On a problem of Erdős and Turán and some related results

Noga Alon * Mihail N. Kolountzakis ${ }^{\dagger}$

March 1995

Abstract

We employ the probabilistic method to prove a stronger version of a result of Helm, related to a conjecture of Erdős and Turán about additive bases of the positive integers. We show that for a class of random sequences of positive integers A, which satisfy $|A \cap[1, x]| \gg \sqrt{x}$ with probability 1 , all integers in any interval $[1, N]$ can be written in at least $c_{1} \log N$ and at most $c_{2} \log N$ ways as a difference of elements of $A \cap\left[1, N^{2}\right]$. We also prove several results related to another result of Helm. We show that for every sequence of positive integers M, with counting function $M(x)$, there is always another sequence of positive integers A such that $M \cap(A-A)=\emptyset$ and $A(x)>x /(M(x)+1)$. We also show that this result is essentially best possible, and we show how to construct a sequence A with $A(x)>c x /(M(x)+1)$ for which every element of M is represented exactly as many times as we wish as a difference of elements of A.

Mathematics Subject Classification: 11B13

Notation

All sequences we consider are sequences of distinct nonnegative integers. We write $\mathbb{N}=\{0,1,2, \ldots\}$. We denote by the lower case indexed letter the members of the sequence and by the capital letter the sequence as a set as well as its counting function. For example $A=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ denotes a sequence of distinct nonnegative integers and $A(x)=|A \cap[0, x]|$ denotes its counting function. The initial segment $A \cap[0, x]$ is denoted by $A^{\leq x}$. The positive difference set $\{a-b: a, b \in A, a>b\}$ is denoted by $A-A$ and the sumset $\{a+b: a \in A, b \in B\}$ by $A+B$. We denote by C an arbitrary positive constant and we write $a \ll b$, if there exists a constant C such that $a \leq C b$. By $a \sim b$ or $a=(1+o(1)) b$ we mean $\lim a / b=1$ as a certain quantity, which will be clear from the context, approaches a limit. Similarly we write $a \lesssim b$ for $a \leq(1+o(1)) b$. We define several "representation" functions for a given set A :

$$
\begin{gathered}
\delta_{A}(x)=|\{(a, b): a, b \in A, x=a-b\}|, \\
h_{A, N}(x)=\left|\left\{(a, b): a, b \in A \cap\left[1, N^{2}\right], x=a-b\right\}\right|, \\
H_{A}(N)=\sum_{x=1}^{N} h_{A, N}(x),
\end{gathered}
$$

and

$$
r_{A}(x)=|\{(a, b): a, b \in A, a \leq b, x=a+b\}|
$$

[^0]
1 Introduction

A conjecture of Erdős and Turán [2] asserts that for any asymptotic basis (of order 2) of the positive integers, that is for any set $E \subseteq \mathbb{N}$ for which $r_{E}(x)>0$ for all sufficiently large x, we have

$$
\limsup _{x \rightarrow \infty} r_{E}(x)=\infty
$$

Erdős (c.f. [5]) has proved that it cannot be true that $r_{E}(x)=1$ for all sufficiently large x, by showing that for any sequence E, with $E(x) \gg \sqrt{x}$, we have

$$
\begin{equation*}
H_{E}(N) \gg N \log N \tag{1}
\end{equation*}
$$

Indeed, any asymptotic basis E satisfies $E(x) \gg \sqrt{x}$ and if $r_{E}(x)=1$ all sums we can form with two elements of E (with the exception of a finite number of elements of E) are distinct. This in turn implies that so are all the differences, that is $\delta_{E}(x) \leq 1$ for all x, which makes (1) impossible.

Recently Helm [4] proved that (1) is best possible by explicitly constructing a sequence A, with $A(x) \gg$ \sqrt{x}, for which

$$
\begin{equation*}
H_{A}(N) \ll N \log N \tag{2}
\end{equation*}
$$

Helm's proof does not provide any upper or lower bound on the individual $h_{A, N}(x)$ for $x \in[1, N]$, but only describes the average behaviour.

In addition to the above result Helm [4] constructed two sequences B and M, with $B(x) \gg \sqrt{x}$ and $M(x) \gg \log x$, for which $\delta_{B}\left(m_{k}\right)=1$, for all k sufficiently large.

