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Abstract. We deal with two intimately related subjects: quasi-randomness and regular partitions. The purpose of
the concept of quasi-randomness is to measure how much a given graph “resembles” a random one. Moreover,
a regular partition approximates a given graph by a bounded number of quasi-random graphs. Regarding quasi-
randomness, we present a new spectral characterization of low discrepancy, which extends to sparse graphs. Con-
cerning regular partitions, we introduce a concept of regularity that takes into account vertex weights, and show that
if G = (V,E) satisfies a certain boundedness condition, then G admits a regular partition. In addition, building
on the work of Alon and Naor [4], we provide an algorithm that computes a regular partition of a given (possibly
sparse) graph G in polynomial time. As an application, we present a polynomial time approximation scheme for
MAX CUT on (sparse) graphs without “dense spots”.
Key words: quasi-random graphs, Laplacian eigenvalues, regularity lemma, Grothendieck’s inequality.

1 Introduction and Results

This paper deals with quasi-randomness and regular partitions. Loosely speaking, a graph is quasi-random if the
global distribution of the edges resembles the expected edge distribution of a random graph. Furthermore, a regular
partition approximates a given graph by a constant number of quasi-random graphs. Such partitions are of algorithmic
importance, because a number of NP-hard problems can be solved in polynomial time on graphs that come with regular
partitions. In this section we present our main results and discuss related work. The remaining sections contain the
proofs and detailed descriptions of the algorithms.

1.1 Quasi-Randomness: Discrepancy and Eigenvalues

Random graphs are well known to have a number of remarkable properties (e.g., excellent expansion). Therefore,
quantifying how much a given graph “resembles” a random one is an important problem, both from a structural and
an algorithmic point of view. Providing such measures is the purpose of the notion of quasi-randomness. While this
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concept is rather well developed for dense graphs (i.e., graphs G = (V,E) with |E| = Ω(|V |2)), less is known in the
sparse case, which we deal with in the present work. In fact, we shall actually deal with (sparse) graphs with general
degree distributions, including but not limited to the ubiquitous power-law degree distributions (cf. [1]).

We will mainly consider two types of quasi-random properties: low discrepancy and eigenvalue separation. The
low discrepancy property concerns the global edge distribution and basically states that every set S of vertices approx-
imately spans as many edges as we would expect in a random graph with the same degree distribution. More precisely,
if G = (V,E) is a graph, then we let dv signify the degree of v ∈ V . Furthermore, the volume of a set S ⊂ V is
vol(S) =

∑
v∈S dv . In addition, if S, T ⊂ V are disjoint sets, then e(S, T ) denotes the number of S-T -edges in G

and e(S) is two times the number of edges spanned by the set S. For not necessarily disjoint sets S, T ⊂ V we let
e(S, T ) = e(S \ T, T \ S) + e(S ∩ T ).

Disc(ε): We say that G has discrepancy at most ε (“G has Disc(ε)” for short) if

∀S ⊂ V :
∣∣∣∣e(S)− vol(S)2

vol(V )

∣∣∣∣ < 2ε · vol(V ). (1)

To explain (1), let d = (dv)v∈V , and let G(d) signify a random graph with expected degree distribution d; that is,
any two vertices v, w are adjacent with probability pvw = dvdw/vol(V ) independently. Then in G(d) the expected
number of edges inside of S ⊂ V equals 1

2

∑
(v,w)∈S2 pvw = 1

2vol(S)2/vol(V ). Consequently, (1) just says that for
any set S the actual number of edges inside of S must not deviate from what we expect in G(d) by more than an
ε-fraction of the total volume.

An obvious problem with the bounded discrepancy property (1) is that it seems quite difficult to check whether
G = (V,E) satisfies this condition. This is because apparently one would have to inspect an exponential number of
subsets S ⊂ V . Therefore, we consider a second property that refers to the eigenvalues of a certain matrix representing
G. More precisely, we will deal with the normalized Laplacian L(G), whose entries (`vw)v,w∈V are defined as

`vw =


1 if v = w and dv ≥ 1,

−(dvdw)−
1
2 if v, w are adjacent,

0 otherwise;

Due to the normalization by the geometric mean
√
dvdw of the vertex degrees, L(G) turns out to be appropriate for

representing graphs with general degree distributions. Moreover, L(G) is well known to be positive semidefinite, and
the multiplicity of the eigenvalue 0 equals the number of connected components of G (cf. [9]).

Eig(δ): Letting 0 = λ1 [L(G)] ≤ · · · ≤ λ|V | [L(G)] denote the eigenvalues of L(G), we say that G has δ-eigenvalue
separation (“G has Eig(δ)”) if 1− δ ≤ λ2 [L(G)] ≤ λ|V | [L(G)] ≤ 1 + δ.

As the eigenvalues of L(G) can be computed in polynomial time (within arbitrary numerical precision), we can
essentially check efficiently whether G has Eig(δ) or not.

It is not difficult to see that Eig(δ) provides a sufficient condition for Disc(ε). That is, for any ε > 0 there is a
δ > 0 such that any graph G that has Eig(δ) also has Disc(ε). However, while the converse implication is true if G
is dense (i.e., vol(V ) = Ω(|V |2)), it is false for sparse graphs. In fact, providing a necessary condition for Disc(ε) in
terms of eigenvalues has been an open problem in the area of sparse quasi-random graphs since the work of Chung and
Graham [11]. Concerning this problem, we basically observe that the reason why Disc(ε) does in general not imply
Eig(δ) is the existence of a small set of “exceptional” vertices.

ess-Eig(δ): We say that G has essential δ-eigenvalue separation (“G has ess-Eig(δ)”) if there is a set W ⊂ V of
volume vol(W ) ≥ (1− δ)vol(V ) such that the following is true. Let L(G)W = (`vw)v,w∈W denote the minor of
L(G) induced on W ×W , and let λ1 [L(G)W ] ≤ · · · ≤ λ|W | [L(G)W ] signify its eigenvalues. Then we require
that 1− δ < λ2 [L(G)W ] ≤ λ|W | [L(G)W ] < 1 + δ.

Theorem 1. There is a constant γ > 0 such that the following is true for all graphs G = (V,E) and all ε > 0.

1. If G has ess-Eig(ε), then G satisfies Disc(10
√
ε).
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2. If G has Disc(γε2), then G satisfies ess-Eig(ε).

The main contribution is the second implication. Its proof is based on Grothendieck’s inequality and the duality the-
orem for semidefinite programs. In effect, the proof actually provides us with an efficient algorithm that computes a
set W as in the definition of ess-Eig(ε). The second part of Theorem 1 is best possible, up to the precise value of the
constant γ (see Section 6).

1.2 The Algorithmic Regularity Lemma

Loosely speaking, a regular partition of a graph G = (V,E) is a partition of (V1, . . . , Vt) of V such that for “most”
index pairs 1 ≤ i < j ≤ t the bipartite subgraph spanned by Vi and Vj is quasi-random. Thus, a regular partition
approximatesG by quasi-random graphs. Furthermore, the number t of classes may depend on a parameter ε that rules
the accuracy of the approximation, but it does not depend on the order of the graph G itself. Therefore, if for some
class of graphs we can compute regular partitions in polynomial time, then this graph class will admit polynomial time
algorithms for various problems that are NP-hard in general.

In the sequel we introduce a new concept of regular partitions that takes into account a given “ambient” weight
distribution D = (Dv)v∈V , which is an arbitrary sequence of rationals between 1 and n = |V |. We will see at the end
of this section how this relates to the notion of quasi-randomness discussed in the previous section. Let G = (V,E)
be a graph. For subsets X,Y ⊂ V we set

%(X,Y ) =
e(X,Y )

D(X)D(Y )
, where D(U) =

∑
u∈U Du for any U ⊂ V .

Further, we say that for disjoint sets X,Y ⊂ V the pair (X,Y ) is (ε,D)-regular if for all X ′ ⊂ X , Y ′ ⊂ Y satisfying
D(X ′) ≥ εD(X), D(Y ′) ≥ εD(Y ) we have

|e(X ′, Y ′)− %(X,Y )D(X ′)D(Y ′)| ≤ ε · D(X)D(Y )
D(V )

. (2)

Roughly speaking, (2) states that the bipartite graph spanned by X and Y is “quasi-random” with respect to the vertex
weights D.

In the present notation, Szemerédi’s original regularity lemma [23] states that every graph G admits a regular
partition with respect to the weight distribution D(v) = n for all v ∈ V . However, if G is sparse (i.e., |E| � |V |2),
then such a regular partition is not helpful because the bound on the r.h.s. of (2) exceeds |E|. To obtain an appropriate
bound, we would have to consider a weight distribution such that D(v) � n for (at least) some v ∈ V . But with
respect to such weight distributions regular partitions do not necessarily exist. The basic obstacle is the presence of
large “dense spots” (X,Y ), where e(X,Y ) is far bigger than the term D(X)D(Y ) suggests. To rule these out, we
consider the following notion.

(C, η,D)-boundedness. Let C ≥ 1 and η > 0. A graph G is (C, η,D)-bounded if for all X,Y ⊂ V with
D(X), D(Y ) ≥ ηD(V ) we have %(X,Y )D(V ) ≤ C .

To illustrate the boundedness condition, consider a random graph G(D) with expected degree sequence D such
that D(V ) � n. Then for any two disjoint sets X,Y ⊂ V we have E [e(X,Y )] = D(X)D(Y )/D(V ) + o(D(V )).
Hence, Chernoff bounds imply that for all X,Y simultaneously we have e(X,Y ) = D(X)D(Y )/D(V ) + o(D(V ))
with probability 1 − o(1) as n → ∞. Therefore, for any fixed η > 0 the random graph G(D) is (1 + o(1), η,D)
bounded with probability 1− o(1).

Now, we can state the following algorithmic regularity lemma for graphs with general degree distributions. which
does not only ensure the existence of regular partitions, but also that such a partition can be computed efficiently. We
let 〈D〉 signify the encoding length of a weight distribution D = (Dv)v∈V , i.e., the number of bits that are needed to
write down the rationals (Dv)v∈V . Observe that 〈D〉 ≥ n.

