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Abstract. Let G be a graph on n vertices, with maximal degree d, and not containing K1,k as an induced

subgraph. We prove:

(1) λ(G) ≤ (2− 1
2k−2

+ o(1))d

(2) η(I(G)) ≥ k−1
2k−3

n
d
.

Here λ(G) is the maximal eigenvalue of the Laplacian of G, I(G) is the independence complex of G, and

η(C) denotes the topological connectivity of a complex C.
The above results supply improved bounds for the existence of independent transversals in K1,k-free

graphs

1. The maximum Laplace eigenvalue of K1,k-free graphs

Let G = (V,E) be a connected graph on the set of vertices V = {1, 2, . . . , n} with maximum degree d.
The Laplacian of G is the n by n matrix L = (Lij) where Lii = di is the degree of the vertex i, Lij = −1
if ij ∈ E and Lij = 0 if i 6= j, ij 6∈ E. Let λ = λ(G) denote the largest eigenvalue of L. It is easy to prove
and well known that λ(G) ≤ 2d, and equality holds iff G is d-regular and bipartite. If G contains no induced
copy of K1,k this estimate can be improved, as stated in the next theorem.

Theorem 1.1. Let G = (V,E) be a (simple) graph with maximum degree d containing no induced copy of
K1,k. Let t(d, k) denote the minimum possible number of edges of a graph on d vertices with no independent

set of size k. Then λ(G) ≤ 2d− t(d,k)
d−1 .

Note that by Turán’s Theorem t(d, k) = (1 + o(1)) d2

2k−2 , where the o(1)-term tends to zero as d tends to

infinity, and thus for large d the above theorem provides an upper bound of [2 − 1
2k−2 + o(1)]d for λ(G).

Note also that this is not very far from being tight. Indeed, consider a graph H ′ obtained from a (k − 1)
regular bipartite graph H by replacing each vertex u of H by a clique Vu of size s and by replacing each edge
uv of H by a complete bipartite graph connecting each vertex of Vu with each vertex of Vv. This graph is
d = ks − 1 regular and contains no induced K1,k. The vector assigning value 1 to each vertex of H ′ that
belongs to Vu for some u in the first color class of H, and value −1 to each vertex of H ′ that belongs to Vv for
some v in the second color class of H is an eigenvector of the Laplacian of H corresponding to the eigenvalue
ks− 1 + (k − 1)s− (s− 1) = (2k − 2)s > [2− 2

k ]d.

Proof of Theorem 1.1: Let G = (V,E) be a graph with maximum degree d and no induced copy of K1,k,
and let λ be the largest eigenvalue of the Laplacian L of G. Put V = {1, 2, . . . , n} and let (x1, x2, . . . , xn) be
an eigenvector for the eigenvalue λ, where

∑n
i=1 x

2
i = 1. Therefore Lx = λx and xtLx = λ‖x‖22. It is easy to
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check that xtLx =
∑
ij∈E(xi − xj)2 and thus it follows that if di is the degree of vertex number i then

2d−λ = (2d−λ)

n∑
i=1

x2
i =

n∑
i=1

(2d− 2di)x
2
i +

n∑
i=1

(2di−λ)x2
i =

n∑
i=1

(2d− 2di)x
2
i +

∑
ij∈E

[2x2
i + 2x2

j − (xi− xj)2].

Therefore

(1) 2d− λ =

n∑
i=1

(2d− 2di)x
2
i +

∑
ij∈E

(xi + xj)
2.

Let T be the set of all triangles in G. For each triangle T on the vertices i, j, q define

S(T ) = (xi + xj)
2 + (xj + xq)

2 + (xq + xi)
2.

Clearly
S(T ) = x2

i + x2
j + x2

q + (xi + xj + xq)
2 ≥ x2

i + x2
j + x2

q.

Fix a vertex i of G, and let N = N(i) be the set of its di-neighbors. Since G contains no induced copy of
K1,k the induced subgraph of G on N contains no independent set of size k and thus spans at least t(di, k)
edges. It follows that i is contained in at least t(di, k) triangles of G. We thus conclude that

(2)
∑
T∈T

S(T ) ≥
n∑
i=1

t(di, k)x2
i .

On the other hand, since G has maximum degree d, every edge is contained in at most (d− 1) triangles,
and therefore

(3)
∑
T∈T

S(T ) ≤ (d− 1)
∑
ij∈E

(xi + xj)
2.