In this paper we improve both results of Helm.
We prove
Theorem 1 Let a random sequence A be defined by letting $x \in A$ with probability $p_{x}=K / \sqrt{x}$ for $x \geq K^{2}$, $p_{x}=0$ if $x<K^{2}$, for a constant K, independently for all x. Then, if the constant K is sufficiently large and with probability 1 , there is an integer N_{0} and positive constants $c_{1}, c_{2}, c_{3}, c_{4}$ such that

$$
\begin{equation*}
c_{1} \sqrt{x} \leq A(x) \leq c_{2} \sqrt{x} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{3} \log N \leq h_{A, N}(m) \leq c_{4} \log N \tag{4}
\end{equation*}
$$

for all $x, N \geq N_{0}$ and $1 \leq m \leq N$.
This implies the first result of Helm and with upper and lower estimates on the individual $h_{A, N}(m)$.
We also prove some results related to the second result of Helm mentioned above. Theorems 2-4 deal with the question of which sequences are avoidable by difference sets of dense sequences.

Theorem 2 Let $M=\left\{m_{0}, m_{1}, \ldots\right\}$ be a sequence of positive integers. Then there is a sequence $A \subseteq \mathbb{N}$ such that $M \cap(A-A)=\emptyset$ and A is dense, that is:

$$
\begin{equation*}
A(x) \geq \frac{x}{M(x)+1}, \text { for all } x \in \mathbb{N} \tag{5}
\end{equation*}
$$

The proof of Theorem 2 is a straightforward construction. As an example, perhaps relevant to the ErdősTurán conjecture, we see that if $M(x) \leq \sqrt{x}$ then there is a sequence A, with $A(x) \geq \sqrt{x}-1$, such that $M \cap(A-A)=\emptyset$.

The following result shows that Theorem 2 is essentially best possible.
Theorem 3 Let $f(x)>0$ be defined on \mathbb{N} and assume that both $f(x)$ and $x / f(x)$ are non-decreasing and tend to infinity. Then there is a sequence of positive integers M, with $M(x) \lesssim x / f(x)$, such that for every sequence A, with $A(x) \geq f(x)$ for x sufficiently large, we have

$$
|M \cap(A-A)|=\infty
$$

That is for every lower bound - the function $f(x)$ - for the growth of $A(x)$ there is a not-very-dense sequence M that intersects infinitely often the difference set of every sequence A that meets the lower bound requirement. Again, in the case of quadratic growth we see that there is a sequence M, with $M(x) \lesssim \sqrt{x}$, which intersects infinitely often the difference set of any sequence A which satisfies $A(x) \geq \sqrt{x}$ for sufficiently large x.

Finally, we prove a result concerning the representation of the elements of a given sequence M as differences of elements from another sequence.

Theorem 4 Let $M=\left\{m_{0}, m_{1}, \ldots\right\} \subseteq \mathbb{N}$ and assume $M(x)=o(x)$. Then there is $A=\left\{a_{0}, a_{1}, \ldots\right\} \subseteq \mathbb{N}$ such that $\delta_{A}\left(m_{k}\right)=1$ for all k and

$$
\begin{equation*}
A(x) \geq c \frac{x}{M(x)+1} \tag{6}
\end{equation*}
$$

for all x, where c is a fixed positive constant.
The proof of Theorem 4 can also give us, for any given sequence $d_{k} \in\{0,1,2, \ldots, \infty\}$ (infinity included), a sequence A which satisfies the growth condition (6) and is such that $\delta_{A}\left(m_{k}\right)=d_{k}$ for all k.

2 Proofs

We need the following Lemma [1, p. 239] to bound the probability of large deviation of certain random variables.

