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Abstract

We show that for every odd integer p ≥ 1 there is an absolute positive constant cp,
so that the maximum cardinality of a set of vectors in Rn such that the lp distance
between any pair is precisely 1, is at most cpn log n. We prove some upper bounds for
other lp norms as well.

1 Introduction

An equilateral set (or a simplex) in a metric space, is a set A, so that the distance between

any pair of distinct members of A is b, where b 6= 0 is a constant. Trivially, the maximum

cardinality of such a set in Rn with respect to the (usual) l2-norm is n + 1. Somewhat

surprisingly, the situation is far more complicated for the other lp norms. For a finite p > 1,

the lp-distance between two points ~a = (a1, . . . an) and ~b = (b1, . . . , bn) in Rn is ‖~a −~b‖p =

(
∑n

k=1 |ai − bi|p)1/p. The l∞-distance between ~a and ~b is ‖~a−~b‖∞ = max1≤k≤n |ai − bi|. For

all p ∈ [1,∞], lnp denotes the space Rn with the lp-distance. Let e(lnp ) denote the maximum

possible cardinality of an equilateral set in lnp .

Petty [6] proved that the maximum possible cardinality of an equilateral set in lnp is at

most 2n and that equality holds only in ln∞, as shown by the set of all 2n vectors with 0, 1-

coordinates. The set of standard basis vectors together with an appropriate multiple of the
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all 1 vector shows that e(lnp ) ≥ n+ 1 for all 1 ≤ p <∞, and the set of standard basis vectors

and their negatives shows that e(ln1 ) ≥ 2n.

Kusner conjectured that both examples are extremal.

Conjecture 1.1 (Kusner, [3]) e(ln1 ) = 2n.

Conjecture 1.2 (Kusner, [3]) For every 1 < p <∞, e(lnp ) = n+ 1.

The assertion of Conjecture 1.1 is easy for n ≤ 2, and has been proved for n = 3 in [2] and for

n = 4 in [5]. For large n, the best known upper bound is 2n− 1, and the existing techniques

supplied no nontrivial upper bound. Our main result here is a significant improvement of

the trivial estimate.

Theorem 1.3 There exists an absolute constant c > 0 such that the cardinality of any

equilateral set of vectors in ln1 is at most cn log n, that is: e(ln1 ) ≤ cn log n.

The assertion of Conjecture 1.2 is easy for p = 2, is proved in [7] for all real p sufficiently

close to 2 by a continuity argument, and has also been proved by Swanepoel (c.f., [7]) for

p = 4. Galvin (c.f., [7]) has shown that for every even integer p ≥ 2, e(lnp ) ≤ 1 + (p − 1)n.

For general p 6= 1 it is proved in [7] that e(lnp ) ≤ c(p)n(p+1)/(p−1).

The proof of Theorem 1.3 can be extended, with some additional effort, to provide a

similar bound for e(lnp ) for every odd integer p.

Theorem 1.4 For every odd integer p ≥ 1 there exists an absolute constant cp > 0 such

that the cardinality of any equilateral set of vectors in lnp is at most cpn log n, that is: e(lnp ) ≤
cpn log n.

Combining our basic approach here with the technique of [7] we can slightly improve the

known estimates for general non-integral p as well and prove the following.

Theorem 1.5 For every p ≥ 1 there exists an absolute constant c = c(p) > 0 such that

e(lnp ) ≤ cn(2p+2)/(2p−1).

Our proofs combine probabilistic, combinatorial and linear algebra tools with some results

from approximation theory. The proof of Theorem 1.3 is presented in Section 2. We then

describe, in Section 3, how to extend it and prove Theorem 1.4. Section 4 contains the short

proof of Theorem 1.5. The final Section 5 contains some concluding remarks.
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2 Equilateral sets in ln1

The basic approach

In this section we prove Theorem 1.3. Let A be a set of vectors in ln1 such that the distance

between any two is 1. Let m = |A|. Consider the m×m matrix M indexed by the vectors

of A in which M~a,~b = ‖~a − ~b‖1. By subtracting this matrix from the matrix of 1’s we get

the identity matrix I that has full rank m. Using the vectors ~a ∈ A we shall construct an

approximation of M , hence also of I. The precision of approximation and the rank of the

approximating matrix will depend on m. To get an upper bound on m we shall use the

following well-known lemma, whose short proof is included, for the sake of completeness.