Theorem 2. For any two numbers C ≥ 1 and ε > 0 there exist η > 0 and n0 > 0 such that for all n ≥ n0 and every
sequence of rationals D = (Dv)v∈V with |V | = n and 1 ≤ Dv ≤ n for all v ∈ V the following holds. If G = (V,E)
is a (C, η,D)-bounded graph and D(V ) ≥ η−1n, then there is a partition P = {Vi : 0 ≤ i ≤ t} of V that satisfies
the following two properties:
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REG1. (a) ηD(V ) ≤ D(Vi) ≤ εD(V ) for all i = 1, . . . , t,
(b) D(V0) ≤ εD(V ), and
(c) |D(Vi)−D(Vj)| < maxv∈V Dv for all 1 ≤ i < j ≤ t.

REG2. Let L be the set of all pairs (i, j), 1 ≤ i < j ≤ t such that (Vi, Vj) is not (ε,D)-regular. Then∑
(i,j)∈L

D(Vi)D(Vj) ≤ εD(V )2.

Furthermore, for fixed C and ε the partition P can be computed in polynomial time. More precisely, there exist a
function f and a polynomial Π such that the partition P can be computed in time f(C, ε) ·Π(〈D〉).

Condition REG1 states all of the classes V1, . . . , Vt have approximately the same, non-negligible weight, while
the “exceptional” class V0 has a “small” weight. Also note that due to REG1(a) the number of classes t of the partition
P is bounded by 1/η, which only depends on C and ε, but not on G, D, or n. Moreover, REG2 requires that the total
weight of the irregular pairs (Vi, Vj) is small relative to the total weight. Thus, a partition P that satisfies REG1 and
REG2 approximates G by a bounded number of bipartite quasi-random graphs.

We illustrate the use of Theorem 2 with the example of the MAX CUT problem. While approximating MAX CUT
within a ratio better than 16

17 is NP-hard on general graphs [19, 24], the following theorem provides a polynomial time
approximation scheme for (C, η,D)-bounded graphs.

Theorem 3. For any δ > 0 and C ≥ 1 there exist two numbers η > 0, n0 > 0 and a polynomial time algorithm
ApxMaxCut such that for all n ≥ n0 and every sequence of rationals D = (Dv)v∈V with |V | = n and 1 ≤ Dv ≤ n
for all v ∈ V the following is true. IfG = (V,E) is a (C, η,D)-bounded graph andD(V ) > η−1n, then ApxMaxCut
outputs a cut of G that approximates the maximum cut up to an additive error of δ|D(V )|.

Finally, let us discuss a few examples and applications of the above results.

1. If we let D(v) = n for all v ∈ V , then Theorem 2 is just an algorithmic version of Szemerédi’s regularity lemma.
Such a result was established previously in [3].

2. Suppose thatD(v) = d̄ for some number d̄ = d̄(n) = o(n). Then the above notions of regularity and boundedness
coincide with those of the classical “sparse regularity lemma” of Kohayakawa [21] and Rödl (unpublished). Hence,
Theorem 2 provides an algorithmic version of this regularity concept. This result has not been published previously
(although it may have been known to experts in the area that this can be derived from Alon and Naor [4]). Actually
devising an algorithm for computing a sparse regular partition is mentioned as an open problem in [21].

3. For a given graph G = (V,E) we could just use the degree sequence as a weight distribution, i.e., D(v) = dv for
all v ∈ V . Then D(U) = vol(U) for all U ⊂ V . Hence, the notion of regularity (2) is closely related to the notion
of quasi-randomness from Section 1.1. The resulting regularity concept is a generalization of the “classical” sparse
regularity lemma. The new concept allows for graphs with highly irregular degree distributions.

1.3 Further Related Work

Quasi-random graphs with general degree distributions were first studied by Chung and Graham [10]. They considered
the properties Disc(ε) and Eig(δ), and a number of further related ones (e.g., concerning weighted cycles). Chung
and Graham observed that Eig(δ) implies Disc(ε), and that the converse is true in the case of dense graphs (i.e.,
vol(V ) = Ω(|V |2)).

Regarding the step from discrepancy to eigenvalue separation, Butler [8] proved that any graph G such that for all
sets X,Y ⊂ V the bound

|e(X,Y )− vol(X)vol(Y )/vol(V )| ≤ ε
√

vol(X)vol(Y ) (3)

holds, satisfies Eig(O(ε(1− ln ε))). His proof builds upon the work of Bilu and Linial [6], who derived a similar result
for regular graphs, and on the earlier related work of Bollobás and Nikiforov [7].

Butler’s result relates to the second part of Theorem 1 as follows. The r.h.s. of (3) refers to the volumes of the sets
X , Y , and may thus be significantly smaller than εvol(V ). By comparison, the second part of Theorem 1 just requires
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that the “original” discrepancy condition Disc(δ) is true, i.e., we just need to bound |e(S) − vol(S)2/vol(V )| in
terms of the total volume vol(V ). Hence, Butler shows that the “original” eigenvalue separation condition Eig follows
from a stronger version of the discrepancy property. By contrast, Theorem 1 shows that the “original” discrepancy
condition Disc implies a weak form of eigenvalue separation ess-Eig, thereby answering a question posed by Chung
and Graham [10, 11]. Furthermore, relying on Grothendieck’s inequality and SDP duality, the proof of Theorem 1
employs quite different techniques than [6–8].

In the present work we consider a concept of quasi-randomness that takes into account vertex degrees. Other
concepts that do not refer to the degree sequence (and are therefore restricted to approximately regular graphs) were
studied by Chung, Graham and Wilson [12] (dense graphs) and by Chung and Graham [11] (sparse graphs). Also in
this setting it has been an open problem to derive eigenvalue separation from low discrepancy. Concerning this simpler
concept of quasi-randomness, our techniques yield a similar result as Theorem 1 as well. The proof is similar and we
omit the details.

Szemerédi’s original regularity lemma [23] has become an important tool in various areas, including extremal
graph theory and property testing. Alon, Duke, Lefmann, Rödl, and Yuster [3] presented an algorithmic version,
and showed how this lemma can be used to provide polynomial time approximation schemes for dense instances
of NP-hard problems (see also [22] for a faster algorithm). Moreover, Frieze and Kannan [13] introduced a different
algorithmic regularity concept, which yields better efficiency in terms of the desired approximation guarantee. Both [3,
13] encompass Theorem 3 in the case thatD(v) = n for all v ∈ V . The sparse regularity lemma from Kohayakawa [21]
and Rödl (unpublished) is related to the notion of quasi-randomness from [11]. This concept of regularity has proved
very useful in the theory of random graphs, see Gerke and Steger [15].

2 Preliminaries

2.1 Notation

If S ⊂ V is a subset of some set V , then we let 1S ∈ RV denote the vector whose entries are 1 on the components
corresponding to elements of S, and 0 otherwise. More generally, if ξ ∈ RV is a vector, then ξS ∈ RV signifies the
vector obtained from ξ by replacing all components with indices in V \ S by 0. Moreover, if A = (avw)v,w∈V is a
matrix, then AS = (avw)v,w∈S denotes the minor of A induced on S × S. Further, for a vector ξ ∈ RV we let ‖ξ‖
signify the `2-norm, and for a matrix M ∈ RV×V we let

‖M || = max
06=ξ∈RV

‖Mξ‖
‖ξ‖

= max
ξ,η∈RV \{0}

〈Mξ, η〉
‖ξ‖ · ‖η‖

denote the spectral norm.
If ξ = (ξv)v∈V is a vector, then diag(ξ) signifies the V × V matrix with diagonal ξ and off-diagonal entries

equal to 0. In particular, E = diag(1) denotes the identity matrix (of any size). Moreover, if M is a ν× ν matrix, then
diag(M) ∈ Rν signifies the vector comprising the diagonal entries ofM . If bothA = (aij)1≤i,j≤ν , B = (bij)1≤i,j≤ν
are ν × ν matrices, then we let 〈A,B〉 =

∑ν
i,j=1 aijbij .

If M is a symmetric ν × ν matrix, then

λ1 [M ] ≤ · · · ≤ λν [M ] = λmax [M ]

denote the eigenvalues of M . We will occasionally need the Courant-Fischer characterizations of λ2 and λmax, which
read

λ2 [M ] = max
06=ζ∈Rν

min
ξ⊥ζ,‖ξ‖=1

〈Mξ, ξ〉 , λmax [M ] = max
ζ∈Rν ,‖ζ‖=1

〈Mζ, ζ〉 (see [5, Chapter 7]). (4)

Recall that a symmetric matrix M is positive semidefinite if λ1 [M ] ≥ 0. In this case we write M ≥ 0. Furthermore,
M is positive definite if λ1 [M ] > 0, denoted as M > 0. If M,M ′ are symmetric, then M ≥ M ′ (resp. M > M ′)
denotes the fact that M −M ′ ≥ 0 (resp. M −M ′ > 0).
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2.2 Grothendieck’s inequality

An important ingredient to our proofs and algorithms is Grothendieck’s inequality. Let M = (mij)i,j∈I be a matrix.
Then the cut-norm of M is

‖M‖cut = max
I,J⊂I

∣∣∣∣∣∣
∑

(i,j)∈I×J

mij

∣∣∣∣∣∣ .
In addition, consider the following optimization problem:

SDP(M) = max
∑
i,j∈I

mij 〈xi, yj〉 s.t. ∀i ∈ I : ‖xi‖ = ‖yi‖ = 1, xi, yi ∈ R2|I|. (5)

This can be reformulated as a linear optimization problem over the cone of positive semidefinite 2|I| × 2|I| matrices,
i.e., as a semidefinite program (see Alizadeh [2]).

Lemma 4. For any ν × ν matrix M we have

SDP(M) =
1
2

max
〈(

0 1
1 0

)
⊗M,X

〉
s.t. diag(X) = 1, X ≥ 0, X ∈ R2ν×2ν . (6)

Proof. Let x1, . . . , x2ν ∈ R2ν be a family of unit vectors such that SDP(M) =
∑ν
i,j=1mij 〈xi, xj+ν〉. Then we

obtain a positive semidefinite matrix X = (xi,j)1≤i,j≤2ν by setting xi,j = 〈xi, xj〉. Since xi,i = ‖xi‖2 = 1 for all i,
this matrix satisfies diag(X) = 1. Moreover,〈(

0 1
1 0

)
⊗M,X

〉
= 2

ν∑
i,j=1

mijxi,j+ν = 2
ν∑

i,j=1

mij 〈xi, xj+ν〉 . (7)

Hence, the optimization problem on the r.h.s. of (6) yields an upper bound on SDP(M).
Conversely, if X = (xi,j) is a feasible solution to (6), then there exist vectors x1, . . . , x2ν ∈ R2ν such that

xi,j = 〈xi, xj〉, because X is positive semidefinite. Moreover, since diag(X) = 1, we have 1 = xi,i = ‖xi‖2. Thus,
x1, . . . , x2ν is a feasible solution to (5), and (7) shows that the resulting objective function values coincide. ut

Grothendieck [17] established the following relation between SDP(M) and ‖M‖cut.