By (2) and (3)

(d− 1)
∑
ij∈E

(xi + xj)
2 ≥

n∑
i=

t(di, k)x2
i ,

and therefore, by (1),

2d− λ ≥
n∑
i=1

[2(d− di) +
t(di, k)

d− 1
]x2
i ≥

n∑
i=1

t(d, k)

d− 1
x2
i =

t(d, k)

d− 1
,

here we used the fact that 2(d − di)(d − 1) ≥ t(d, k) − t(di, k) for all di ≤ d. One way to verify that this
inequality holds (with room to spare) is to observe that the Turán graph T (di, k) with di vertices and t(di, k)
edges is an induced subgraph of T (d, k), which has t(d, k) edges. Therefore one can get T (d, k) from T (di, k)
by adding vertices one by one, where each new vertex is adjacent to a subset of the existing ones, and hence
the number of edges added per added vertex never exceeds d− 1 ≤ 2(d− 1). This completes the proof. �

2. The connectivity of the independence complex of a K1,k-free graph.

A simplicial complex C is called (homotopically) k-connected if for every −1 ≤ j ≤ k, every continuous

function f : Sj → ||C|| can be extended to a continuous function f̃ : Bj+1 → ||C|| (here ||C|| is the underlying
space of the geometric realization of C). Intuitively, this means that there is no hole of dimension k + 1
or less. The connectivity η(C) of C is the largest k for which C is k-connected, plus 2 (this differs from the
ordinary definition of connectivity, in which the 2 is not added. The addition of 2 simplifies the statements
of the theorems). Another version of connectivity is the homological connecivity: ηH(C) is the maximal k
such that Hi(C) = 0 for all i ≤ k − 2. It is known that ηH(C) ≥ η(C), and that they are equal if η(C) ≥ 3.

The complex of independent sets of vertices in a graph G is denoted by I(G). In [1] the following lower
bound on η(I(G)) was proved:
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Theorem 2.1. ηH(I(G)) ≥ |V (G)|
λ(G)

This yields, among other things, the following:

Corollary 2.2. For any graph G with maximum degree ∆(G), ηH(I(G)) ≥ |V |
2∆(G) .

The corollary was proved in [10] by simpler methods, and for η it was proved in [3].

Combining Theorem 1.1 with Theorem 2.1 yields lower bounds on ηH(I(G)) for any K1,k-free graph G.
In the present section we shall improve these bounds, using a different method.

For a graph G and a vertex v ∈ V (G) we denote by G− v the graph obtained from G by the removal of v
and the edges adjacent to it, and by G o v the graph G− v −N(v), where N(v) denotes the set of neighbors
of v. Then I(G o v) = linkI(G)(v) (namely, the complex consisting of those sets whose union with v belongs
to I(G)). A standard application of the exactness of the Mayer-Vietoris sequence yields:

Lemma 1. For every complex C and vertex v it is true that

(4) ηH(C) ≥ min(ηH(C − v), ηH(linkC(v)) + 1).

Here is a short explanation why this is true. By the exactness of the Mayer-Vietoris sequence, we have for
every pair A,B of complexes

(5) ηH(A ∪B) ≥ min(ηH(A), ηH(B), ηH(A ∩B) + 1)

Let A = I(G− v) and B = linkC(v) ∗ {v} (here “*” denotes the join operation, so B = linkC(v)∪ {I + v |
I ∈ linkC(v)}). Then A ∩ B = linkC(v). Clearly, I(G) = A ∪ B. Since B is contractible to v, we have
ηH(B) =∞, and hence (4) follows from (5).

By (4), for any graph G and vertex v ∈ V (G) the following is true: :

(6) ηH(I(G)) ≥ min(ηH(I(G− v)), ηH(I(G o v)) + 1).

Inequality (5) can be proved also for homotopical η, directly from the definitions. Hence we also have:

Lemma 2. η(I(G)) ≥ min(η(I(G− v)), η(I(G o v)) + 1).

A lower bound on η obtained from this inequality can be formulated in terms of a game between two
players, CON and NON, on the graph G. CON wants to show high connectivity, NON wants to thwart this
attempt. At each step, CON chooses a vertex v or an edge e from the graph remaining at this stage, the
starting point being the graph G. NON can then either remove the offered vertex or edge from the graph
(we call such a step “deletion”), or remove it and its neighbors (we call such a step “explosion”). The payoff
of a game to CON is the number of explosions, or ∞ if there appears at some stage an isolated vertex. We
define Ψ(G) to be the maximum, over all strategies of CON, of the minimal payoff. The bound on η is then
stated as:

Theorem 2.3. η(I(G)) ≥ Ψ(G).

Remark 2.4. A similar result was proved by Meshulam. For an edge e = uv denote by Goe the graph (Gou)ov.

Theorem 2.5. [9] For any edge e:

η(I(G)) ≥ min(η(I(G− e)), η(I(G o e)) + 1).
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This means that in the above game one can also offer NON edges, alongside vertices. There is no example
known in which it is provably not enough to offer CON edges to obtain the best bound. Thomasse and Rao
[11] gave an example in which it is not enough to use vertex offers.