Lemma 2.1 For any real symmetric matrix M ,

rankM ≥ (
∑

iMi,i)
2∑

i,jM
2
i,j

. (1)

Proof. Put r = rankM and let λ1, λ2, . . . , λr be all nonzero eigenvalues of M . Then∑r
k=1 λk = trace(M) =

∑
iMi,i and

∑r
k=1 λ

2
k = trace(M2) =

∑
i,jM

2
i,j. Therefore, by

Cauchy Schwartz ∑
i,j

M2
i,j =

r∑
k=1

λ2
k ≥

(
∑r

k=1 λk)
2

r
=

(
∑

iMi,i)
2

r
,

implying the desired result. �

As shown in [1], this lemma can be used for bounding the minimum possible dimension

of an Euclidean space in which one can embed an m-simplex with low distortion, and it is

therefore not surprising that it can be useful for our purpose here as well.

In our approximation of the identity, the diagonal elements will be close to 1, hence

(
∑

iMi,i)
2 will be close to m2, while

∑
i,jM

2
i,j will be O(m). Thus rankM will be essentially

an upper bound on m. Hence to get a bound on the number of vectors we have to get a

good upper bound on the rank of M . We shall construct M in such a way that rankM will

be a function N(n,m), thus the bound will be the maximum m such that N(n,m) is greater

or equal to the bound of Lemma 2.1. The approximation matrix will be a matrix of scalar

products of vectors in a space of dimension N(n,m).1 It will be constructed by splitting

each coordinate of the n coordinates of l1 into several ones and by defining for each vector

~a ∈ A a corresponding vector ~a∗ in dimension N(n,m). Here are more details.

1This is a slight simplification of what we actually will do. In our construction the dimension will depend
on the particular set A, so think of N(n,m) as an upper bound on it.
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Let us denote by δ(x) the following function

1 if x > 0

δ(x) =

0 otherwise

We shall use the following equality

|x− y| = |x|+ |y| − 2δ(xy) min(|x|, |y|). (2)

We decompose the matrix of distances in ln1 as follows

‖~a−~b‖1 =
∑
i

|ai|+
∑
i

|bi| − 2δ(aibi)
∑
i

min(|ai|, |bi|).

The matrix (
∑

i |ai| +
∑

i |bi|)~a,~b has rank at most 2, hence the essential part is the matrix

2δ(aibi)(
∑

i min(|ai|, |bi|))~a,~b. Our goal can now be stated as follows. We want to assign a

vector ~a∗ to every vector ~a ∈ A in order to approximate
∑

i δ(aibi) min(ai, bi) by the scalar

product (~a∗, ~b∗).2 The aim is to get a good approximation of the identity matrix

I = J −

(∑
i

|ai|+
∑
i

|bi|

)
~a,~b

+ 2

(∑
i

δ(aibi) min(|ai|, |bi|)

)
~a,~b

,

where J is the m×m matrix of 1’s, by the matrix

I∗ = J −

(∑
i

|ai|+
∑
i

|bi|

)
~a,~b

+ 2
(

(~a∗, ~b∗)
)
~a,~b
.

Then we want to use the inequality (1) as stated above, which means that the diagonal

elements of I∗ should differ from 1 by a constant less than 1, say 2/3, and the sum of the

squares of all (or all off-diagonal) elements should be O(m). This is the same as saying that

I − I∗ has elements in the range [1/3, 5/3] on the main diagonal and the sum of the squares

of all off-diagonal elements is O(m). Taking the right hand parts of the two equalities above

this translates to

1. for every ~a ∈ A, ∣∣∣∣∣∑
i

min(|ai|, |ai|)− (~a∗, ~a∗)

∣∣∣∣∣ =

∣∣∣∣∣∑
i

|ai| − ‖~a∗‖2
2

∣∣∣∣∣ ≤ 1

3
;

2. ∑
~a 6=~b

(∑
i

δ(aibi) min(|ai|, |bi|)− (~a∗, ~b∗)

)2

= O(m).