Theorem 5. There is a constant θ > 1 such that for all matrices M we have ‖M‖cut ≤ SDP(M) ≤ θ · ‖M‖cut .

Since by Lemma 4 SDP(M) can be stated as a semidefinite program, an optimal solution to SDP(M) can be ap-
proximated in polynomial time within any numerical precision, e.g., via the ellipsoid method [18]. By applying an
appropriate rounding procedure to a near-optimal solution to SDP(M), Alon and Naor [4] obtained the following
algorithmic result.

Theorem 6. There are a constant θ′ > 0 and a polynomial time algorithm ApxCutNorm that on input M computes
two sets I, J ⊂ I such that θ′ · ‖M‖cut ≤

∣∣∣∑i∈I,j∈J mij

∣∣∣.
Alon and Naor presented a randomized algorithm that guarantees an approximation ration θ′ > 0.56, and a determin-
istic one with θ′ ≥ 0.03. Finally, we need the following dual characterization of SDP. The proof can be found in the
next section, Section 2.3.

Lemma 7. For any symmetric n×nmatrixQ we have SDP(Q) = n·minz∈Rn, z⊥1 λmax

[(
0 1
1 0

)
⊗Q− diag

(
z
z

)]
.
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2.3 Proof of Lemma 7

The proof of Lemma 7 relies on the duality theorem for semidefinite programs. For a symmetric n × n matrix Q set

Q = 1
2

(
0 1
1 0

)
⊗Q. Furthermore, let

DSDP(Q) = min 〈1, y〉 s.t. Q ≤ diag(y), y ∈ R2n.

Lemma 8. We have SDP(Q) = DSDP(Q).

Proof. By Lemma 4 we can rewrite the vector program SDP(Q) in the standard form of a semidefinite program:

SDP(Q) = max 〈Q, X〉 s.t. diag(X) = 1, X ≥ 0, X ∈ R(2n)×(2n).

Since DSDP(Q) is the dual of SDP(Q), the lemma follows directly from the SDP duality theorem as stated in [20,
Corollary 2.2.6]. ut

To infer Lemma 7, we shall simplify DSDP and reformulate this semidefinite program as an eigenvalue minimiza-
tion problem. First, we show that it suffices to optimize over y′ ∈ Rn rather than y ∈ R2n.

Lemma 9. Let DSDP′(Q) = min 2 〈1, y′〉 s.t. Q ≤ diag(
(

1
1

)
⊗ y′), y′ ∈ Rn. Then DSDP(Q) = DSDP′(Q).

Proof. Since for any feasible solution y′ to DSDP′(Q) the vector y =
(

1
1

)
⊗ y′ is a feasible solution to DSDP(Q),

we conclude that DSDP(Q) ≤ DSDP′(Q). Thus, we just need to establish the converse inequality DSDP′(Q) ≤
DSDP(Q).

To this end, let F(Q) ⊂ R2n signify the set of all feasible solutions y to DSDP(Q). We shall prove that F(Q) is
closed under the linear operator

I : R2n → R2n, (y1, . . . , yn, yn+1, . . . , y2n) 7→ (yn+1, . . . , y2n, y1, . . . , yn),

i.e., I(F(Q)) ⊂ F(Q); note that I just swaps the first and the last n entries of y. To see that this implies the assertion,
consider an optimal solution y = (yi)1≤i≤2n ∈ F(Q). Then 1

2 (y + Iy) ∈ F(Q), because F(Q) is convex. Now, let
y′ = (y′i)1≤i≤n be the projection of 1

2 (y + Iy) onto the first n coordinates. Since 1
2 (y + Iy) is a fixed point of I, we

have 1
2 (y + Iy) =

(
1
1

)
⊗ y′. Hence, the fact that 1

2 (y + Iy) is feasible for DSDP(Q) implies that y′ is feasible for
DSDP′(Q). Thus, we conclude that DSDP′(Q) ≤ 2 〈1, y′〉 = 〈1, y〉 = DSDP(Q).

To show that F(Q) is closed under I, consider a vector y ∈ F(Q). Since diag(y)−Q is positive semidefinite, we
have

∀η ∈ R2n : 〈(diag(y)−Q)η, η〉 ≥ 0. (8)

The objective is to show that diag(Iy)−Q is positive semidefinite, i.e.,

∀ξ ∈ R2n : 〈(diag(Iy)−Q)ξ, ξ〉 ≥ 0. (9)

To derive (9) from (8), we decompose y into its two halfs y =
(
u
v

)
(u, v ∈ Rn). Then Iy =

(
v
u

)
. Moreover, let

ξ =
(
α
β

)
∈ R2n be any vector, and set η = Iξ =

(
β
α

)
. We obtain

〈(diag(Iy)−Q)ξ, ξ〉 = 〈diag(v)α, α〉+ 〈diag(u)β, β〉 − 〈Qα, β〉+ 〈Qβ,α〉
2

= 〈(diag(y)−Q)η, η〉
(8)
≥0,

thereby proving (9). ut

Proof of Lemma 7. Let

DSDP′′(Q) = n · min
z∈Rn, z⊥1

λmax

[(
0 1
1 0

)
⊗Q+ diag

(
1
1

)
⊗ z
]
.
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By Lemmas 8 and 9, it suffices to prove that DSDP′(Q) = DSDP′′(Q).
To see that DSDP′′(Q) ≤ DSDP′(Q), consider an optimal solution y′ to DSDP′(Q). Let λ = n−1 〈1, y′〉 and

z = 2(λ1− y′). Then 〈z,1〉 = 2(nλ − 〈1, y′〉) = 0, whence z is a feasible solution to DSDP′′(Q). Furthermore, as
y′ is a feasible solution to DSDP′(Q), we have(

0 1
1 0

)
⊗Q = 2Q ≤ 2diag

(
1
1

)
⊗ y′ = 2λE − diag

(
1
1

)
⊗ z,

where E is the identity matrix. Hence, the matrix 2λE−
(

0 1
1 0

)
⊗Q−diag

(
1
1

)
⊗z is positive semidefinite. This implies

that all eigenvalues of
(

0 1
1 0

)
⊗Q+ diag

(
1
1

)
⊗ z are bounded by 2λ, i.e., λmax

[(
0 1
1 0

)
⊗Q+ diag

(
1
1

)
⊗ z
]
≤ 2λ.

As a consequence,

DSDP′′(Q) ≤ nλmax

[(
0 1
1 0

)
⊗Q+ diag

(
1
1

)
⊗ z
]
≤ 2nλ = 2 〈1, y′〉 = DSDP′(Q).

Conversely, consider an optimal solution z to DSDP′′(Q). Set

µ = λmax

[(
0 1
1 0

)
⊗Q+ diag

(
1
1

)
⊗ z
]

= n−1DSDP′′(Q), y′ =
1
2

(µ1− z).

Since all eigenvalues of
(

0 1
1 0

)
⊗Q+ diag

(
1
1

)
⊗ z are bounded by µ, the matrix µE −

(
0 1
1 0

)
⊗Q− diag

(
1
1

)
⊗ z

is positive semidefinite, i.e.,
(

0 1
1 0

)
⊗Q ≤ µE − diag

(
1
1

)
⊗ z. Therefore,

Q =
1
2

(
0 1
1 0

)
⊗Q ≤ 1

2

(
µE − diag

(
1
1

)
⊗ z
)

= diag
(

1
1

)
⊗ y′.

Hence, y′ is a feasible solution to DSDP′(Q). Furthermore, since z ⊥ 1 we obtain

DSDP′(Q) ≤ 2 〈1, y′〉 = µn = DSDP′′(Q),

as desired. ut

3 Quasi-Randomness: Proof of Theorem 1

3.1 From Essential Eigenvalue Separation to Low Discrepancy

We prove the first part of Theorem 1. Suppose that G = (V,E) is a graph that admits a set W ⊂ V of volume
vol(W ) ≥ (1− ε)vol(V ) such that the eigenvalues of the minor LW of the normalized Laplacian satisfy

1− ε ≤ λ2 [LW ] ≤ λmax [LW ] ≤ 1 + ε. (10)

We may assume without loss of generality that ε < 0.01. Our goal is to show that G has Disc(10
√
ε).

Let ∆ = (
√
dv)v∈W ∈ RW . Hence, ∆ is a real vector indexed by the elements of W . Moreover, let LW denote

the matrix whose vw’th entry is (dvdw)−
1
2 if v, w are adjacent, and 0 otherwise (v, w ∈W ), so that LW = E −LW .

Further, letMW = vol(V )−1∆∆T − LW . Then for all unit vectors ξ ⊥ ∆ we have

LW ξ − ξ = −LW ξ =MW ξ. (11)

Moreover, for all S ⊂W

|〈MW∆S , ∆S〉| =
∣∣∣∣vol(S)2

vol(V )
− e(S)

∣∣∣∣ . (12)

The key step of the proof is to derive the following bound on the operator norm ofMW .
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Lemma 10. We have ‖MW ‖ ≤ 10
√
ε.

If it were the case that W = V , then Lemma 10 would be immediate. For if W = V , then ∆ is an eigenvector of
L = LW with eigenvalue 0. Hence, the definitionMW = ‖∆‖−2∆∆T−E+LW ensures thatMW∆ = 0. Moreover,
for all ξ ⊥ ∆ we haveMW ξ = (LW −E)ξ, whence (10) implies that ‖MW ‖ ≤ max{|λ2 [LW ]− 1|, |λmax [LW ]−
1|} ≤ ε.