Lemma 1 If $Y=X_{1}+\cdots+X_{k}$, and the X_{j} are independent indicator random variables, then for all $\epsilon>0$

$$
\operatorname{Pr}[|Y-\mathbf{E} Y|>\epsilon \mathbf{E} Y] \leq 2 \exp \left(-c_{\epsilon} \mathbf{E} Y\right)
$$

where $c_{\epsilon}>0$ is a function of ϵ alone.
We call a random variable Y which, as above, is a Sum of Indepenent Indicator Random Variables a SIIRV.
Remark: Observe that if $Y=Y_{1}+Y_{2}$, where Y_{1} and Y_{2} are SIIRV then we have

$$
\operatorname{Pr}[|Y-\mathbf{E} Y|>\epsilon \mathbf{E} Y] \leq 4 \exp \left(-c_{\epsilon} \min \left\{\mathbf{E} Y_{1}, \mathbf{E} Y_{2}\right\}\right)
$$

Proof of Theorem 1: Write $\chi_{j}=1$ if $j \in A, \chi_{j}=0$ otherwise, so that $\mathbf{E} \chi_{j}=p_{j}$. Notice that

$$
\begin{aligned}
A(x) & =\sum_{j=1}^{x} \chi_{j}, \\
h_{A, N}(m) & =\sum_{j=1}^{N^{2}-m} \chi_{j} \chi_{j+m}
\end{aligned}
$$

so that $A(x)$ is a SIIRV and $h_{A, N}(m)$ is the sum of two SIIRV:

$$
h_{A, N}(m)=h_{A, N}^{e}(m)+h_{A, N}^{o}(m),
$$

where

$$
h_{A, N}^{e}(m)=\sum_{j=1}^{m} \sum_{k \text { even }} \chi_{j+k m} \chi_{j+(k+1) m}
$$

and

$$
h_{A, N}^{o}(m)=\sum_{j=1}^{m} \sum_{k \text { odd }} \chi_{j+k m} \chi_{j+(k+1) m} .
$$

(We broke up $h_{A, N}(m)$ so that each χ_{j} appears at most once in each of the terms $h_{A, N}^{e}(m)$ and $h_{A, N}^{o}(m)$.) Then, as $x \rightarrow \infty$,

$$
\begin{aligned}
\mathbf{E} A(x) & =\sum_{j=1}^{x} p_{j} \sim \sum_{j=1}^{x} \frac{K}{\sqrt{j}} \\
& =K \sqrt{x} \sum_{j=1}^{x} \frac{1}{x} \frac{1}{\sqrt{j / x}} \\
& \sim 2 K \sqrt{x}
\end{aligned}
$$

since $2=\int_{0}^{1} d s / \sqrt{s}$. We also have, for $m \leq N$ and $N \rightarrow \infty$,

$$
\begin{aligned}
\mathbf{E} h_{A, N}(m) & =\sum_{j=1}^{N^{2}-m} p_{j} p_{j+m} \\
& \sim K^{2} \sum_{j=1}^{N^{2}-m} \frac{1}{\sqrt{j(j+m)}} \\
& \leq K^{2} \sum_{j=1}^{N^{2}-m} \frac{1}{j} \\
& \sim 2 K^{2} \log N
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{E} h_{A, N}(m) & \gtrsim K^{2} \sum_{j=1}^{N^{2}-m} \frac{1}{j+m} \\
& \gtrsim K^{2} \log N
\end{aligned}
$$

So we have

$$
\begin{equation*}
\mathbf{E} A(x) \sim 2 K \sqrt{x} \tag{7}
\end{equation*}
$$

as $x \rightarrow \infty$ and

$$
\begin{equation*}
K^{2} \log N \lesssim \mathbf{E} h_{A, N}(m) \lesssim 2 K^{2} \log N \tag{8}
\end{equation*}
$$

as $N \rightarrow \infty$, and for all $m \leq N$. Notice that $\mathbf{E} h_{A, N}^{e}(m) \sim \frac{1}{2} \mathbf{E} h_{A, N}(m)$ and $\mathbf{E} h_{A, N}^{o}(m) \sim \frac{1}{2} \mathbf{E} h_{A, N}(m)$.
Now fix $\epsilon=1 / 2$ and define the "bad" events

$$
\begin{aligned}
P_{x} & =\{|A(x)-\mathbf{E} A(x)|>\epsilon \mathbf{E} A(x)\} \\
Q_{N, m} & =\left\{\left|h_{A, N}(m)-\mathbf{E} h_{A, N}(m)\right|>\epsilon \mathbf{E} h_{A, N}(m)\right\},
\end{aligned}
$$