2To be more precise: we will approximate it by the difference between two such scalar products.
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We shall call I − I∗ = (
∑

i δ(aibi) min(|ai|, |bi|) − (~a∗, ~b∗))~a,~b the matrix of error terms. Let

us note that the rank of I∗ is at most the dimension of the space of the vectors ~a∗ plus 2.

Splitting coordinates will be done as follows. Without loss of generality we may assume

that A contains the zero vector (by picking any of the vectors and shifting all by it). This

zero vector will be a crucial reference point in the process of splitting coordinates. First we

shall dispose of the annoying function δ. This is easy, split each coordinate i into two and

represent ai by a∗i,1, a
∗
i,2, where a∗i,1 = ai and a∗i,2 = 0 if ai ≥ 0, and a∗i,1 = 0 and a∗i,2 = |ai|

otherwise. Then

δ(aibi) min(|ai|, |bi|) =
∑
j=1,2

min(a∗i,j, b
∗
i,j)

Notice that the new vectors have only nonnegative entries, in fact all ~a ∈ [0, 1]n because of

the zero vector. Thus we have reduced our problem to approximating a sum of minima of

coordinates of nonnegative vectors.

This was only the first stage of splitting coordinates, we need splitting coordinates into

more pieces in order to get a good approximation. As we do not want to overload notation

by too many indices, we shall assume that already the vectors in A are nonnegative. Next,

for each coordinate i = 1, . . . , n, we divide the interval [0, 1] into some intervals

[0, u1], (u1, u2], . . . , (uνi , 1]

(we shall use different partitions for different i’s). Each interval will correspond to a new

coordinate. Given a vector ~a ∈ A, its “approximation” ~a∗ will be defined as follows. The

value ai on the coordinate i will be replaced by νi values a∗i,1, . . . , a
∗
i,νi

. The basic idea of this

transformation is to take t such that ut−1 < ai ≤ ut and define

1. a∗i,j =
√
uj − uj−1, for j < t;

2. a∗i,j = 0, for j > t;

3. a∗i,t will be a suitable value between 0 and
√
ut − ut−1.

Let ~b be another vector from A and let us see how the scalar product (~a∗, ~b∗) approximates

the sum
∑

i min(ai, bi). Since both expressions are sums, we can compare them locally. Fix

an i and suppose ai = min(ai, bi). The corresponding term in (~a∗, ~b∗) is

νi∑
j=1

a∗i,jb
∗
i,j = (

√
u1 − 0)2 + (

√
u2 − u1)2 + . . .+ (

√
ut−1 − ut−2)2 + a∗i,tb

∗
i,t = ut−1 + a∗i,tb

∗
i,t.

Note that |a∗i,tb∗i,t| ≤ |ut−ut−1|, thus the error is at most ut−ut−1. We shall reduce the error

further by choosing the last nonzero component in a suitable way.
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Applying this in the most straightforward way gives a rather poor upper bound (which

is still far better than the previously known bounds) m = O(n4). To get a better bound we

use the following four ideas.

1. Recall that ~0 ∈ A and all ~a ∈ [0, 1]n. Thus, in particular, for all ~a ∈ A, ~a 6= ~0,∑
i

ai = 1. (3)

Therefore most of the components of ~a will be close to 0. Namely, at most 1/d of the ai’s

will be ≥ d, for 0 < d ≤ 1. Since large ai’s do not occur frequently, we do not have to

approximate them very precisely. Thus we may reduce the number of intervals by having

intervals of size increasing with the distance from 0. However the distance from 0 is not

crucial, what we need is that the interval is not hit by many ai’s. Therefore we adjust the

length of the interval to the density of values of vectors. The average length of the intervals

will be automatically larger further from 0.