But of course generally W is a proper subset of V . In this case ∆ is not necessarily an eigenvector of LW . In fact,
the smallest eigenvalue of LW may be strictly positive. In order to prove Lemma 10 we will investigate the eigenvector
ζ of LW with the smallest eigenvalue λ1 [LW ] and show that it is “close” to ∆. Then, we will use (10) to derive the
desired bound on ‖MW ‖.
Proof of Lemma 10. Let ζ be a unit length eigenvector of LW with eigenvalue λ1 [LW ]. There is a decomposition
∆ = ‖∆‖ · (sζ + tχ), where s2 + t2 = 1 and χ ⊥ ζ is a unit vector. Since 〈LW∆,∆〉 = e(W,V \ W ) ≤
vol(V \W ) ≤ εvol(V ) and ‖∆‖2 = vol(W ) ≥ (1− ε)vol(V ) ≥ 0.99vol(V ), we have

2ε ≥ ‖∆‖−2 〈LW∆,∆〉 = s2 〈LW ζ, ζ〉+ t2 〈LWχ, χ〉 . (13)

As χ is perpendicular to the eigenvector ζ with eigenvalue λ1 [LW ], Courant-Fischer (4) and (10) yield 〈LWχ, χ〉 ≥
λ2 [LW ] ≥ 1

2 . Hence, (13) implies 2ε ≥ t2/2. Consequently,

t2 ≤ 4ε, and thus s2 ≥ 1− 4ε. (14)

Now, let ξ ⊥ ∆ be a unit vector, and decompose ξ = xζ + yη, where η ⊥ ζ is a unit vector. Because ζ =
s−1

(
∆
‖∆‖ − tχ

)
, we have x = 〈ζ, ξ〉 = s−1

〈
∆
‖∆‖ , ξ

〉
− t

s 〈χ, ξ〉 = − t
s 〈χ, ξ〉 . Hence, (14) implies x2 ≤ 5ε and

y2 ≥ 1 − 5ε. Combining these two estimates with (10) and (11), we conclude that ‖MW ξ‖ = ‖LW ξ − ξ‖ ≤
x(1− λ1 [LW ]) + y‖LW η − η‖ ≤ 3

√
ε. Hence, we have established that

sup
0 6=ξ⊥∆

‖MW ξ‖
‖ξ‖

≤ 3
√
ε. (15)

Furthermore, since ‖∆‖2 = vol(W ), (12) implies

|〈MW∆,∆〉|
‖∆‖2

=
∣∣∣∣vol(W )

vol(V )
− e(W )

vol(W )

∣∣∣∣
≤
∣∣∣∣vol(W )

vol(V )
− e(W )

vol(V )

∣∣∣∣+
∣∣∣∣ e(W )
vol(W )

− e(W )
vol(V )

∣∣∣∣
=
e(W,V \W )

vol(V )
+
e(W )(vol(V )− vol(W ))

vol(V )vol(W )

≤ e(W,V \W )
vol(V )

+
vol(V \W )

vol(V )
≤ 2vol(V \W )

vol(V )
. (16)

As we are assuming that vol(W ) ≥ (1− ε)vol(V ), we obtain ‖∆‖−2 |〈MW∆,∆〉| ≤ 2ε. Finally, combining this last
estimate with (15), we conclude that ‖MW ‖ ≤ 10

√
ε. ut

Lemma 10 easily implies that G has Disc(10
√
ε). For let R ⊂ V be arbitrary, set S = R∩W , and let T = R \W .

Since ‖∆S‖2 = vol(S) ≤ vol(V ), Lemma 10 and (12) imply that∣∣∣∣vol(S)2

vol(V )
− e(S)

∣∣∣∣ ≤ ‖MW ‖ · ‖∆S‖2 ≤ 10
√
εvol(V ). (17)

Furthermore, as vol(W ) ≥ (1− ε)vol(V ),

e(R)− e(S) ≤ e(T ) + 2e(S, T ) ≤ 2vol(T ) ≤ 2vol(V \W ) ≤ 2εvol(V ), and
vol(R)2 − vol(S)2

2vol(V )
≤ vol(T )2

2vol(V )
+

vol(S)vol(T )
vol(V )

≤ vol(V \W )2

2vol(V )
+ vol(V \W ) ≤ 2εvol(V ).

Combining these two estimates with (17), we see that
∣∣∣vol(R)2

vol(V ) − e(R)
∣∣∣ < 20

√
εvol(V ), i.e., G satisfies Disc(10

√
ε).
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3.2 From Low Discrepancy to Essential Eigenvalue Separation

In this section we establish the second part of Theorem 1. Let θ denote the constant from Theorem 5 and set γ =
10−6/θ. Assume that G = (V,E) is a graph that has Disc(γε2) for some ε < 0.001. In addition, we may assume
without loss of generality that G has no isolated vertices. Let dv denote the degree of v ∈ V , let n = |V |, and set
d̄ = vol(V )/n =

∑
v∈V dv/n. Our goal is to show that G has ess-Eig(ε). To this end, we introduce an additional

property.

Cut(δ): We say G has Cut(δ) if the matrix M = (mvw)v,w∈V with entries

mvw =
dvdw

vol(V )
− e(v, w)

has cut norm ‖M‖cut < δ · vol(V ); here e(v, w) = 1 if {v, w} ∈ E and e(v, w) = 0 otherwise.

Proposition 11. For any δ > 0 the following is true: if G satisfies Disc(0.01δ), then G satisfies Cut(δ).

Proof. Suppose that G = (V,E) has Disc(0.01δ). We shall prove below that for any two S, T ⊂ V

|〈M1S ,1T 〉| ≤ 0.03δvol(V ) if S ∩ T = ∅, (18)
|〈M1S ,1T 〉| ≤ 0.02δvol(V ) if S = T. (19)

To see that (18) and (19) imply the assertion, consider two arbitrary subsets X,Y ⊂ V . Letting Z = X ∩ Y and
combining (18) and (19), we obtain

|〈M1X ,1Y 〉| ≤
∣∣〈M1X\Z ,1Y \Z

〉∣∣+
∣∣〈M1Z ,1Y \Z

〉∣∣+
∣∣〈M1Z ,1X\Z

〉∣∣+ 2 |〈M1Z ,1Z〉|
≤ δvol(V ).

Since this bound holds for any X,Y , we conclude that ‖M‖cut ≤ δvol(V ).
To prove (18), we note that Disc(0.01δ) implies for disjoint sets S and T∣∣∣∣e(S)− vol(S)2

vol(V )

∣∣∣∣ ≤ 0.02δvol(V ),
∣∣∣∣e(T )− vol(T )2

vol(V )

∣∣∣∣ ≤ 0.02δvol(V ), (20)∣∣∣∣e(S ∪ T )− (vol(S) + vol(T ))2

vol(V )

∣∣∣∣ ≤ 0.02δvol(V ). (21)

If S and T are disjoint, (20)–(21) yield

| 〈M1S ,1T 〉 | =
∣∣∣∣e(S, T )− vol(S)vol(T )

vol(V )

∣∣∣∣
=

1
2

∣∣∣∣e(S ∪ T )− e(S)− e(T )− (vol(S) + vol(T ))2 − vol(S)2 − vol(T )2

vol(V )

∣∣∣∣
≤ 1

2

∣∣∣∣e(S)− vol(S)2

vol(V )

∣∣∣∣+
1
2

∣∣∣∣e(T )− vol(T )2

vol(V )

∣∣∣∣+
1
2

∣∣∣∣e(S ∪ T )− (vol(S) + vol(T ))2

vol(V )

∣∣∣∣
≤ 0.03δvol(V ),

whence (18) follows. Finally, as | 〈M1S ,1S〉 | =
∣∣∣e(S)− vol(S)2

vol(V )

∣∣∣, (19) follows from (20). ut

Let D = diag(dv)v∈V be the matrix with the vertex degrees on the diagonal. LetM = D−
1
2MD−

1
2 . Then the

vw’th the entry ofM is
√
dvdw

vol(V ) − (dvdw)−1/2 if v, w are adjacent, and
√
dvdw

vol(V ) otherwise. Establishing the following
lemma is the key step.

Lemma 12. Suppose that SDP(M) < ε2vol(V )/64. Then there exists a subset W ⊂ V of volume vol(W ) ≥
(1− ε) · vol(V ) such that ‖MW ‖ < ε.
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Proof. Recall that d̄ = vol(V )/n. Lemma 7 implies that there is a vector 1 ⊥ z ∈ RV such that

λmax

[(
0 1
1 0

)
⊗M − diag

(
z

z

)]
= SDP(M)/n < ε2d̄/64. (22)

Basically W is going to be the set of all v such that |zv| is small (and such that dv is not too small). On the minor
induced onW×W the diagonal matrix diag

(
z
z

)
has little effect, and thus (22) will imply the desired bound on ‖MW ‖.

To carry out the details we need to define W precisely, bound ‖MW ‖, and prove that vol(W ) ≥ (1− ε)vol(V ).
Let y = D−1z and U = {v ∈ V : dv > εd̄/8}. Let y′ = (yv)v∈U and z′ = (zv)v∈U . Since all entries of the

restricted diagonal matrix DU exceed εd̄/8, we have

λmax

[(
0 1
1 0

)
⊗MU − diag

(
y′

y′

)]
=λmax

[(
1 0
0 1

)
⊗D−

1
2

U ·
[(

0 1
1 0

)
⊗MU − diag

(
z′

z′

)]
·
(

1 0
0 1

)
⊗D−

1
2

U

]
≤ 8

(
εd̄
)−1

λmax

[(
0 1
1 0

)
⊗MU − diag

(
z′

z′

)]
≤ 8(εd̄)−1λmax

[(
0 1
1 0

)
⊗M − diag

(
z

z

)]
(22)
< ε/8. (23)

Let W = {v ∈ U : |yv| < ε/8} and let y′′ = (yv)v∈W . Then ‖diag
(
y′′

y′′

)
‖ < ε/8, because the norm of a diagonal

matrix equals the largest absolute value of an entry on the diagonal. Therefore, (23) yields

λmax

[(
0 1
1 0

)
⊗MW

]
≤ λmax

[(
0 1
1 0

)
⊗MW − diag

(
y′′

y′′

)]
+
∥∥∥∥diag

(
y′′

y′′

)∥∥∥∥
≤ λmax

[(
0 1
1 0

)
⊗MU − diag

(
y′

y′

)]
+
∥∥∥∥diag

(
y′′

y′′

)∥∥∥∥ ≤ ε/4. (24)

Further, (24) implies that ‖MW ‖ < ε. To see this, consider a pair ξ, η ∈ RW of unit vectors. Then (24) and Courant-
Fischer (4) yield

ε/2 ≥ 2λmax

[(
0 1
1 0

)
⊗MW

]
≥
〈(

0 1
1 0

)
⊗MW ·

(
ξ

η

)
,

(
ξ

η

)〉
=
〈(
MW η

MW ξ

)
,

(
ξ

η

)〉
= 〈MW η, ξ〉+ 〈MW ξ, η〉 = 2 〈MW ξ, η〉 [asMW is symmetric].