for all x, N and $m \leq N$. Using Lemma 1 and the remark following it we have

$$
\operatorname{Pr}\left[P_{x}\right] \leq 2 \exp \left(-c_{\epsilon} \mathbf{E} A(x)\right) \leq 2 \exp \left(-\frac{1}{2} c_{\epsilon} 2 K \sqrt{x}\right)
$$

and

$$
\operatorname{Pr}\left[Q_{N, m}\right] \leq 4 \exp \left(-\frac{1}{3} c_{\epsilon} \mathbf{E} h_{A, N}(m)\right) \leq 4 \exp \left(-\frac{1}{6} c_{\epsilon} K^{2} \log N\right)=4 N^{-\frac{1}{6} c_{\epsilon} K^{2}}
$$

for x and N sufficiently large. Thus

$$
\sum_{x=1}^{\infty} \operatorname{Pr}\left[P_{x}\right]+\sum_{N=1}^{\infty} \sum_{m=1}^{N} \operatorname{Pr}\left[Q_{N, m}\right] \ll \sum_{x=1}^{\infty} \exp \left(-c_{\epsilon} K \sqrt{x}\right)+\sum_{N=1}^{\infty} N^{1-\frac{1}{6} c_{\epsilon} K^{2}}
$$

The first term in the right hand side is finite, and we choose K large enough to make the second term also finite, that is large enough to make $1-\frac{1}{6} c_{\epsilon} K^{2}<-1$. Let now $\epsilon^{\prime} \in(0,1)$ be arbitrary. Since the right hand side above is finite, we can find N_{0} so that

$$
\begin{equation*}
\sum_{x \geq N_{0}} \operatorname{Pr}\left[P_{x}\right]+\sum_{N \geq N_{0}} \sum_{m=1}^{N} \operatorname{Pr}\left[Q_{N, m}\right]<\epsilon^{\prime} \tag{9}
\end{equation*}
$$

which means that, with probability at least $1-\epsilon^{\prime}$, none of the events which appear in (9) holds. We conclude that, with probability at least $1-\epsilon^{\prime}$,

$$
K \sqrt{x} \lesssim A(x) \lesssim 3 K \sqrt{x}
$$

and

$$
\frac{1}{2} K^{2} \log N \lesssim h_{A, N}(m) \lesssim 3 K^{2} \log N
$$

for all $x, N \geq N_{0}$ and $1 \leq m \leq N$. Since ϵ^{\prime} was arbitrary this concludes the proof.
Proof of Theorem 2: We construct the sequence A with a "greedy" algorithm. Let $a_{0}=0$ and define inductively

$$
\begin{equation*}
a_{n+1}=\min \left\{y \in \mathbb{N}: y>a_{n} \& y \notin\left\{a_{0}, \ldots, a_{n}\right\}+M\right\} \tag{10}
\end{equation*}
$$

In words, we take a_{n+1} to be the least integer that does not destroy the desired property of the sequence A, namely that $\delta_{A}\left(m_{k}\right)=0$ for all k. It is obvious that the set A defined by the above induction satisfies $M \cap(A-A)=\emptyset$.

We now bound from below the counting function of A. Assume that $y \in[0, x] \backslash A$. But then, by the way we construct A, there are a_{k} and m_{l}, both $\leq x$, such that $y=a_{k}+m_{l}$. Thus

$$
|[0, x] \backslash A| \leq\left|\left\{a_{k}+m_{l}: a_{k} \leq x, m_{l} \leq x\right\}\right| \leq A(x) M(x),
$$

from which we conclude

$$
A(x)=x+1-|[0, x] \backslash A| \geq x-A(x) M(x)
$$

which proves the desired $A(x) \geq x /(M(x)+1)$.
Proof of Theorem 3: For $s \in \mathbb{N}$ define $t=t(s)$ by

$$
t=\min \{y \in \mathbb{N}: y>s \& f(y)>s\}
$$

and the set M_{s} by

$$
M_{s}=\{y \in \mathbb{N}: 0<y<t \& s \mid y\} .
$$

Define the sequences $s_{n}, t_{n} \in \mathbb{N}$ inductively by $s_{1}=1$ and

$$
s_{n+1}=\min \left\{y \in \mathbb{N}: y>t\left(s_{n}\right) \& \frac{y}{f(y)} \geq\left(\sum_{k=1}^{n} \frac{t_{k}}{f\left(t_{k}\right)}\right)^{2}\right\}
$$

