

z∈(Π(T )\FA(T ))∪σA∪{n}(FA(T ))

ρ(Π−1(z))

= ρ(foldA(T )).

By a similar argument,

ρ(Π−1(¬z))
ρ(Π−1(σA∪{n}(¬z)))

=
β(Hn)

1− β(Hn)

∏
k∈A

1− β(Hk)

β(Hk)
≥ 1

when z ∈ FA(T ). By (15),

ρ(∂T ) =
∑

z∈Π(T )

ρ(Π−1(¬z)) =
∑

z∈Π(T )\FA(T )

ρ(Π−1(¬z)) +
∑

z∈FA(T )

ρ(Π−1(¬z))

≥
∑

z∈Π(T )\FA(T )

ρ(Π−1(¬z))+
∑

z∈FA(T )

ρ(Π−1(σA∪{n}(¬z))) =
∑

z∈(Π(T )\FA(T ))∪σA∪{n}(FA(T ))

ρ(Π−1(¬z))

= ρ(∂ foldA(T )).

This completes the proof of our claim, so we can return to our set S and the proof of Proposition
4.1.

Proof of Proposition 4.1. Using (16) and our assumption that S was chosen to maximize ρ(S), we
see that S = Π−1(Π(S)). We claim that there is a sequence A1, . . . , A` of subsets of [n− 1] and a
sequence S = S0, S1, . . . , S` of compressed subsets of V (G′) such that Si = foldAi(Si−1) for all i ∈ [`]
and foldA(S`) = S` for all A ⊆ [n−1]. We omit the proof of this claim because it is identical to the
proof of Claim 18 and the discussion thereafter in [12]. Let S′ = S`. By the preceding discussion, we
know that ρ(S`) ≥ ρ(S`−1) ≥ · · · ≥ ρ(S0) = ρ(S) and ρ(∂S`) ≤ ρ(∂S`−1) ≤ · · · ≤ ρ(∂S0) = ρ(∂S).
By our choice of S, this means that ρ(S′) = ρ(S) ≥ ν and ρ(∂S′) = ρ(∂S) = Φρ(G

′, ν). We want
to prove that either S′ ⊆ J1,n or J1,n ⊆ S′. Suppose S′ 6⊆ J1,n so that there exists x ∈ S′ \ J1,n.
Let A = {i ∈ [n] : xi = 1} = {i ∈ [n] : Π(x)i = 0}. Because x 6∈ J1,n, we know that n 6∈ A. The
fact that foldA(S′) = S′ tells us that FA(S′) = ∅. In particular, x 6∈ FA(S′). By the definition of
FA(S′), this means that the vector y = σA∪{n}(Π(x)) is in Π(S′). However, yi = 1 for all i ∈ [n− 1]
while yn = 0. It now follows easily from the fact that S′ is compressed that J1,n ⊆ S′. �

Proof of Theorem 1.4. As mentioned above, we may assume n ≥ 2. Fix ν ∈ (0, 1], and choose
S ⊆ V (G′) such that ρ(S) ≥ ν and ρ(∂S) = Φµ(G, ν) = Φρ(G

′, ν). We may assume that S is
chosen to maximize ρ(S). By Proposition 4.1, we may further assume that either S ⊆ J1,n or
J1,n ⊆ S. By abuse of notation, we let ρ denote the pushforward of µ under the collapsing map
from V (H1 × · · · ×Hn−1) to V (H ′1 × · · · ×H ′n−1) (just as we defined ρ on V (G′)).
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Assume first that ν ≤ β(Hn). We know that ρ(J1,n) = β(Hn), so ρ(∂J1,n) ≥ Φρ(G
′, ν) =

Φµ(G, ν). It is easy to check that the proper containment J1,n ( S would imply the contradiction
ρ(∂S) > ρ(∂J1,n). Therefore, S ⊆ J1,n. Let

T = {(x1, . . . , xn−1) ∈ V (H ′1 × · · · ×H ′n−1) : (x1, . . . , xn−1, 1) ∈ S}.
We have ρ(T ) = ρ(S)/β(Hn) ≥ ν/β(Hn), so

Φµ(G, ν) = Φρ(G
′, ν) = ρ(∂S) = (1− β(Hn))ρ(∂T ) ≥ (1− β(Hn))Φρ

(
H ′1 × · · · ×H ′n−1,

ν

β(Hn)

)
= (1− β(Hn))Φµ

(
H1 × · · · ×Hn−1,

ν

β(Hn)

)
.

On the other hand, there exists T ′ ⊆ V (H ′1 × · · · ×H ′n−1) with ρ(T ′) ≥ ν/β(Hn) and

ρ(∂T ′) = Φρ

(
H ′1 × · · · ×H ′n−1,

ν

β(Hn)

)
= Φµ

(
H1 × · · · ×Hn−1,

ν

β(Hn)

)
.