Since this holds for any pair ξ, η, we conclude that ‖MW ‖ ≤ ε/4 < ε.
Finally, we need to show that vol(W ) is large. To this end, we consider the set S = {v ∈ V : zv < 0}. Since

vol(V ) = d̄n ≥ d̄|S|, we have

ε2vol(V )
32

≥ ε2d̄|S|
32

=
ε2d̄

64
·
∥∥∥∥(1S

1S

)∥∥∥∥2

≥ λmax

[(
0 1
1 0

)
⊗M − diag

(
z

z

)]
·
∥∥∥∥(1S

1S

)∥∥∥∥2

[due to (22)]

≥
〈[(

0 1
1 0

)
⊗M − diag

(
z

z

)]
·
(
1S
1S

)
,

(
1S
1S

)〉
[by Courant-Fischer (4)]

= 2 〈M1S ,1S〉 − 2
∑
v∈S

zv. (25)

Further, Theorem 5 implies | 〈M1S ,1S〉 | ≤ ‖M‖cut ≤ SDP(M) ≤ ε2vol(V )/64. Inserting this into (25) and
recalling that zv < 0 for all v ∈ S, we conclude that

∑
v∈S |zv| ≤ ε2vol(V )/16. Since z ⊥ 1, this actually implies∑

v∈V |zv| ≤ ε2vol(V )/8. As z = Dy and |yv| > ε/8 for all v ∈ V \W , we obtain

εvol(V \W )/8 ≤
∑

v∈V \W

dv|yv| =
∑

v∈V \W

|zv| ≤ ε2vol(V )/8.

Hence, vol(V \W ) ≤ εvol(V ), which implies vol(W ) ≥ (1− ε)vol(V ). ut
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Finally, we show how it implies that G has ess-Eig(ε). Assume that G has Disc(γε2). By Proposition 11 this
implies that G satisfies Cut(100γε2). Hence, Theorem 5 shows SDP(M) ≤ βε2vol(V ) for some 0 < β ≤ 100θγ.
Thus, by Lemma 12 and our choice of γ there is a set W such that vol(W ) ≥ (1− ε/10)vol(V ) and ‖MW ‖ < ε/10.
Furthermore, MW relates to the minor LW of the Laplacian as follows. Let LW = E − LW be the matrix whose
vw’th entry is (dvdw)−1/2 if v, w ∈ W are adjacent, and 0 otherwise. Moreover, let ∆ = (

√
dv)v∈W ∈ RW . Then

MW = vol(V )−1∆∆T − LW . Therefore, for all unit vectors ξ ⊥ ∆ we have

|〈LW ξ, ξ〉 − 1| = |〈LW ξ, ξ〉| = |〈MW ξ, ξ〉| ≤ ‖MW ‖ < ε/10. (26)

Combining (26) with the Courant-Fischer (4), we obtain

λ2 [LW ] = max
0 6=ζ∈RW

min
ξ⊥ζ, ‖ξ‖=1

〈LW ξ, ξ〉 ≥ min
ξ⊥∆, ‖ξ‖=1

〈LW ξ, ξ〉 ≥ 1− ε. (27)

To bound λmax [LW ] as well, we need to compute ‖LW∆‖2. To this end, recall that the row of LW corresponding to a
vertex v ∈ V contains a one at position v. For w 6= v the entry is−(dvdw)−

1
2 if v and w are adjacent, and 0 otherwise.

Hence, the v-entry of the vector LW∆ equals

∆v −
∑

w∈W :{v,w}∈E

∆w√
dvdw

=
√
dv −

e(v,W )√
dv

=
dv − e(v,W )√

dv
.

Since ‖∆‖2 =
∑
v∈W dv = vol(W ) ≥ (1− ε/10)vol(V ), we obtain

‖LW∆‖2

‖∆‖2
=
∑
v∈W

(e(v,W )− dv)2

dv · vol(W )

≤ 1
1− ε/10

∑
v∈W

dv − e(v,W )
vol(V )

≤ 2vol(V \W )
vol(V )

< ε/5. (28)

Further, decomposing any unit vector η ∈ RW as η = α‖∆‖−1∆ + βξ with a unit vector ξ ⊥ ∆ and α2 + β2 = 1,
we get

〈LW η, η〉 =
〈
LW

(
α‖∆‖−1∆+ βξ

)
, α‖∆‖−1∆+ βξ

〉
=

α2

‖∆‖2
· 〈LW∆,∆〉+

αβ

‖∆‖
· 〈LW∆, ξ〉+

αβ

‖∆‖
· 〈LW ξ,∆〉+ β2 〈LW ξ, ξ〉

=
α2

‖∆‖2
· 〈LW∆,∆〉+

2αβ
‖∆‖

· 〈LW∆, ξ〉+ β2 〈LW ξ, ξ〉 ,

where the last step follows from the fact that LW is symmetric. Hence, using (26) and (28), we get

〈LW η, η〉 ≤
α2

‖∆‖2
· ‖LW∆‖ · ‖∆‖+

2αβ
‖∆‖

· ‖LW∆‖ · ‖ξ‖+ β2 〈LW ξ, ξ〉

≤ α2
√
ε/5 + 2αβ

√
ε/5 + β2(1 + | 〈Lξ, ξ〉 − 1|)

≤
√
ε/5(α2 + 2αβ) + β2(1 + ε/10)

≤ 3
√
ε/5 · |α|+ (1− α2)(1 + ε/10).

Differentiating the last expression, we find that the maximum is attained at α = 3
2

√
ε/5/(1 + ε/10). Plugging this

value in, we obtain 〈LW η, η〉 ≤ 1 + ε. Hence, by Courant-Fischer (4), λmax [LW ] = max‖η‖=1 〈LW η, η〉 ≤ 1 + ε.
Thus, (27) shows that G has ess-Eig(ε).
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4 The Algorithmic Regularity Lemma: Proof of Theorem 2

In this section we establish Theorem 2. The proof is conceptually similar to Szemerédi’s original proof of the “dense”
regularity lemma [23] and its adaptation for sparse graphs due to Kohayakawa [21] and Rödl (unpublished). A new
aspect here is that we deal with a different (more general) notion of regularity; this requires various technical modifica-
tions of the previous arguments. More importantly, we present an algorithm for actually computing a regular partition
of a sparse graph efficiently.

In order to find a regular partition efficiently, we crucially need an algorithm to check for a given weight distribution
D = (Dv)v∈V , a given graph G, and a pair (A,B) of vertex sets whether (A,B) is (ε,D)-regular. While [3] features
a (purely combinatorial) algorithm for this problem in dense graphs, this approach does not work in the sparse case. In
Section 4.1 we present an algorithm Witness that does. It is based on Grothendieck’s inequality and the semidefinite
relaxation of the cut norm (see Theorem 6). Then, in Section 4.2 we will show how Witness can be used to compute
a regular partition to establish Theorem 2.

Throughout this section, we let 0 < ε < 10−7 be an arbitrarily small but fixed number, and C ≥ 1 signifies an
arbitrarily large but fixed number. In addition, we define a sequence (tk)k≥1 by

t1 = d1/ε2e and tk+1 = d22002C2t6k2tk/ε4(k+1)e. (29)

Note that due to that choice we have
tk+1 ≥ 2200Ct2.5k . (30)

Further, let

k∗ = d106C2ε−3e and η = min
{

ε8k∗

128002t6k∗C
4
,

1
t2k∗

}
(31)

and choose n0 = n0(C, ε) > 0 big enough. We let G = (V,E) be a graph on n = |V | > n0 vertices, and let
D = (Dv)v∈V be a sequence of rationals with 1 ≤ Dv ≤ n for all v ∈ V . We will always assume that G is
(C, η,D)-bounded, and that D(V ) ≥ η−1n.

4.1 The Procedure Witness

The subroutine Witness is given a graph G, a weight distribution D, vertex sets A, B, and a number ε > 0.
Witness either outputs “yes”, in which case (A,B) is (ε,D)-regular in G, or “no”. In the latter case the algorithm
also produces a “witness of irregularity”, i.e., a pair of sets X∗ ⊂ A, Y ∗ ⊂ B for which the regularity condition (2) is
violated with ε replaced by ε/200. Witness employs the algorithm ApxCutNorm from Theorem 6.

Algorithm 13. Witness(G,D, A,B, ε)

1. Set up the matrix M = (mvw)(v,w)∈A×B with entries

mvw =


1− %(A,B)DvDw if v, w are adjacent in G,
−%(A,B)DvDw otherwise.

Call ApxCutNorm(M) to compute sets X ⊂ A, Y ⊂ B such that | 〈M1X ,1Y 〉 | ≥ 3
100
‖M‖cut.

2. If | 〈M1X ,1Y 〉 | < 3ε
100

D(A)D(B)
D(V )

, then return “yes”.
3. If not, let X ′ = A \X.

– If D(X) ≥ 3ε
100

D(A), then let X∗ = X.
– If D(X) < 3ε

100
D(A) and |e(X ′, Y )− %(A,B)D(X ′)D(Y )| > εD(A)D(B)

100D(V )
, set X∗ = X ′.

– Otherwise, set X∗ = X ∪X ′.

4. Let Y ′ = B \ Y .

– If D(Y ) ≥ ε
200

D(B), then let Y ∗ = Y .
– If D(Y ) < ε

200
D(B) and |e(X∗, Y ′)− %(A,B)D(X∗)D(Y ′)| > εD(A)D(B)

200D(V )
, let Y ∗ = Y ′.

– Otherwise, set Y ∗ = Y ∪ Y ′.

5. Answer “no” and output (X∗, Y ∗) as an (ε/200,D)-witness.
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Lemma 14. Suppose that A,B ⊂ V are disjoint.

1. If Witness(G,D, A,B, ε) answers “yes”, then the pair (A,B) is (ε,D)-regular.
2. If the answer is “no”, then (A,B) is not (ε/200,D)-regular. In this case Witness outputs an (ε/200,D)-

witness, i.e., a pair (X∗, Y ∗) of subsets X∗ ⊂ A, Y ∗ ⊂ B such that D(X∗) ≥ ε
200D(A), D(Y ∗) ≥ ε

200D(B),
and

|e(X∗, Y ∗)− %(A,B)D(X∗)D(Y ∗)| > ε

200
· D(A)D(B)

D(V )
.

Moreover, there exist a function f and a polynomialΠ such that the running time of Witness is bounded by f(C, ε) ·
Π(〈D〉).

Proof. Note that for any two subsets S ⊂ A and T ⊂ B we have

〈M1S ,1T 〉 = e(S, T )− %(A,B)D(S)D(T ).