2. Let ~a,~b, i and t be as above and suppose, moreover, that bi does not fall in the same

interval as ai, namely ut < bi. Then

νi∑
j=1

a∗i,jb
∗
i,j = ut−1 + a∗i,t

√
ut − ut−1.

Hence choosing a∗i,t = (ai−ut−1)/
√
ut − ut−1 ensures that this scalar product is equal exactly

to ai = min(ai, bi).

3. Another strategy for choosing the value a∗i,t is to choose randomly one of the two values

0 or
√
ut − ut−1 hoping that the errors will partially cancel out. The right way of doing this

randomized rounding is to choose randomly and uniformly a threshold τ ∈ [ut−1, ut], one for

all ~a ∈ A with ai in the interval, and round down, i.e., put a∗i,t = 0 if ai ≤ τ , and round up,

i.e., put a∗i,t =
√
ut − ut−1 otherwise.

Let ~a,~b ∈ A, let i be given and suppose ai ≤ bi. Let Xi denote the error on coordinate

i, which is Xi = |min(ai, bi) −
∑νi

j=1 a
∗
i,jb
∗
i,j|. Assume, moreover, that both ai and bi are in

the same interval and randomized rounding is used for both. (The bound below holds also

in other cases, but we do not need them.)

Lemma 2.2 E(Xi) = 0 and E(X2
i ) = V ar(Xi) ≤ 1

4
(ut − ut−1)2.

The first claim follows from the observation that because ai ≤ bi we have always

νi∑
j=1

a∗i,jb
∗
i,j = ut−1 + a∗i,j

√
ut − ut−1.
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Since E(a∗i,j) = (ai − ut−1)/
√
ut − ut−1 we get the first part of the lemma. The second part

follows from the following:

Fact: Let Y be a random variable taking values in the interval [a, b]. Then the variance of

Y is at most (b− a)2/4.

Proof: Define Z = 2Y−a−b
b−a , then −1 ≤ Z ≤ 1. Also, Z = −1 · 1−Z

2
+ 1 · 1+Z

2
and hence, by

the convexity of the function t2, Z2 ≤ (−1)2 · 1−Z
2

+ 12 · 1+Z
2

. Taking expectations in both

sides we conclude that E(Z2) ≤ 1, but

4

(b− a)2
V ar(Y ) = V ar(Z) ≤ E(Z2) ≤ 1,

as needed. �

We need to estimate the square of the sum of errors on all coordinates. If we used

randomized rounding everywhere, this would be (
∑

iXi)
2. Because Xi and Xj are indepen-

dent random variables for i 6= j and E(Xi) = 0, E((
∑

iXi)
2) =

∑
iE(X2

i ) (in other words

V ar(
∑

iXi) =
∑

i V ar(Xi)). Using the linearity of expectation, the expected sum of the

squares of error terms for all pairs ~a,~b would be bounded by the sum of such terms. Hence

for some choice of thresholds τ the sum of squares would be at most this.

4. The method of 2 ensures no error when bi does not fall in the same interval as ai, but

it is worse than the randomized rounding of 3 otherwise. On the other hand, randomized

rounding introduces errors always. To get the least possible error using these two methods we

would like to combine them so that we get the benefits of both. Surprisingly it is possible.

We shall triple the number of coordinates and denote the values a∗i,t,s, where s = 1, 2, 3.

For s = 1 we shall define the values as in 2; so these serve to get zero error when ai and

bi hit different intervals. The second set of coordinates will serve us to remove the effect

of the first one when ai and bi hit the same interval. So a∗i,t,2 = 0 if ai 6∈ [ut−1, ut], and

a∗i,t,2 = (ai − ut−1)/
√
ut − ut−1 if ai ∈ [ut−1, ut]; furthermore the scalar products of these

coordinates will be taken with the negative sign (think of subtracting this matrix of scalar

products). The last set of coordinates will be used to introduce the randomized rounding of

3 in case ai and bi hit the same interval. This will be done in the same manner as in 3 with

the difference that we put 0 on all coordinates that correspond to intervals not hit by ai.