Defining
S′ = {(x1, . . . , xn−1, 1) : (x1, . . . , xn−1) ∈ T ′},

we find that ρ(S′) = β(Hn)ρ(T ′) ≥ ν and

Φµ(G, ν) = Φρ(G
′, ν) ≤ ρ(∂S′) = (1−β(Hn))ρ(∂T ′) = (1−β(Hn))Φµ

(
H1 × · · · ×Hn−1,

ν

β(Hn)

)
.

This completes the proof in the case where ν ≤ β(Hn).

Assume now that β(Hn) < ν ≤ 1. We must have J1,n ⊆ S. Let

U = {(x1, . . . , xn−1) ∈ V (H ′1 × · · · ×H ′n−1) : (x1, . . . , xn−1, y) ∈ S for some y ∈ {2, . . . , tn}}.
If (x1, . . . , xn−1) ∈ U , then (x1, . . . , xn−1, z) ∈ S for all z ∈ {2, . . . , tn}. Indeed, adding the
additional points of the form (x1, . . . , xn−1, z) to S increases ρ(S) while keeping ρ(∂S) the same,
so the claim follows from our assumption that S was chosen to maximize ρ(S). We have

ρ(U) =
ρ(S)− ρ(J1,n)

1− β(Hn)
≥ ν − β(Hn)

1− β(Hn)

and

Φµ(G, ν) = Φρ(G
′, ν) = ρ(∂S) = ρ(∂J1,n) + ρ(∂U × {1}) = 1− β(Hn) + β(Hn)ρ(∂U)

≥ 1− β(Hn) + β(Hn)Φρ

(
H ′1 × · · · ×H ′n−1,

ν − β(Hn)

1− β(Hn)

)
= 1− β(Hn) + β(Hn)Φµ

(
H1 × · · · ×Hn−1,

ν − β(Hn)

1− β(Hn)

)
.

On the other hand, there exists U ′ ⊆ V (H ′1 × · · · ×H ′n−1) with ρ(U ′) ≥ ν − β(Hn)

1− β(Hn)
and

ρ(∂U ′) = Φρ

(
H ′1 × · · · ×H ′n−1,

ν − β(Hn)

1− β(Hn)

)
= Φµ

(
H1 × · · · ×Hn−1,

ν − β(Hn)

1− β(Hn)

)
.

Defining

Q = {(x1, . . . , xn−1, z) : (x1, . . . , xn−1) ∈ U ′, z ∈ {2, . . . , tn}} and S′ = J1,n ∪Q,
we find that ρ(S′) = β(Hn) + (1− β(Hn))ρ(U ′) ≥ ν and

Φµ(G, ν) = Φρ(G
′, ν) ≤ ρ(∂S′) = ρ(∂J1,n) + ρ(∂Q ∩ J1,n) = 1− β(Hn) + ρ(∂U ′ × {1})

= 1− β(Hn) + β(Hn)ρ(∂U ′) = 1− β(Hn) + β(Hn)Φµ

(
H1 × · · · ×Hn−1,

ν − β(Hn)

1− β(Hn)

)
.
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This proves the case in which β(Hn) < ν ≤ 1. �

5. Independent Set Stability

This section is devoted to proving Theorem 1.7. Recall the definitions of η(t), ω(t), and Ja,j from
the introduction and Definition 4.1 from the previous section. Suppose H1, . . . ,Hn are complete
multipartite graphs such that each graph Hi has ti partite sets, and let G =

∏n
i=1Hi. Say a set

S ⊆ V (G) is sorted if µ(S ∩ J1,j) ≥ · · · ≥ µ(S ∩ Jtj ,j) for all j ∈ [n]. We will often assume the
independent sets we consider are sorted. This is simply for notational convenience; we can always
relabel the partite sets without loss of generality in order to ensure that the set under consideration
is sorted. Most of the results in this section concern large independent sets in direct product graphs.
However, we start with a result about independent sets in direct products of complete graphs that
makes no assumption on the size of the independent set.

Proposition 5.1. Let G =
∏n
i=1Kti, where t1 ≥ · · · ≥ tn ≥ 3. Let I ⊆ V (G) be a sorted

independent set with µ(I) =
1

tn
(1− ε). Choose j ∈ [n], and let δ = µ(I \ J1,j). We have

ε ≥ 1− tn
tj
− δtn +

tn
tj − 1

(
δ

tj − 1

)1/η(tn)

.

Proof. First, note that

µ(I ∩ J2,j) ≥
δ

tj − 1
.