Therefore, if the sets X ⊂ A and Y ⊂ B computed by ApxCutNorm are such that

| 〈M1X ,1Y 〉 | <
3ε
100

D(A)D(B)
D(V )

then by Theorem 6 we have

|e(S, T )− %(A,B)D(S)D(T )| ≤ ‖M‖cut ≤
100
3
|〈M1X ,1Y 〉| < ε

D(A)D(B)
D(V )

for all S ⊂ A and T ⊂ B. Thus, if Witness answers “yes” then the pair (A,B) is (ε,D)-regular.
One the other hand, if ApxCutNorm yields sets X , Y such that 〈M1X ,1Y 〉 ≥ 3ε

100
D(A)D(B)
D(V ) then Witness has

to guarantee that the output pair (X∗, Y ∗) is an (ε/200,D)-witness.
Indeed, if D(X) ≥ 3ε

100D(A) and D(Y ) ≥ ε
200D(B) then (X,Y ) actually is an (ε/200,D)-witness. However, as

ApxCutNorm does not guarantee any lower bound on D(X) and D(Y ) let assume first that D(X) < 3ε
100D(A) and

D(Y ) ≥ ε
200D(B). Then Step 3 of Witness sets X ′ = A \X . We have D(X ′) ≥ 3

100D(A). If X ′ itself satisfies
|e(X ′, Y )− %(A,B)D(X ′)D(Y )| > εD(A)D(B)

100D(V ) then (X ′, Y ) obviously is an (ε/200,D)-witness. Otherwise, by
the triangle inequality, we deduce∣∣∣∣e(X ∪X ′, Y )− e(A,B)

D(X ∪X ′)D(Y )
D(A)D(B)

∣∣∣∣ ≥ 2ε
100

D(A)D(B)
D(V )

and thus, (X ∪X ′, Y ) is an (ε/200,D)-witness.
In the case D(X) < 3ε

100D(A) and D(Y ) < ε
200D(B) we simply repeat the argument for Y , and hence Witness

outputs an (ε/200,D)-witness for (A,B).
The running time of Witness is dominated by Step 1, i.e., the execution of ApxCutNorm. By Theorem 6 the

running time of ApxCutNorm is polynomial in the encoding length of the input matrix. Moreover, the construction of
M in Step 1 shows that its encoding length is of the form f(C, ε) ·Π(〈D〉) for a certain function f and a polynomial
Π , as claimed. ut

4.2 The Algorithm Regularize

In order to compute the desired regular partition of the input graph G, the algorithm Regularize starts with an
arbitrary initial partition P1 = {V 1

i : 0 ≤ i ≤ s1} such that each class V 1
i (1 ≤ i ≤ s1) has a “decent” weightD(V 1

i ).
In the subsequent steps, Regularize computes a sequence (Pk) of partitions such that Pk+1 is a “more regular”
refinement of Pk (k ≥ 1). The algorithm halts as soon as it can verify that Pk satisfies both REG1 and REG2 of
Theorem 2. To this end Regularize applies the subroutine Witness to each pair (V ki , V

k
j ) of the current partition

14



Pk. By Lemma 14 this yields a set Lk of pairs (i, j) such that all (V ki , V
k
j ) with (i, j) 6∈ Lk are (ε,D)-regular. Hence,

Pk satisfies REG2 as soon as ∑
(i,j)∈Lk

D(V ki )D(V kj ) < εD(V )2. (32)

In this case the algorithm Regularize stops and outputs Pk. As we will see, all partitions Pk satisfy REG1 by
construction. Consequently, once (32) holds, Regularize has obtained the desired regular partition.

Algorithm 15. Regularize(G,C,D, ε)

1. Fix an arbitrary partition P1 = {V 1
i : 0 ≤ i ≤ s1} for some s1 ≤ t1 with the property

– D(V )/t1 −maxv∈V Dv < D(V 1
i ) ≤ D(V )/t1 for all 1 ≤ i ≤ s1 and

– D(V \ (
S
i∈[s1] V

1
i )) ≤ D(V )/t1.

Set V 1
0 = V \

S
i∈[s1] V

1
i and set k∗ = d10002C2ε−3e.

2. For k = 1, 2, 3, . . . , k∗ do
3. Initially, let Lk = ∅.

For each pair (V ki , V
k
j ) (i < j) of classes of partition Pk

4. call the procedure Witness(G,D, V ki , V
k
j , ε).

If it answers “no” and hence outputs an (ε/200,D)-witness (Xk
ij , X

k
ji) for (V ki , V

k
j ),

then add (i, j) to Lk.
5. If

P
(i,j)∈Lk D(V ki )D(V kj ) < ε(D(V ))2, then output the partition Pk and halt.

6. Else construct a refinement Pk+1 of Pk as follows:

– First construct the unique minimal partition Ck of V \V k0 , which refines {Xk
ij , Vi\Xk

ij}
for every i = 1, . . . , sk and every j 6= i. More precisely, we define the equivalence
relation ≡ki on Vi by letting u ≡ki v iff for all j such that (i, j) ∈ Lk it is true that
u ∈ Xk

ij ⇔ v ∈ Xk
ij and we let Ck be the set of all equivalence classes of the

relations ≡ki (1 ≤ i ≤ sk).
– Set αk = ε4(k+1)/(22002C2t6k2tk ) and split each vertex class of Ck into blocks

with weight between αkD(V ) and αkD(V ) + maxv∈V Dv and possibly one excep-
tional block of smaller weight. More preceisely, we construct a refinement Ck∗ =
{V k+1

0,1 , . . . , V k+1
0,rk

, V k+1
1 , . . . , V k+1

sk+1} of Ck such that:
• rk ≤ |Ck| ≤ sk2sk ,
• D(V k+1

0,q ) < αkD(V ) for all q ∈ [rk], and
• αkD(V ) ≤ D(V k+1

i ) < αkD(V ) + maxv∈V Dv for all i ∈ [sk+1].
– Let V k+1

0 = V k0 ∪
S
q∈[rk] V

k+1
0,q and set Pk+1 = {V k+1

i : 0 ≤ i ≤ sk+1}.

Step 6 is the central step of the algorithm. In the first part of that step we construct a joint refinement of the previous
partition Pk and all the witnesses of irregularity (Xk

ij , X
k
ji) discovered in Step 4. Similarly as in the original proof of

Szemerédi’s it will turn out that a bounded parameter (the so-called index defined below) of the partition Ck increases
by Ω(ε3) compared to Pk. Since Pk consists of sk classes and for every i = 1, . . . , sk there are at most sk−1 witness
sets Xij (j 6= i), the refinement Ck contains at most sk2sk−1 < sk2sk vertex classes. In the second part of Step 6 we
split the classes of Ck into pieces of almost equal weight. Here for each class of Ck we may get one class of left-over
vertices V k0,q of smaller weight, which together with V k0 form the new exceptional class V k+1

0 . Due to the construction
in Step 6, the bound s1 ≤ t1, and (29) for any k ≥ 0 the partition Pk+1 consist of at most

sk+1 + 1 ≤ d22002C2t6k2tk/ε4(k+1)e = tk+1

classes. Moreover, our choice (31) of η and the construction in Step 1 ensure that

ε2D(V ) ≥ D(V k+1
i ) ≥ √ηD(V ) for all 1 ≤ i ≤ sk+1 (33)
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for every k < k∗ (since in Step 6 we put all vertex classes of “extremely small” weight into the exceptional class).
Furthermore, due to ri ≤ si2si , si ≤ ti, and ε < 1/2 we have

D(V k+1
0 ) ≤ D(V 1

0 ) +
k+1∑
i=2

ri
ε4(i+1)

22002C2t6k2tk
D(V ) ≤ D(V )

t1
+D(V )

k+1∑
i=2

ε2i ≤ ε2

1− ε2
D(V ) ≤ εD(V ) .

In effect, Pk+1 always satisfies REG1, as REG1(c) is ensured by Step 6.
Thus, to complete the proof of Theorem 2 it just remains to show that Step 5 of Regularize will actually output

a partition Pk for some k ≤ k∗. More precisely, we have to show that for every input graph G there exists a k ≤ k∗

such that
∑

(i,j)∈Lk D(V ki )D(V kj ) < ε(D(V ))2. To show this, we use, as in the original proof of Szemerédi [23],
the concept of the index of a partition P = {Vi : 0 ≤ i ≤ s} and define

ind(P) =
∑

1≤i<j≤s

%(Vi, Vj)2D(Vi)D(Vj) =
∑

1≤i<j≤s

e(Vi, Vj)2

D(Vi)D(Vj)
.

Note that we do not take into account the (exceptional) class V0 here. Using the boundedness-condition, we derive the
following.

Proposition 16. If G = (V,E) is a (C, η,D)-bounded graph and P = {Vi : 0 ≤ 1 ≤ t} is a partition of V with
D(Vi) ≥ ηD(V ) for all i ∈ {1, . . . , t}, then 0 ≤ ind(P) ≤ C2.

Proof. Since D(Vi) ≥ ηD(V ) for all i ∈ {1, . . . , t} it follows from the (C, η,D)-boundedness of G that

ind(P) =
∑

1≤i<j≤s

e(Vi, Vj)2

D(Vi)D(Vj)
≤

∑
1≤i<j≤s

Ce(Vi, Vj)
D(V )

≤ C e(V, V )
D(V )

≤ C2.

ut

Proposition 16 and (33) imply that ind(Pk) ≤ C2 for all k. In addition, since Regularize obtains Pk+1

by refining Pk according to the witnesses of irregularity computed by Witness, the index of Pk+1 is actually
considerably larger than the index of Pk. More precisely, the following is true.

Lemma 17. If
∑

(i,j)∈Lk D(V ki )D(V kj ) ≥ ε(D(V ))2, then ind(Pk+1) ≥ ind(Pk) + ε3/8.

The proof of Lemma 17 is deferred to the next section, Section 4.3.
We close this section by pointing out that Propositions 16 and Lemma 17 readily imply that Regularize will

terminate and output a feasible partition Pk for some k ≤ k∗. Moreover, the dominant contribution to the running time
of Regularize stems from the execution of the subroutine Witness, which gets called at most O(k∗t2k∗) times.
By Lemma 14 each execution takes time f(C, ε) ·Π(〈D〉) for a certain function f and a polynomial Π . Hence, the
total running time of Regularize is bounded by f∗(C, ε) ·Π(〈D〉), where f∗(C, ε) = O(k∗t2k∗) · f(C, ε).