and by setting $t_{n}=t\left(s_{n}\right)$ for all n. Finally define $M=\bigcup_{n=1}^{\infty} M_{s_{n}}$.
We need to bound the counting functions of each $M_{s_{n}}$. We claim that for each $x \in \mathbb{N}$ we have $M_{s_{n}}(x) \leq$ $x / f(x)$. Indeed, if $x<t_{n}$ we have

$$
M_{s_{n}}(x)=\left\lfloor\frac{x}{s_{n}}\right\rfloor \leq \frac{x}{s_{n}} \leq \frac{x}{f(x)},
$$

because for this range of x we have $f(x) \leq s_{n}$. On the other hand, if $x \geq t_{n}$ we have

$$
M_{s_{n}}(x)=M_{s_{n}}\left(t_{n}-1\right) \leq \frac{t_{n}-1}{f\left(t_{n}-1\right)} \leq \frac{x}{f(x)},
$$

since the integer $t_{n}-1$ is covered by the previous case and $x / f(x)$ is non-decreasing.

We now bound the counting function of M. Assume first that $s_{n+1} \leq x<t_{n+1}$ for some $n \geq 0$. Then, by the previous calculation for $M_{s_{n}}(x)$,

$$
\begin{aligned}
M(x) & \leq \sum_{k=1}^{n+1} M_{s_{k}}(x) \\
& =\sum_{k=1}^{n} M_{s_{k}}\left(t_{k}\right)+M_{s_{n+1}}(x) \\
& \leq \sum_{k=1}^{n} \frac{t_{k}}{f\left(t_{k}\right)}+\frac{x}{f(x)} \\
& \leq\left(\frac{x}{f(x)}\right)^{1 / 2}+\frac{x}{f(x)} \\
& \sim \frac{x}{f(x)} .
\end{aligned}
$$

If we have $t_{n} \leq x<s_{n+1}$ for some $n \geq 1$ then we still have

$$
M(x)=M\left(t_{n}-1\right) \leq \frac{t_{n}-1}{f\left(t_{n}-1\right)} \leq \frac{x}{f(x)}
$$

which completes the proof of $M(x) \lesssim x / f(x)$ for all x.
We still have to verify that $|M \cap(A-A)|=\infty$ for each sequence A of positive integers for which $A(x) \geq f(x)$ for all $x \geq x_{0}$. For this it suffices to show that $A-A$ intersects M in every $\left[s_{n}, t_{n}\right)$ interval, for large n. Look at n such that $s_{n} \geq x_{0}$. Since $A\left(t_{n}\right) \geq f\left(t_{n}\right)>s_{n}$ there exist two elements a, b of $A \cap\left(0, t_{n}\right]$, $a<b$, which are equal $\bmod s_{n}$. But then $s_{n} \mid b-a$ and $0<b-a<t_{n}$ which implies that $b-a$ is in $M_{s_{n}}$ and consequently in M, which we had to prove.
Proof of Theorem 4: We construct A with a greedy algorithm which is a variation of the algorithm we used in the proof of Theorem 2. Loosely speaking, we construct a sequence A such that any new element we add does not create any new representations of any m_{k} as a difference from A. But occasionally we stop to add a pair of elements of the form $x, x+m_{k}$ to our set A so as to represent m_{k} once. What makes the construction work is that we are free to put off representing m_{k} until very late in the construction.