Using Corollary 1.1 (in the form of (1)), we find that

µ(∂(I ∩ J2,j) ∩ J1,j) =
1

tj − 1
µ(∂(I ∩ J2,j)) ≥

1

tj − 1

(
δ

tj − 1

)1/η(tn)

.

Because I is independent, I ∩ J1,j is disjoint from ∂(I ∩ J2,j) ∩ J1,j . Thus,

1

tn
(1− ε)− δ = µ(I)− µ(I \ J1,j) = µ(I ∩ J1,j) ≤ µ(J1,j)− µ(∂(I ∩ J2,j) ∩ J1,j)

≤ 1

tj
− 1

tj − 1

(
δ

tj − 1

)1/η(tn)

.

Rearranging the inequality
1

tn
(1−ε)−δ ≤ 1

tj
− 1

tj − 1

(
δ

tj − 1

)1/η(tn)

yields the desired result. �

In the following lemmas, we assume the independent set from Proposition 5.1 is large. In Lemma
5.1, we find that for every choice of j, the value of δ must either be somewhat large or somewhat
small. Lemma 5.2 shows that if the independent set is compressed, then it cannot be the case that
δ is somewhat large for every choice of j. Consequently, in this case, there is some choice of j that
makes δ somewhat small. Lemma 5.3 is a purely technical result that allows us to prove Lemma
5.4, where we remove the hypothesis from Lemma 5.2 that the independent set is compressed.
Finally, we use Proposition 5.1 to show that if δ is somewhat small, then it is actually very small.
This allows us to complete the proof of Theorem 1.7. Many of the ideas below are adapted from
Brakensiek’s arguments in Section 3.2 of [12].
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Lemma 5.1. Let G =
∏n
i=1Kti, where t1 ≥ · · · ≥ tn ≥ 3. Let I ⊆ V (G) be a sorted independent

set such that µ(I) > ω(tn). For all j ∈ [n], either

µ(I \ J1,j) <
tj − 1

t5j
or µ(I \ J1,j) >

(2tj − 1)(tj − 1)

t4j
.

Proof. Let δ = µ(I \J1,j). The first part of the proof essentially follows Brakensiek’s proof of Claim
13 in [12] with minor modifications, so we omit the details. Following his argument (and using
Corollary 1.1), we arrive at the inequality

(17)
1

tj
+ δ − 1

tj − 1

(
δ

tj − 1

)1/η(tn)

> ω(tn).

We wish to show that this inequality fails for
tj − 1

t5j
≤ δ ≤ (2tj − 1)(tj − 1)

t4j
. Because the left-hand

side of (17) is concave up as a function of δ when δ is in this range, it suffices to prove that the

inequality fails when δ =
tj − 1

t5j
and when δ =

(2tj − 1)(tj − 1)

t4j
. Replacing tj by the continuous

variable x and recalling that tj ≥ tn, we see that is suffices to prove that

(18)
1

x
+
x− 1

x5
− 1

x− 1

(
1

x5

)1/η(tn)

≤ ω(tn)

and

(19)
1

x
+

(2x− 1)(x− 1)

x4
− 1

x− 1

(
2x− 1

x4

)1/η(tn)

≤ ω(tn)

whenever x ≥ tn. This is straightforward when tn = 3 or tn = 4, so we may assume tn ≥ 5. Let us
differentiate the left-hand sides of (18) and (19) with respect to x. We check that these derivatives
are negative so that the left-hand sides of these inequalities are decreasing in x. This means that
it suffices to prove them in the case x = tn. Under this assumption, (18) and (19) become

1

tn
+
tn − 1

t5n
− (tn − 1)4

t5n
≤ 4tn − 3

t3n

and

1

tn
+

(2tn − 1)(tn − 1)

t4n
− (tn − 1)2

t3n

(
2− 1

tn

)1/η(tn)

≤ 4tn − 3

t3n
.

Both of these inequalities are easy to verify (for the second, note that (2− 1/tn)1/η(tn) > 1). �

Lemma 5.2. Let G =
∏n
i=1Kti, where t1 ≥ · · · ≥ tn ≥ 3. Let I ⊆ V (G) be a compressed

independent set such that µ(I) > ω(tn). There exists j ∈ [n] such that

µ(I \ J1,j) <
tj − 1

t5j
.

Proof. The beginning of the proof follows Brakensiek’s proof of Lemma 15 in [12]. We induct on n.
If n = 1, then we are done because I = {1} = J1,1. Assume that n ≥ 2 and that the lemma holds

for all smaller values of n. Let G′ =
∏n−1
i=1 Kti . Let J ′a,i = [t1]×· · ·× [ti−1]×{a}× [ti+1]×· · ·× [tn−1].