The resulting effect will be exactly what we wanted: zero error when ai and bi hit different

intervals, and the error estimated in 3 when they do hit the same interval.

The choice of the intervals

1. In each coordinate divide [0, 1/n] into
√
m/
√
n equal parts of size 1/

√
nm. The number

of such intervals summed over all coordinates is
√
nm, which is o(m), if n = o(m). These
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intervals will be called base intervals. To avoid the problem with nonintegral values, we can

assume without loss of generality that n and m are powers of 4.

2. For every coordinate i we divide the rest of the interval as follows. We start from 1

and go down until the length of the interval times the number of hits is at least cn log n/m,

where c is a suitable constant that we will determine at the end of proof, or until we reach

1/ 3
√

2, whichever comes first. Then we continue in the same way, i.e., until the product is at

least cn log n/m or we reach some 2−t/3, for some t = 1, . . . , 3 log n. In the first case we call

the interval regular, in the second case singular.

Let (i1, (u1, v1]), . . . , (iK , (uK , vK ]) be an arbitrary enumeration of pairs of the form a

coordinate i and a non-base interval chosen on this coordinate, such that regular intervals

come first. Denote by k the number of regular intervals, let `j = vj − uj be the length of

the j-th interval and let hj be the number of times it is hit, i.e., hj is the number of vectors

~a ∈ A such that aij ∈ (uj, vj]. Thus we have

`jhj ≥
cn log n

m
, (4)

for regular intervals, and

`jhj ≤
2cn log n

m
, (5)

for all intervals. The number of singular intervals over all coordinates is bounded by 3n log n.

Computation

The main point is to upper bound the number of regular intervals. To this end we derive

several inequalities. Denote by tj the number t such that (uj, vj] ⊆ [2−t/3, 2−(t−1)/3]. First

we prove ∑
j

2−tj/3hj ≤ m. (6)

This is a consequence of (3):∑
j

2−tj/3hj ≤
∑
j

ujhj ≤
∑
j

∑
~a; aij∈(uj ,vj ]

aij ≤
∑
i,~a

ai ≤ m.

Next we prove
k∑
j=1

1

2−tj/3hj
≤ 3m

c
. (7)

Since intervals are disjoint (except for endpoints), by considering the volume we get∑
j; tj=t

`j ≤ 2−t/3n.
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By (4), we get

`j ≥
cn log n

hjm
,

for regular intervals (j ≤ k). Hence∑
j; tj=t

cn log n

hjm
≤ 2−t/3n,

where the sum is only over regular intervals. Thus, again summing only over regular intervals,∑
j; tj=t

1

2−t/3hj
≤ m

c log n
.

Summing over t = 1, . . . , 3 log n, we get (7).

To estimate k, the number of regular intervals in all coordinates, we use the Cauchy-

Schwartz inequality for x2
j = 2−tj/3hj with (6) and (7).

k2 =

(
k∑
j=1

1

xj
xj

)2

≤

(
k∑
j=1

1

x2
j

)(
k∑
j=1

x2
j

)
≤ 3m2

c
.

Hence

k ≤
√

3
c ·m. (8)

We shall estimate the error terms on diagonal elements (i.e., we shall estimate the diagonal

elements of the matrix I−I∗). Let ~a ∈ A. Let i be a coordinate and let ai ∈ (u, v] or ∈ [0, v].

The error on this coordinate is at most the length of the interval (this is achieved when ai

is one endpoint and the rounding gives the other).

First suppose that (u, v] or [0, v] is a base interval. Its length is 1/
√
nm. Thus the error

that all coordinates in which ai falls into a base interval can make is at most
√
n/m, which

is o(1) if n = o(m).

Now suppose (u, v] is a regular or singular interval. Then (u, v] ⊆ [2−t/3, 2−(t−1)/3], for

some t, hence v ≤ 3
√

2u. Thus the length of the interval is

v − u ≤ 3
√

2u− u = (
3
√

2− 1)u ≤ (
3
√

2− 1)ai.