4.3 Proof of Lemma 17

As mentioned before, the proof of Lemma 17 follows the lines of the original proof of Szemerédi [23] with the main
differences resulting from the somewhat different concept of regularity. We will use the following defect-form of the
Cauchy-Schwarz-Lemma.

Lemma 18 (Defect form of Cauchy-Schwarz-inequality). For all i ∈ I let σi, di be positive real numbers satisfying∑
i∈I σi = 1. Furthermore let J ⊂ I , % =

∑
i∈I σi%i and σJ =

∑
j∈J σj . If

∑
j∈J σj%j = σJ(% + ν) then∑

i∈I σi%
2
i ≥ %2 + ν2σJ .

Further, we will need the following technical proposition. Its proof is straightforward and we omit it here.
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Proposition 19. Let 1/5 > δ > 0, η > 0, C ≥ 1, and D = (Dv)v∈V be a sequence of rationals with 1 ≤ Dv ≤ n for
all v ∈ V . LetG = (V,E) be a (C, η,D)-bounded graph andA,B ⊂ V be disjoint subsets of V withD(A), D(B) ≥√
ηD(V ). If A′ ⊂ A and B′ ⊂ B satisfy D(A \A′) < δD(A) and D(B \B′) < δD(B), then∣∣∣∣ e(A,B)

D(A)D(B)
− e(A′, B′)
D(A′)D(B′)

∣∣∣∣ ≤ (7δ + 4
√
η)C

D(V )∣∣∣∣ e2(A,B)
D(A)D(B)

− e2(A′, B′)
D(A′)D(B′)

∣∣∣∣ ≤ (21δ + 9
√
η)C2.

For two partitions P ′ = {V ′j : 0 ≤ j ≤ s} and P = {Vi : 0 ≤ i ≤ t} we say P ′ almost refines P , if for every
j ∈ [s] there exists an i ∈ [t] such that V ′j ⊂ Vi . Note that an almost refinement may not be a refinement, since V ′0
could be a proper superset of V0.

Proposition 20. Let P ′ = {V ′j : 0 ≤ j ≤ s} and P = {Vi : 0 ≤ i ≤ t} be two partitions of V . If P ′ almost refines
P , then ind(P ′) ≥ ind(P).

Proof. For Vi ∈ P , i ∈ [t] let Ii = {j : V ′j ∈ P ′, V ′j ⊂ Vi}. Then, using the Cauchy-Schwarz-inequality, we conclude

ind(P ′) =
∑

1≤i<j≤s

e2(V ′i , V
′
j )

D(V ′i )D(V ′j )
≥

∑
1≤k<l≤t

∑
i∈Ik
j∈Il

e2(V ′i , V
′
j )

D(V ′i )D(V ′j )

≥
∑

1≤k<l≤t

(∑
i∈Ik,j∈Il e(V

′
i , V

′
j )
)2

∑
i∈Ik,j∈Il D(V ′i )D(V ′j )

=
∑

1≤k<l≤t

e2(Vk, Vl)
D(Vk)D(Vl)

= ind(P).

ut

Proof of Lemma 17. Remember our assumption that ε < 10−7. Let K ⊂ V be the union of the equivalence classes
with negligible weight; more precisely, in view of Step 6 we set

K =
⋃

q∈[rk]

V k+1
0,q .

Note that due to rk ≤ sk2sk and sk ≤ tk we have

D(K) ≤ rk
ε4(k+1)

22002C2t6k2tk
D(V ) ≤ ε4(k+1)

22002C2t5k
D(V ) . (34)

Now let P ′ = {V ′i : 0 ≤ i ≤ sk} be the partition given by

V ′i =

{
V k0 ∪K if i = 0,
V ki \K otherwise.

To show the index increment ind(Pk+1) ≥ ind(Pk) + ε3/10002 we will proceed in two steps. In the first step we
will compare the index of P ′ to the index of Pk.

Claim 1 |ind(Pk)− ind(P ′)| ≤ ε4.

The second step will reveal the index increment of Pk+1 compared to P ′.

Claim 2 ind(Pk+1) ≥ ind(P ′) + ε3/8002.
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As ε < 10−7, this yields an index increment ind(Pk+1) ≥ ind(Pk) + ε3/10002. ut

Proof of Claim 1. Let (V ki , V
k
j ) be a pair of partition classes of Pk and let V ′i = V ki \K and V ′j = V kj \K. Note that

due to D(V ki ) ≥ ε4kD(V )/t3k and (34) we have

D(V ′i ) ≥ D(V ki )−D(K) ≥ (1− ε4

42C2t2k
)D(V ki )

Analogously D(V ′j ) ≥
(
1− ε4/(42C2t2k)

)
D(V kj ) holds. In effect, using Proposition 19 we get∣∣∣∣∣ e2(V ′i , V

′
j )

D(V ′i )D(V ′j )
−

e2(V ki , V
k
j )

D(V ki )D(V kj )

∣∣∣∣∣ ≤ ε4

2t2k
+ 9
√
ηC2

(31)
≤ ε4

t2k
.

Consequently

|ind(Pk)− ind(P ′)| ≤
∑

1≤i<j≤sk

∣∣∣∣∣ e2(V ki , V
k
j )

D(V ki )D(V kj )
−

e2(V ′i , V
′
j )

D(V ′i )D(V ′j )

∣∣∣∣∣ ≤ ε4.

ut
Proof of Claim 2. Let (V ki , V

k
j ) be an irregular pair and (A,B) = (V ki \K,V kj \K). Furthermore let (Xk

ij , X
k
ji) be

an (ε/200,D)-witness. Then, for X = Xk
ij \K ⊂ A and Y = Xk

ji \K ⊂ B, we have due to Proposition 19

∣∣∣∣ e(X,Y )
D(X)D(Y )

− e(A,B)
D(A)D(B)

∣∣∣∣ ≥ ε

200
D(A)D(B)

D(Xk
ij)D(Xk

ji)D(V )
−

7ε2

22002 + 7·200ε
22002 + 8

√
ηC

D(V )

≥ ε

400
D(A)D(B)

D(X)D(Y )D(V )
− ε

1600D(V )
− ε

1600D(V )

≥ ε

800
D(A)D(B)

D(X)D(Y )D(V )
. (35)

Thus, (X,Y ) ‘witnesses’ that (A,B) is not (ε/800,D)-regular.
Now we will use Lemma 18 to prove ind(Pk+1) ≥ ind(P ′) + ε3/4. So let I = A×B and for all (u, v) ∈ I let

σuv =
DuDv

D(A)D(B)
and %uv = %(V k+1(u), V k+1(v))

where V k+1(x) denote the partition class V k+1
i ∈ Pk+1 such that x ∈ V k+1

i . Then

∑
(u,v)∈I

σuv = 1 and
∑

(u,v)∈I

σuv%uv =
∑

(u,v)∈I

DuDv

D(A)D(B)
e(V k+1(u), V k+1(v))

D(V k+1(u))D(V k+1(v))
= %(A,B).

Moreover, let J = X × Y and σJ =
∑

(u,v)∈J σuv = D(X)D(Y )
D(A)D(B) . Then we have

1
σJ

∑
(u,v)∈J

σuv%uv =
D(A)D(B)
D(X)D(Y )

∑
V k+1
i ⊂X
V k+1
j ⊂Y

∑
u∈V k+1

i

v∈V k+1
j

DuDv

D(A)D(B)
%(V k+1

i , V k+1
j )

=
e(X,Y )

D(X)D(Y )
= %(X,Y ) = %(A,B) + ν

for some |ν| ≥ εD(A)D(B)/(800D(X)D(Y )D(V )) due to (35).
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Hence, from the Cauchy-Schwarz-inequality (Lemma 18) we deduce

1
D(A)D(B)

∑
V k+1
i ⊂A
V k+1
j ⊂B

%2(V k+1
i , V k+1

j )D(V k+1
i )D(V k+1

j )

=
∑
u,v∈I

DuDv

D(A)D(B)
%2(V k+1(u), V k+1(v)) =

∑
(u,v)∈I

σuv%
2
uv

≥ %2(A,B) +
(

εD(A)D(B)
800D(X)D(Y )D(V )

)2
D(X)D(Y )
D(A)D(B)

≥ 1
D(A)D(B)

(
%2(A,B)D(A)D(B) +

ε2D(A)D(B)
8002D2(V )

)
.

From the last inequality we infer the amount of the index increment on the irregular pair (A,B). So, in view of
Proposition 20, after summing over all pairs we get

ind(Pk+1)− ind(P ′) ≥
∑

(i,j)∈Lk

ε2

8002

D(A)D(B)
D2(V )

≥ ε3

8002
.

ut

5 An Application: MAX CUT

As an application of Theorem 2 and, in particular, the polynomial time algorithm Regularize for computing a
regular partition, we obtain the following algorithm for approximating the maximum cut of a graph G = (V,E) that
satisfies the assumptions of Theorem 3.

Algorithm 21. ApxMaxCut(G,C,D, δ)
Input: A (C, η,D)-bounded graph G = (V,E) and δ > 0.
Output: A cut (S, S̄) of G.

1. Use Regularize to compute ε = δ
400C

-regular partition P = {Vi : 0 ≤ i ≤ t} of G.
2. Determine an optimal solution (c∗1, . . . , c

∗
t ) to the optimization problem

max
X
i6=j

εci(1− εcj)e(Vi, Vj) s.t. ∀1 ≤ j ≤ t : 0 ≤ cj ≤ ε−1, cj ∈ Z.

3. For each 1 ≤ i ≤ t let Si ⊂ Vi be a subset such that |D(Si) − c∗i εD(Vi)| ≤ 2εD(Vi). Output
S =

St
i=1 Si and S̄ = V \ S.

The basic insight behind ApxMaxCut is the following. If (Vi, Vj) is an (ε,D)-regular pair of P , then for any
subsets X,X ′ ⊂ Vi and Y, Y ′ ⊂ Vj such that D(X) = D(X ′) and D(Y ) = D(Y ′) the condition REG2 ensures that
|e(X,Y )− e(X ′, Y ′)| ≤ 2εD(Vi)D(Vj)

D(V ) . That is, the difference between e(X,Y ) and e(X ′, Y ′) is negligible. In other
words, as far as the number of edges is concerned, subsets that have the same weight are “interchangeable”.

Therefore, to compute a good cut (S, S̄) ofG we just have to optimize the proportion of weight of each Vi that is to
be put into S or into S̄, but it does not matter which subset of Vi of this weight we choose. However, determining the
optimal fraction of weight is still a somewhat involved (essential continuous) optimization problem. Hence, in order to
discretize this problem, we chop each Vi into at most ε−1 chunks of weight εD(Vi). Then, we just have to determine
the number ci of chunks of each Vi that we join to S. This is exactly the optimization problem detailed in Step 2 of
ApxMaxCut.