By way of contradiction, assume that µ(I \ J1,j) ≥
tj − 1

t5j
for all j ∈ [n]. According to Lemma 5.1,
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this implies that

(20) µ(I \ J1,j) ≥
(2tj − 1)(tj − 1)

t4j

for all j ∈ [n].

For b ∈ [tn], put

Ib = {(x1, . . . , xn−1) ∈ V (G′) : (x1, . . . , xn−1, b) ∈ I}.

The sets Ib are compressed because I is compressed. Choose a ∈ [tn−1] such that µ((I1\I2)∩Ja,n−1)

is maximal. Let Î = I2 ∪ ((I1 \ I2)∩ Ja,n−1). If we follow Brakensiek’s argument mutatis mutandis,

we find that Î is an independent set. Moreover, I2 ⊆ Î ⊆ I1. By Lemmas 4.1 and 4.2, we can

repeatedly apply compressions to the set Î until we obtain a compressed independent set Ĩ ⊆ V (G′).

Because I1 and I2 are already compressed, we know that I2 ⊆ Ĩ ⊆ I1. Now,

(21) µ
(
Ĩ
)

= µ
(
Î
)
≥ µ(I2) +

µ(I1)− µ(I2)

tn−1
=
µ(I1) + (tn−1 − 1)µ(I2)

tn−1
≥ µ(I1) + (tn − 1)µ(I2)

tn−1
.

Because I is compressed, we have µ(I2) ≥ µ(I3) ≥ · · · ≥ µ(Itn). Thus, µ(I1) + (tn − 1)µ(I2) ≥∑tn
a=1 µ(Ia) = tnµ(I). Combining this with (21) yields

µ
(
Ĩ
)
≥ tnµ(I)

tn−1
≥ µ(I) > ω(tn) ≥ ω(tn−1).

We can now apply our induction hypothesis to the compressed independent set Ĩ to see that there
exists j ∈ [n− 1] such that

µ(Ĩ \ J ′1,j) <
tj − 1

t5j
.

Because I is compressed and I2 ⊆ Ĩ, we have

µ(I \ (J1,j ∪ J1,n)) =
1

tn

tn∑
b=2

µ(Ib \ J ′1,j) ≤
tn − 1

tn
µ(I2 \ J ′1,j) ≤

tn − 1

tn
µ(Ĩ \ J ′1,j) <

tn − 1

tn
· tj − 1

t5j
.

Invoking (20), we obtain the inequalities

(22) µ((I \ J1,j) ∩ J1,n) = µ(I \ J1,j)− µ(I \ (J1,j ∪ J1,n)) ≥ (2tj − 1)(tj − 1)

t4j
− tn − 1

tn
· tj − 1

t5j
.

and

(23) µ((I \ J1,n) ∩ J1,j) = µ(I \ J1,n)− µ(I \ (J1,j ∪ J1,n)) ≥ (2tn − 1)(tn − 1)

t4n
− tn − 1

tn
· tj − 1

t5j

Put I ′ = I ∩ J2,j ∩ J1,n and I ′′ = I ∩ J1,j ∩ J2,n. Because I is compressed,

(24) µ(I ′) ≥ 1

tj − 1
µ((I \ J1,j) ∩ J1,n) ≥ 2tj − 1

t4j
− tn − 1

tnt5j
>

1

t3j

and

(25) µ(I ′′) ≥ 1

tn − 1
µ((I \ J1,n) ∩ J1,j) ≥

2tn − 1

t4n
− tj − 1

tnt5j
.

The elements of I ′ have constant jth and nth coordinates, so

(26) µ(∂I ′ ∩ J1,j ∩ J2,n) =
1

(tj − 1)(tn − 1)
µ(∂I ′) ≥ 1

(tj − 1)(tn − 1)
Φ(G,µ(I ′)).
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Finally, observe that

(27) µ(I ′′) + µ(∂I ′ ∩ J1,j ∩ J2,n) ≤ µ(J1,j ∩ J2,n) =
1

tjtn

because I ′ ∪ I ′′ is an independent set. We now combine (24), (25), (26), (27), and Corollary 1.1 to
obtain

1

tjtn
≥ µ(I ′′) + µ(∂I ′ ∩ J1,j ∩ J2,n) ≥ 2tn − 1

t4n
− tj − 1

tnt5j
+

1

(tj − 1)(tn − 1)
Φ(G,µ(I ′))

≥ 2tn − 1

t4n
− tj − 1

tnt5j
+

1

(tj − 1)(tn − 1)
µ(I ′)1/η(tn)

≥ 2tn − 1

t4n
− 1

tnt4j
+

1

(tj − 1)(tn − 1)

(
1

t3j

)1/η(tn)

.

We seek a contradiction, so our goal is to prove that

2tn − 1

t4n
− 1

tnt4j
+

1

(tj − 1)(tn − 1)

(
1

t3j

)1/η(tn)

>
1

tjtn
.