We need the following lemma.
Lemma 2 Let M and a_{0}, \ldots, a_{n} be given and be such that

$$
n \geq \alpha \frac{a_{n}}{M\left(a_{n}\right)+1}
$$

Then we can extend a_{0}, \ldots, a_{n} to an infinite sequence $A=\left\{a_{0}, \ldots, a_{n}, a_{n+1}, \ldots\right\}$ without adding any more representations of any elements of M, that is $\delta_{A}\left(m_{k}\right)=\delta_{\left\{a_{0}, \ldots, a_{n}\right\}}\left(m_{k}\right)$ for all k, and such that

$$
\begin{equation*}
A(x) \gtrsim \frac{x}{M(x)+1}, \text { as } x \rightarrow \infty \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
A(x) \geq \frac{\alpha}{\alpha+1} \frac{x}{M(x)+1}, \text { for all } x>a_{n} \tag{12}
\end{equation*}
$$

Proof of Lemma 2: For $k=n, n+1, \ldots$, we define, as in the proof of Theorem 2,

$$
a_{k+1}=\min \left\{y \in \mathbb{N}: y>a_{k} \& y \notin\left\{a_{0}, \ldots, a_{k}\right\}+M\right\}
$$

The sequence A thus constructed obviously adds no new representations of any m_{k} as a difference from A. For $x>a_{n}$ we have (with the same reasoning as in the proof of Theorem 2)

$$
A(x) \geq x-a_{n}-A(x) M(x)
$$

which implies

$$
\begin{equation*}
A(x) \geq \frac{x-a_{n}}{M(x)+1} \tag{13}
\end{equation*}
$$

If $x \geq(\alpha+1) a_{n}$ then (13) gives (12). If $a_{n}<x \leq(\alpha+1) a_{n}$ then we have

$$
A(x) \geq A\left(a_{n}\right) \geq \alpha \frac{a_{n}}{M\left(a_{n}\right)+1} \geq \frac{\alpha}{\alpha+1} \frac{x}{M(x)+1},
$$

which completes the proof of (12) for all x. The asymptotic inequality (11) is immediate from (13).
We now proceed with the construction of the set A for Theorem 4. Let $\lambda \in(0,1)$ be a fixed number (0.9 will do) and set $a_{0}=k=0$. We define the infinite set A by alternatingly applying the following two operations that take an initial segment of A and extend it.

1. If we have already defined $\left\{a_{0}, \ldots, a_{n}\right\}$ then we use Lemma 2 to define a_{n+1}, \ldots, a_{m}, such that

$$
\text { (i) } m>\lambda a_{m} /\left(M\left(a_{m}\right)+1\right) \text {, (ii) } a_{m}>100 m_{k} \text {, and (iii) } M\left(a_{m}\right)>100 m_{k} \text {. }
$$

2. Having defined $\left\{a_{0}, \ldots, a_{n}\right\}$ we define the numbers a_{n+1} and a_{n+2} by

$$
\begin{aligned}
a_{n+1} & =\min \left\{y \in \mathbb{N}: y>a_{n} \& y, y+m_{k} \notin\left\{a_{0}, \ldots, a_{n}\right\}+M\right\} \\
a_{n+2} & =a_{n+1}+m_{k} .
\end{aligned}
$$

We then increment k by 1 .

We apply operations 1 and 2 to the set A alternatingly, starting with operation 1 .
Clearly the set A satisfies $\delta_{A}\left(m_{k}\right)=1$ for all k, provided that it is infinite. We only have to verify that it satisfies the growth condition $A(x) \geq c x /(M(x)+1)$, which, of course, implies that A is infinite, since $M(x)=o(x)$. It suffices to show that the inequality is satisfied for $x<N$ where N is the largest defined element of A at the end of each operation. We shall determine a value for the constant c at the end of the proof but we make no effort of getting the best value. (We believe that c can be arbitrarily close to 1.)
Analysis of operation 2: Operation 2 follows an application of operation 1, so we may assume that the elements a_{0}, \ldots, a_{n} of A have been defined and satisfy conditions (i), (ii), and (iii) with n in place of m. We have to show that for all $x \in\left(a_{n}, a_{n+2}\right]$ we have the inequality

$$
A(x) \geq c \frac{x}{M(x)+1} .
$$

Assume first that $x \in\left(a_{n}, a_{n+1}\right)$. For each $y \in\left(a_{n}, x\right]$ we must either have $y \in A^{\leq a_{n}}+M^{\leq x}$ or $y+m_{k} \in$ $A^{\leq a_{n}+m_{k}}+M^{\leq x+m_{k}}$. Since $A\left(a_{n}+m_{k}\right) \leq n+2$, this implies that

$$
x-a_{n} \leq 2(n+2) M\left(x+m_{k}\right) \leq 2(n+2)\left(M(x)+m_{k}\right) \leq 4 n M(x),
$$

from which we get

$$
\begin{equation*}
n \geq \frac{1}{4} \frac{x-a_{n}}{M(x)+1} . \tag{14}
\end{equation*}
$$