Theorem 2.6. If G is a K1,k-free graph on n vertices with maximum degree d then η(I(G)) ≥ k−1
2k−3

n
d .

Proof. Let u be a vertex of degree d, and let N be its neighborhood. Choose inductively vertices v1, . . . , vd
in N , so that vi has maximal degree in Gi = G[N − {vj | j < i}]. Since G is K1,k-free, α(G[N ]) < k, and

since α ≥ |V |
∆+1 in any graph with maximum degree ∆, this implies that degGi

(xi) ≥ d−i
k−1 (note that the

maximum degree of G[N ] is at most d− 1, since vertices in N are connected in G to u). Play now the game
by offering NON one by one the vertices zi = vd−i+1. Not wishing to isolate u, NON will explode one of
them, say zp. By the above, the number of vertices removed by this explosion, plus the number of vertices

deleted by NON up to the p-th stage, is at most p+ d− p
k−1 ≤

2k−3
k−1 d. We have thus forced NON to perform

one explosion, and paid the price of removal of at most 2k−3
k−1 d vertices. Repeating this procedure until the

graph is exhausted (or an isolated vertex appears) shows that Ψ(G) ≥ n
d
k−1
2k−3 .

�

Remark 2.7. This inequality was proved in [6] for k = 3, namely claw free graphs. In line graphs, a subclass

of the claw free graphs, a better bound applies. If G = L(H) we get from Theorem 2.1 that η(I(G)) ≥ |V (G)|
2∆(H) ,

which is also implicit in [4].

Conjecture 2.8. If G = (V,E) is K1,k-free and has maximum degree d then η(I(G)) ≥ |V |
d+k−1 .

If true, then this conjecture is sharp when d is divisible by k − 1, as shown by taking G to be a Turan
graph, the complement of the disjoint union of d

k−1 + 1 cliques of size k− 1. Here η(I(G)) = 1, namely I(G)
is disconnected.

3. Applications to independent transversals

Let G = (V,E) be a graph and let V = V1 ∪ V2 . . .∪ Vm be a partition of V into pairwise disjoint sets. An
independent transversal in G with respect to this partition is an independent set of G containing exactly one
vertex in each Vi.

In [4] the following topological version of Hall’s theorem was proved:

Theorem 3.1. If η(I(G[
⋃
i∈I ])) ≥ |I| for every I ⊆ [m] then there exists an independent transversal.

The homological version of this theorem (namely, with ηH replacing η) was proved in [9]. Let f = min{|Vi| :
i ≤ m}. Theorem 3.1 and Corollary 2.2 yield together that, denoting ∆(G) by d, if f ≥ 2d then there exists
an independent transversal. This was proved with f = O(d) in [5] and improved in several subsequent papers
culminating in [7] and [8] where it is shown that the best possible value of f is 2d. Theorem 2.1 yields that if
the largest eigenvalue of the Laplacian of every induced subgraph of G is bounded by h, then sets Vi of size
h suffice. Theorem 1.1 therefore implies that for graphs that contain no induced copy of K1,k sets Vi of size
(2− 1

2k−2 + o(1))d suffice. A better estimate follows from Theorem 2.6, which shows that in fact even sets of

size 2k−3
k−1 d = (2− 1

k−1 )d suffice.

Theorem 2.1 can be applied to line graphs of r-uniform simple hypergraphs (that is, hypergraphs in which
no two edges share more than one common vertex). For such line graphs, the most negative eigenvalue of
the adjacency matrix is at least −r, as the adjacency matrix can be written as BBt − rI, where B is the
incidence matrix of the hypergraph. This, therefore, implies, by the above reasoning, that any partition
into sets Vi of size at least d + r, where d is the maximum degree of the line graph, admits an independent
transversal. In particular this applies to any partition of the triangles of a Steiner Triple System on n vertices
(and n(n − 1)/6 triangles) into sets of size at least 3n/2 + O(1). It seems plausible that the constant 3/2
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here can be reduced, possibly even to 1/2. A similar question regarding line graphs of simple graphs is worth
studying as well.

We close this short paper with two questions.

(1) (Improving the estimate in Theorem 1.1) Is it true that in a K1,k-free graph with maximum degree d
the maximum Laplace eigenvalue is no larger than (2− 2

k +o(1))d? As mentioned after the statement
of Theorem 1.1, this estimate, if correct, is tight.

(2) Do the results that follow for the existence of independent transversals for K1,k-free graphs hold
also for graphs that contain no induced copy of Kk,k? In [2] it was shown that for such graphs

η(I(G)) ≥ |V (G)|
2d−1 , implying that if V (G) is partitioned into sets of size 2d − 1 then there exists an

independent transversal.
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