Multiplying both sides of this inequality by tjtn yields

(28) tj
2tn − 1

t3n
− 1

t3j
+

tjtn
(tj − 1)(tn − 1)

(
1

t3j

)1/η(tn)

> 1.

It is straightforward (though somewhat tedious) to verify that (28) holds for each fixed tn ∈
{3, . . . , 21}, so we may assume tn ≥ 22. To ease notation, let Q(tj , tn) denote the left-hand side
of (28). If we fix tn and replace tj with a continuous variable x ≥ tn, then we can differentiate
Q(x, tn) with respect to x and find (after some simplifying) that

∂

∂x
Q(x, tn) =

2tn − 1

t3n
+

3

x4
− tn
tn − 1

x−3/η(tn)

(x− 1)2
(1 + (3/η(tn))(x− 1))

>
2tn − 1

t3n
− tn
tn − 1

x−3/η(tn)

(x− 1)2
(1 + (3/η(tn))(x− 1)).

This last expression is increasing as a function of x, so we obtain a lower bound for
∂

∂x
Q(x, tn) by

evaluating that expression when x = tn. More precisely,

∂

∂x
Q(x, tn) >

2tn − 1

t3n
− tn
tn − 1

t
−3/η(tn)
n

(tn − 1)2
(1+(3/η(tn))(tn−1)) =

2tn − 1

t3n
− 1

t2n
(1+(3/η(tn))(tn−1))

=
tn − 1

t2n

(
1

tn
− 3/η(tn)

)
> 0,

where the last inequality uses the assumption that tn ≥ 22 and is easy to verify. We now know
that the left-hand side of (28) is increasing as a function of tj when tn is fixed, so we are left to
prove (28) when tj = tn. With this substitution, (28) becomes

2tn − 1

t2n
− 1

t3n
+
tn − 1

tn
> 1,

which is certainly true. �

The next lemma is purely technical and serves no purpose for us other than allowing us to prove
Lemma 5.4.
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Lemma 5.3. If t ≥ 3 is an integer and x, ν,m are real numbers such that

m/2 ≥ ν ≥ 2x− 1

x4
, x ≥ t, and m ≥ ω(t),

then

(29)
1

x
+

1

x4
+ ν − 1

x− 1
ν1/η(t) ≤ m.

Proof. Let us first assume ν ≥ 2t− 1

t3
. Since ν ≤ m/2, it suffices to prove that

1

x
+

1

x4
+ ν − 1

x− 1
ν1/η(t) ≤ 2ν,

which is equivalent to

1

x
+

1

x4
− ν − 1

x− 1
ν1/η(t) ≤ 0.

We will prove the stronger inequality

1

x
+

1

x4
− ν − 1

x
ν1/η(t) ≤ 0.

Because

−ν − 1

x
ν1/η(t) ≤ −2t− 1

t3
− 1

x

(
2t− 1

t3

)1/η(t)

,

we wish to show that

1

x

(
1−

(
2t− 1

t3

)1/η(t)
)

+
1

x4
− 2t− 1

t3
≤ 0.

The left-hand side of this last inequality is decreasing as a function of x, so it suffices to prove that
it holds when x = t. In this case, the inequality becomes

1

t

(
1−

(
2t− 1

t3

)1/η(t)
)

+
1

t4
− 2t− 1

t3
≤ 0,

which one can verify is true for all t ≥ 3.

We are now left to prove that (29) holds when
2x− 1

x4
≤ ν ≤ 2t− 1

t3
. We will prove the stronger

inequality

(30)
1

x
+

1

x4
+ ν − 1

x− 1
ν1/η(t) ≤ ω(t).

When viewed as a function of ν, the left-hand side of (30) is concave up. Hence, it suffices to prove

(30) when ν =
2x− 1

x4
and when ν =

2t− 1

t3
.

First, assume ν =
2t− 1

t3
. It is straightforward to verify (30) for t = 3 and t = 4, so assume

t ≥ 5. We will prove the stronger inequality

(31)
1

x
+

1

x4
+ ν − 1

x
ν1/η(t) ≤ ω(t).
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The left-hand side of this last inequality is decreasing as a function of x, so it suffices to prove it

when x = t. With the substitutions x = t and ν =
2t− 1

t3
, (31) becomes

1

t
+

1

t4
+

2t− 1

t3
− 1

t

(
2t− 1

t3

)1/η(t)

≤ 4t− 3

t3
,

where we have used the fact that ω(t) =
4t− 3

t3
for t ≥ 5. One can verify that this last inequality

holds for all t ≥ 5.