If $x \geq \mu a_{n}$ then $n \geq 1 / 4(1-1 / \mu) x(M(x)+1)^{-1}$ which implies

$$
\begin{equation*}
A(x) \geq \frac{1}{4}(1-1 / \mu) \frac{x}{M(x)+1} . \tag{15}
\end{equation*}
$$

If, on the other hand, $a_{n}<x \leq \mu a_{n}$ then $A(x) \geq n \geq \lambda a_{n}\left(M\left(a_{n}\right)+1\right)^{-1} \geq(\lambda / \mu) x(M(x)+1)^{-1}$. For λ close to 1 and for $\mu=2$ we get

$$
A(x) \geq \min \{\lambda / 2,1 / 8\} \frac{x}{M(x)+1} \geq \frac{1}{8} \frac{x}{M(x)+1}
$$

for all $x \in\left(a_{n}, a_{n+1}\right)$. The remaining case $x \in\left[a_{n+1}, a_{n+2}\right]$ is easier. Since we have proved a lower bound for $x=a_{n+1}-1$ we have

$$
\begin{aligned}
A(x) & \geq A\left(a_{n+1}-1\right) \geq \frac{1}{8} \frac{a_{n+1}-1}{M\left(a_{n+1}-1\right)+1} \\
& \geq \frac{1}{8} \frac{a_{n+1}-1}{M(x)+1} \\
& \geq \frac{1}{8} \frac{x-m_{k}-1}{M(x)+1} \\
& \geq \frac{1}{8} \frac{0.9 x}{M(x)+1} .
\end{aligned}
$$

We have proved that for all $x \in\left(a_{n}, a_{n+2}\right]$ we have

$$
A(x) \geq \frac{0.9}{8} \frac{x}{M(x)+1},
$$

which completes the analysis of operation 2.
Analysis of operation 1: We only have to use Lemma 2 with $\alpha=0.9 / 8$. We conclude that for all $x \in\left(a_{n}, a_{m}\right]$ we have

$$
A(x) \geq \frac{0.9 / 8}{0.9 / 8+1} \frac{x}{M(x)+1}
$$

Thus we have proved Theorem 4 with $c=0.9 / 8 \cdot(0.9 / 8+1)^{-1}$.
Now suppose we want to achieve $\delta_{A}\left(m_{k}\right)=d_{k}$, where $d_{k} \in \mathbb{N} \cup\{\infty\}$ is a given sequence, and have $A(x)$ satisfy the same bound as in Theorem 4. Notice that in the previous proof we did not need the fact that the numbers m_{k} were distinct or non-decreasing.

All we have to do is construct a sequence $M^{\prime}=\left\{m_{0}^{\prime}, m_{1}^{\prime}, \ldots\right\}$ in which each m_{k} appears exactly d_{k} times and apply our Theorem 4 to this sequence. We only need to assume $M(x)=o(x)$ as before, not that $M^{\prime}(x)=o(x)$ (as a multiset).

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, 1992.
[2] P. Erdős and P. Turán, On a Problem of Sidon in Additive Number Theory and Some Related Problems, J. London Math. Soc. 16 (1941), 212-215; Addendum (by P. Erdős), ibid. 19 (1944), 208.
[3] H. Halberstam and K. F. Roth, Sequences, Springer-Verlag, New York, 1983.
[4] M. Helm, Some Remarks on the Erdős-Turán Conjecture, Acta Arith. 63 (1993), 373-378.
[5] A. Stöhr, Gelöste und Ungelöste Fragen über Basen der Natürlichen Zahlenreihe, II, J. Reine Angew. Math. 194 (1955), 111-140.

[^0]: ${ }^{*}$ Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel and School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, USA. E-mail: noga@math.tau.ac.il.
 ${ }^{\dagger}$ School of Mathematics, Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540, USA. E-mail: kolount@math.ias.edu. Supported by NSF grant DMS 9304580. Work partially done at Stanford University.