Observe that the time required to solve this problem is independent of n, i.e., Step 2 has a constant running time.
For the number t of classes of P is bounded by a number independent of n, and the number dε−1e + 1 of choices
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for each ci does not depend on n either. In addition, Step 3 can be implemented so that it runs in linear time, because
Si ⊂ Vi can be any subset that satisfies the condition stated in Step 3. Thus, the total running time of ApxMaxCut is
polynomial.

To prove that ApxMaxCut does indeed guarantee an approximation within an additive δD(V ), we compare the
maximum cut of G with the optimal solution µ∗ of the optimization problem from Step 2, i.e.,

µ∗ = max
∑
i,j

εci(1− εcj)e(Vi, Vj) s.t. ∀1 ≤ j ≤ t : 0 ≤ cj ≤ ε−1, cj ∈ Z. (36)

To this end, we say that a cut (T, T̄ ) of G is compatible with a feasible solution (c1, . . . , ct) to the optimization
problem (36) if |D(T ∩ Vi)− ciεD(Vi)| ≤ 2εD(Vi).

Lemma 22. Suppose that (T, T̄ ) is compatible with the feasible solution (c1, . . . , ct) of (36). Moreover, let

µ =
∑
i,j

εci(1− εcj)e(Vi, Vj)

be the objective function value corresponding to (c1, . . . , ct). Then |e(T, T̄ )− µ| ≤ δ
8D(V ).

Proof. Set Ti = T ∩ Vi and T̄i = Vi \ Ti, so that e(T, T̄ ) =
∑
i 6=j e(Ti, T̄j) +

∑t
i=0 e(Ti, T̄i), and let µij =

εci(1 − εcj)e(Vi, Vj) (1 ≤ i, j ≤ t). Moreover, let L be the set of all pairs (i, j) such that the pair (Vi, Vj) is not
(ε,D)-regular. Then REG 2 and the (C, η,D)-boundedness of G imply that∑

(i,j)∈L

µij ≤
∑

(i,j)∈L

e(Vi, Vj) ≤
∑

(i,j)∈L

CD(Vi)D(Vj)
D(V )

≤ CεD(V ) =
δ

400
D(V ), (37)

∑
(i,j)∈L

e(Ti, T̄j) ≤
∑

(i,j)∈L

e(Vi, Vj) ≤
δ

400
D(V ).

Furthermore, since D(V0) ≤ εD(V ) and C ≥ 1 we have

e(T0, T̄ ) + e(T̄0, T ) ≤ D(V0) ≤ εD(V ) ≤ δ

400
D(V ),

and as D(Vi) ≤ εD(V ) for all i, the (C, η,D)-boundedness condition yields
t∑
i=1

e(Ti, T̄i) ≤
t∑
i=1

CD(Vi)2

D(V )
≤ CεD(V ) =

δ

400
D(V ).

In addition, let

S = {(i, j) : i, j > 0, i 6= j ∧ (i, j) 6∈ L ∧ (D(Ti) < εD(Vi) ∨D(T̄j) < εD(Vj))}.

We shall prove below that∣∣µij − e(Ti, T̄j)∣∣ < 5εe(Vi, Vj) + ε
D(Vi)D(Vj)

D(V )
for all (i, j) 6∈ (L ∪ S), i, j > 0, i 6= j, and (38)∑

(i,j)∈S

µij + e(Ti, T̄j) < 6εD(V ). (39)

Combining (37)–(39), we thus obtain∣∣e(T, T̄ )− µ
∣∣

≤
∑

(i,j)6∈(L∪S)
i,j>0, i 6=j

∣∣µij − e(Ti, T̄j)∣∣+
∑

(i,j)∈(L∪S)

(µij + e(Ti, Tj)) + e(T0, T̄ ) + e(T̄0, T ) +
t∑
i=1

e(Ti, T̄i)

≤ 6εD(V ) +
δ

200
D(V ) + 6εD(V ) +

δ

400
D(V ) +

δ

400
D(V ) ≤ δ

8
D(V ),
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as desired.
To establish (38), consider a pair (i, j) 6∈ (L ∪ S), i 6= j. Since D(Ti) ≥ εD(Vi) and D(T̄j) ≥ εD(Vj) and

(Vi, Vj) is (ε,D)-regular, we have∣∣∣∣e(Ti, T̄j)− D(Ti)D(T̄j)
D(Vi)D(Vj)

e(Vi, Vj)
∣∣∣∣ < εD(Vi)D(Vj)

D(V )
. (40)

Moreover, as (T, T̄ ) is compatible with (c1, . . . , ct),∣∣∣∣D(Ti)
D(Vi)

− εci
∣∣∣∣ < 2ε,

∣∣∣∣D(T̄j)
D(Vj)

− (1− εcj)
∣∣∣∣ < 2ε, (41)

and combining (40) and (41) yields (38).
Finally, to prove (39), consider an index i such that D(Ti) < εD(Vi). Then

∑t
j=1 e(Ti, T̄j) ≤ D(Ti) < εD(Vi).

Similarly, if D(T̄j) < εD(Vj), then
∑t
i=1 e(Ti, T̄j) < εD(Vj). Therefore,∑

(i,j)∈S

e(Ti, T̄j) < 2εD(V ). (42)

Further, if D(Ti) < εD(Vi), then ci ≤ 2, because (T, T̄ ) is compatible with (c1, . . . , ct). Thus
∑t
j=1 µij ≤

2ε
∑
j e(Vi, Vj) ≤ 2εD(Vi). Analogously, if D(T̄j) < εD(Vj), then

∑t
i=1 µij ≤ 2εD(Vj). Consequently,∑

(i,j)∈S

µij < 4εD(V ). (43)

Hence, (39) follows from (42) and (43). ut

Proof of Theorem 3. Step 3 of ApxMaxCut ensures that (S, S̄) is compatible with (c∗1, . . . , c
∗
t ). Therefore, Lemma 22

yields

e(S, S̄) ≥ µ∗ − δ

8
D(V ). (44)

Further, let (T, T̄ ) be a maximum cut of G. Then we can construct a feasible solution to (36) that is compatible with
(T, T̄ ) by letting

ci =
⌊
D(T ∩ Vi)
εD(Vi)

⌋
(1 ≤ i ≤ t).

Let µ =
∑
i,j εci(1− εcj)e(Vi, Vj) be the corresponding objective function value. Then Lemma 22 implies that

e(T, T̄ ) ≤ µ+
δ

8
D(V ). (45)

As µ∗ is the optimal value of (36), we have µ∗ ≥ µ, and thus (44) and (45) yield e(S, S̄) ≥ e(T, T̄ ) − δ
4D(V ).

Consequently, ApxMaxCut provides the desired approximation guarantee. ut

6 Conclusion

1. Theorem 1 states that there is a constant γ > 0 such that Disc(γε2) implies ess-Eig(ε). This statement is best
possible, up to the precise value of γ. To see this, we describe a (probabilistic) construction of a graphG = (V,E)
on n vertices that has Disc(10ε) but does not have ess-Eig(0.01

√
ε). Assume that ε > 0 is a sufficiently small

number, and choose n = n(ε) sufficiently large. Moreover, let X = {1, . . . ,
√
εn} and X̄ = {

√
εn + 1, . . . , n}.

Further, let d = n/2 and set

pX = 1, pXX̄ = pX̄X =
1− 2

√
ε

2− 2
√
ε
, pX̄ =

1− 2
√
ε+ 2ε

2(1−
√
ε)2

.
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Finally, let G be the random graph with vertex set V = {1, . . . , n} obtained as follows: any two vertices in X are
adjacent, any two vertices in X̄ are connected with probability pX̄ independently, and each possible X-X̄ edge is
present with probability pXX̄ independently. Thus, the vertices X form a clique. Moreover, the expected degree
of each vertex is d. It easily seen that G satisfies Disc(10ε). To see that G does not satisfy ess-Eig(

√
ε/2), let E

be the matrix with entries

Evw =

 1 if v, w ∈ X,
pXX̄ if (v, w) ∈ X × X̄ ∪ X̄ ×X ,
pX̄ if v, w ∈ X̄.

This matrix just comprises the probabilities that v, w are adjacent. Results on the eigenvalues of random ma-
trices [14] imply that ‖E − L(G) − d−1E‖ = o(1). Let W ⊂ {1, . . . , n} be an arbitrary set of size |W | ≥
(1− 0.01ε)n. Then ‖E − L(G)W − d−1EW ‖ ≤ ‖E − L(G)− d−1E‖ = o(1). Therefore, in order to show that
λ2(L(G)W ) < 1− 0.01

√
ε it suffices to prove that the matrix E − d−1EW satisfies

λ2(E − d−1EW ) ≤ 1−
√
ε/2. (46)

Let x = |X ∩ W | and x̄ = |X̄ ∩ W |. The matrix d−1EW has rank two, and the eigenvectors with non-zero
eigenvalues lie in the space spanned by the vectors 1X∩W and 1X̄∩W . This implies that its non-zero eigenvalues
coincide with those of the 2× 2 matrix

E∗ = d−1 ·
(

x x̄ · pXX̄
x · pXX̄ x̄ · pX̄

)
,

which can be computed directly. The smaller eigenvalue is at least
√
ε/(1 −

√
ε) − ε ≥

√
ε/2. Hence, λ2(E −

d−1EW ) ≤ 1−
√
ε/2.

2. In the conference version of this paper we stated erroneously that the implication “Disc(γε3) ⇒ ess-Eig(ε)” is
best possible.

3. The techniques presented in Section 3 can be adapted easily to obtain a similar result as Theorem 1 with re-
spect to the concepts of discrepancy and eigenvalue separation from [11]. More precisely, let G = (V,E) be
a graph on n vertices, let p = 2|E|n−2 be the edge density of G, and let γ > 0 denote a small enough con-
stant. If for any subset X ⊂ V we have |2e(X) − |X|2p| < γε2n2p, then there exists a set W ⊂ V of size
|W | ≥ (1 − ε)n such that the following is true. Letting A = A(G) signify the adjacency matrix of G, we have
max{−λ1 [AW ] , λ|W |−1 [AW ]} ≤ εnp. That is, all eigenvalues of the minor AW except for the largest are at
most εnp in absolute value. The same example as under 1. shows that this result is best possible up to the precise
value of γ.
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