Finally, we must prove that (30) holds when ν =
2x− 1

x4
. With this substitution, (30) becomes

1

x
+

1

x4
+

2x− 1

x4
− 1

x− 1

(
2x− 1

x4

)1/η(t)

≤ ω(t).

One can verify this last inequality when t = 3 and t = 4, so we may assume t ≥ 5. We will prove
the stronger inequality

(32)
1

x
+

2

x3
− 1

x

(
1

x3

)1/η(t)

≤ 4t− 3

t3
.

When x = t, (32) becomes

1

t
+

2

t3
− (t− 1)3

t4
≤ 4t− 3

t3
,

and it is easy to check that this holds for all t ≥ 5. Thus, it suffices to prove that the left-hand side
of (32) is decreasing as a function of x. The derivative of the left-hand side of (32) with respect to
x is

−x−2 − 6x−4 + (3/η(t) + 1)x−3/η(t)−2,

which is less than

x−2
(
−1 + (3/η(t) + 1)x−3/η(t)

)
.

In order to prove that this derivative is negative, we need only show that (3/η(t) + 1)x−3/η(t) < 1.
This follows from the fact that (

1 +
3

η(t)

)η(t)

< e3 < x3. �

Lemma 5.4. Let G =
∏n
i=1Kti, where t1 ≥ · · · ≥ tn ≥ 3. Let I ⊆ V (G) be a sorted independent

set such that µ(I) > ω(tn). There exists j ∈ [n] such that

µ(I \ J1,j) <
tj − 1

t5j
.

Proof. Our proof follows Brakensiek’s proof of Lemma 16 in [12]. Assume that the lemma is false,
and deduce from Lemma 5.1 that

µ(I \ J1,j) >
(2tj − 1)(tj − 1)

t4j

for all j ∈ [n]. Whenever i 6= j, we have

µ(ci(I) \ J1,j) = µ(I \ J1,j) >
(2tj − 1)(tj − 1)

t4j
.
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If

(33) µ(cj(I) \ J1,j) >
(2tj − 1)(tj − 1)

t4j

for all j ∈ [n], then we can use Lemmas 4.1 and 4.2 to obtain a compressed independent set I ′ with

µ(I ′) = µ(I) and µ(I ′ \ J1,j) >
(2tj − 1)(tj − 1)

t4j
for all j ∈ [n]. This contradicts Lemma 5.2, so

(33) must fail for some j ∈ [n]. Lemma 4.2 tells us that cj(I) is an independent set, and it is sorted
because I is sorted. By Lemma 5.1,

(34) µ(cj(I) \ J1,j) <
tj − 1

t5j
.

We have

(35)
2tj − 1

t4j
<

1

tj − 1
µ(I \ J1,j) ≤ µ(I ∩ J2,j) ≤ µ(I)/2,

where the last two inequalities follow from the fact that I is sorted. We will prove that

(36) µ(∂(I ∩ J2,j) ∩ J1,j ∩ cj(I)) ≤ µ(I ∩ J2,j)

by constructing an injection ψ : ∂(I ∩ J2,j)∩ J1,j ∩ cj(I)→ I ∩ J2,j . If w ∈ ∂(I ∩ J2,j)∩ J1,j ∩ cj(I),
then wj = 1. Let ψ(w) = (w1, . . . , wj−1, 2, wj+1, . . . , wn). This map is clearly injective, so we just
need to check that ψ(w) is actually an element of I ∩ J2,j . We know that ψ(w) ∈ J2,j , so we must
check that ψ(w) ∈ I. Because w ∈ cj(I), there exists z ∈ I such that zi = wi for all i 6= j. Since
w ∈ ∂(I ∩ J2,j), there exists y ∈ I such that y is adjacent to w and yj = 2. This means that
yi 6= wi = zi for all i 6= j. Because y and z are distinct elements of the independent set I, they
are not adjacent. This means that they must agree in some coordinate, which must be the jth

coordinate. It follows that zj = 2, so ψ(w) = z ∈ I as desired.

Using (36) and Corollary 1.1, we find that

µ(J1,j \ cj(I)) ≥ µ((∂(I ∩ J2,j)∩ J1,j) \ cj(I)) = µ(∂(I ∩ J2,j)∩ J1,j)− µ((∂(I ∩ J2,j)∩ J1,j)∩ cj(I))

≥ µ(∂(I ∩ J2,j) ∩ J1,j)− µ(I ∩ J2,j) =
1

tj − 1
µ(∂(I ∩ J2,j))− µ(I ∩ J2,j)

(37) ≥ 1

tj − 1
Φ(G,µ(I ∩ J2,j))− µ(I ∩ J2,j) ≥

1

tj − 1
µ(I ∩ J2,j)

1/η(tn) − µ(I ∩ J2,j).

Finally, combining (34) and (37) gives

µ(I) = µ(cj(I)) = µ(cj(I) ∩ J1,j) + µ(cj(I) \ J1,j) =
1

tj
− µ(J1,j \ cj(I)) + µ(cj(I) \ J1,j)

<
1

tj
− µ(J1,j \ cj(I)) +

tj − 1

t5j
≤ 1

tj
+
tj − 1

t5j
− 1

tj − 1
µ(I ∩ J2,j)

1/η(tn) + µ(I ∩ J2,j)

<
1

tj
+

1

t4j
− 1

tj − 1
µ(I ∩ J2,j)

1/η(tn) + µ(I ∩ J2,j).

However, this is a contradiction because we can apply Lemma 5.3 with t = tn, x = tj , ν = µ(I∩J2,j),
and m = µ(I) ((35) guarantees that the hypotheses of Lemma 5.3 are satisfied) to find that

1

tj
+

1

t4j
− 1

tj − 1
µ(I ∩ J2,j)

1/η(tn) + µ(I ∩ J2,j) ≤ µ(I). �
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We are finally prepared to complete the proof of Theorem 1.7. A brief overview of the proof is as
follows. We first assume the graph G under consideration is a direct product of complete graphs.
We use Lemma 5.4 to see that there is a choice of j such that the quantity δ in Proposition 5.1
is somewhat small. Proposition 5.1 then allows us to deduce that δ is very small, which in turn
allows us to prove the theorem in this case. To complete the proof, we show how to deduce the
general form of the theorem from the version for direct products of complete graphs.

Proof of Theorem 1.7. Let G =
∏n
i=1K[ui, ti] be as in the statement of the theorem, and assume

for the moment that ui = 1 for all i ∈ [n]. In other words, G =
∏n
i=1Kti , where t1 ≥ · · · ≥ tn ≥ 3.

Let I ⊆ V (G) be an independent set with µ(I) =
1

tn
(1− ε) > ω(tn). By relabeling the vertices in

each of the graphs Kti if necessary, we can assume I is sorted. According to Lemma 5.4, we can

choose j ∈ [n] such that µ(I \ J1,j) <
tj − 1

t5j
<

1

t4j
. Let δ = µ(I \ J1,j). We know from Proposition

5.1 that

(38) ε ≥ 1− tn
tj
− δtn +

tn
tj − 1

(
δ

tj − 1

)1/η(tn)

.

We will first prove that

(39) −δtn +
tn

tj − 1

(
δ

tj − 1

)1/η(tn)

> 0.

It will then follow from (38) that ε > 1− tn
tj

, which is equivalent to tj <
tn

1− ε
.

Let

f(x) = −tnx+
tn

tj − 1

(
x

tj − 1

)1/η(tn)

.

If 0 < x <
1

t4j
, then

f ′(x) = tn

(
1

(tj − 1)1+1/η(tn)

1

η(tn)
x1/η(tn)−1 − 1

)
> tn

(
1

t
1+1/η(tn)
j

1

η(tn)
x1/η(tn)−1 − 1

)

> tn

 1

t
1+1/η(tn)
j

1

η(tn)

(
1

t4j

)1/η(tn)−1

− 1

 =
tn

η(tn)

(
t
3−5/η(tn)
j − η(tn)

)
≥ tn
η(tn)

(
t3−5/η(tn)
n − η(tn)

)
.

It is easy to verify that this last expression is positive, so f(x) is increasing for 0 < x <
1

t4j
. This

immediately implies (39) since f(0) = 0.

Next, let

g(x) = 1− tn
x
− δtn +

tn
x− 1

(
δ

x− 1

)1/η(tn)

.

Suppose tn ≤ x ≤ tj . We have

g′(x) = tn

(
x−2 − δ1/η(tn) (1 + 1/η(tn)) (x− 1)−2−1/η(tn)

)
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=
δ1/η(tn)tn

(x− 1)2+1/η(tn)

(
(x− 1)2+1/η(tn)

x2δ1/η(tn)
− (1 + 1/η(tn))

)

≥ δ1/η(tn)tn

(x− 1)2+1/η(tn)

(
(x− 1)2+1/η(tn)

x2(1/t4j )
1/η(tn)

− (1 + 1/η(tn))

)

≥ δ1/η(tn)tn

(x− 1)2+1/η(tn)

(
(x− 1)2+1/η(tn)

x2(1/x4)1/η(tn)
− (1 + 1/η(tn))

)

(40) ≥ δ1/η(tn)tn

(x− 1)2+1/η(tn)

(
(x− 1)2+1/η(tn)

x2−4/η(tn)
− (1 + 1/η(tn))

)
.

It is easy to check that
(x− 1)2+1/η(tn)

x2−4/η(tn)
is increasing in x, so

(x− 1)2+1/η(tn)

x2−4/η(tn)
− (1 + 1/η(tn)) ≥ (tn − 1)2+1/η(tn)

t
2−4/η(tn)
n

− (1 + 1/η(tn))

= (tn − 1)1/η(tn) (tn − 1)2

t2n
t4/η(tn)
n − (1 + 1/η(tn)) = (tn − 1)1/η(tn) t2n

(tn − 1)2
− (1 + 1/η(tn))

>
tn

tn − 1
− (1 + 1/η(tn)) =

1

tn − 1
− 1

η(tn)
> 0.

Combining this with (40) shows that g(x) is increasing in x when tn ≤ x ≤ tj . In particular,
g(tj) ≥ g(tn). Referring back to (38), we see that

(41) ε ≥ −δtn +
tn

tn − 1

(
δ

tn − 1

)1/η(tn)

.

At this point, we simply cite the proof of Lemma 11 in [12]. In that proof, Brakensiek obtains the

equation (41) under the weaker assumption that δ <
1

t3n
and proves that

(42) δ < 4εη(tn)

(note that he uses the symbol t in place of tn). Applying the exact same argument proves that (42)
holds in our case as well.

We now prove the theorem in the more general case in which G =
∏n
i=1K[ui, ti] with t1 ≥ · · · ≥

tn ≥ 3. Let G′ =
∏n
i=1Kti , and consider the collapsing map coll : V (G)→ V (G′) defined in Section

4. More precisely, coll = coll1× · · · × colln, where colli : V (K[ui, ti]) → V (Kti) sends every vertex
in the partite set Xi(a) to the vertex a. Because the complete multipartite graphs K[ui, ti] in the
product defining G are balanced, we have

(43) µ(coll−1(T )) = µ(T )

for all T ⊆ G′. We use Ja,i to refer to the subset

V (K[u1, t1])× · · · × V (K[ui−1, ti−1]×Xi(a)× V (K[ui+1, ti+1])× · · · × V (K[ui+1, tn])

of V (G) and use J ′a,i to refer to the subset

[t1]× · · · × [ti−1]× {a} × [ti+1]× · · · × [tn] = coll(Ja,i)

of V (G′). Let I ⊆ V (G) be an independent set with µ(I) =
1

tn
(1− ε) > ω(tn). The collapsing map

sends independent sets to independent sets and satisfies µ(coll(T )) = µ(coll−1(coll(T ))) ≥ µ(T ) for
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all T ⊆ V (G). Therefore, the set I ′ = coll(I) is an independent set of G′ with µ(I ′) =
1

tn
(1 − ε′)

for some ε′ ≤ ε. We already know the theorem holds for direct products of complete graphs (such
as G′), so there exist j ∈ [n] and a ∈ [tj ] such that

tj <
tn

1− ε′
and µ(I ′ \ J ′a,j) < 4(ε′)η(tn).

We have I \ Ja,j ⊆ coll−1(I ′ \ J ′a,j), so

µ(I \ Ja,j) ≤ µ(coll−1(I ′ \ J ′a,j)) = µ(I ′ \ J ′a,j) < 4(ε′)η(tn) ≤ 4εη(tn)

as desired. �

6. Concluding Remarks

We have proven Burcroff’s conjecture that IR(G) = α(G) whenever G is a direct product of
balanced complete multipartite graphs except in 37 exceptional cases. Our proof relied on the
fact that the complete multipartite graphs in the product are balanced. As mentioned in the
introduction, our new Conjecture 1.2 strengthens Burcroff’s conjecture by removing the assumption
that the graphs in the product are balanced.

In Theorem 1.4, we gave an explicit recursive formula for the vertex isoperimetric profile of the
graph

∏n
i=1Hi when H1, . . . ,Hn are complete multipartite graphs satisfying β(H1) ≤ · · · ≤ β(Hn)

and ∏
k∈A

1− β(Hk)

β(Hk)
≥ 1− β(Hn)

β(Hn)

for all nonempty A ⊆ [n − 1]. This last condition was satisfied for all the graphs we considered
in our applications, but it would still be interesting to compute the vertex isoperimetric profiles
of direct products of complete multipartite graphs that fail to satisfy this condition. It would also
be interesting to prove an independent set stability result like Theorem 1.7 for direct products of
complete multipartite graphs that are not necessarily balanced.

It could be possible to weaken the hypothesis that µ(I) > ω(tn) in Theorem 1.7. Doing so could
allow one to prove Burcroff’s conjecture for several of the 37 remaining cases. Alternatively, one
could see if an argument similar to the one used in [20] to prove the conjecture in the case n ≤ 3
could also handle the case n = 4; this would prove 26 of the remaining 37 cases.
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