Hence the error over all coordinates where ai ≥ 1/n is

≤
∑
i

(
3
√

2− 1)ai = (
3
√

2− 1).

Thus for n sufficiently large the error is at most 1/3.

Now we estimate the sum of squares of all off-diagonal elements of I∗, which is also the

sum of squares of all off-diagonal errors. Let ~a,~b ∈ A be two different vectors. Recall that
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the expected value of the square of the error for such a pair is bounded by 1/4 of the sum

of the squares of the lengths of intervals that are hit by both vectors. We can choose the

rounding thresholds so that we get at most the expected value, hence it suffices to estimate

the sum of the squares of such intervals.

The sum of the squares of the lengths of base intervals that are hit by such a pair ~a,~b is

at most

n ·
(

1√
nm

)2

=
1

m

Thus the base intervals contribute totally at most 1
4
m. To estimate the contribution of non-

base intervals, observe that each such interval contributes the square of its length times the

number of ordered pairs of different vectors that hit the interval. So this contribution is

K∑
j=1

(h2
j − hj)`2

j ≤
K∑
j=1

(hj`j)
2 ≤ K

(
2cn log n

m

)2

Hence, for a suitable choice of rounding thresholds the sum of the squares of all off-diagonal

elements is at most

1
4m+K

(
2cn log n

m

)2

(9)

Now we are ready to apply Lemma 2.1. Recall that the matrix of scalar products is

multiplied by 2, hence our estimates of the diagonal elements and the sum of the squares

of the off-diagonal elements must be multiplied by 2. Thus for diagonal elements we get a

lower bound 1/3 and an upper bound 5/3 (assuming n = o(m) and m sufficiently large).

For the sum of squares of off-diagonal elements the upper bound is twice the expression (9).

On the other hand, I∗ is the sum of a matrix of rank 2 and a matrix of scalar products

(more precisely a sum of such matrices). Hence I∗ has rank 2 plus at most the number of

coordinates of vectors that we use in these scalar products, which is the number of intervals

times 6, since we have doubled the number of coordinates in order to get rid of negative

signs and then tripled again to combine our two methods in an optimal way. Substituting

in Lemma 2.1, we get the following inequality:

(1
3
m)2

m(5
3
)2 + 1

2
m+ 2K

(
2cn logn

m

)2 ≤ 6K + 2.

Recall that we have proved (see (8))

K ≤ k + 3n log n ≤
√

3
c ·m+ 3n log n,

hence we get

(1
3
m)2

m(5
3
)2 + 1

2
m+ 2

(√
3
c ·m+ 3n log n

) (
2cn logn

m

)2
≤ 6

(√
3
c ·m+ 3n log n

)
+ 2.
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Let us write it in a more conspicuous form

(1
3
m)2

m(5
3
)2 + 1

2
m+ 2

(√
3
c ·m+ 3n log n

) (
2cn logn

m

)2
− 6

√
3
c ·m− 2 ≤ 18n log n.

Then it is clear that if we take c sufficiently big, it implies a bound m = O(n log n). This

completes the proof of Theorem 1.3. �

3 Extending the bound to all odd p

In this section we extend our O(n log n) bound to all odd integers p > 1 by proving Theorem

1.4. Since the proof is similar to that of Theorem 1.3, we only sketch it, highlighting the

differences. First we shall explain the idea for p = 3. Recall that we have reduced approx-

imating l1 norm to approximating a sum of minima. We shall do the same for l3 using the

following formula

|x− y|3 = |x3|+ |y3| − 2δ(xy) min(|x3|, |y3|)− 3|x|xy − 3x|y|y + 6δ(xy) min(|x2y|, |xy2|),

(see below for a derivation of the general formula for all odd integers). Note, first, that the

contribution of all terms with no minima to the rank of the approximating matrix is O(n), as

these can be expressed precisely by inner products of vectors of length O(n). Again we shall

assume that the zero vector is present in the set. When approximating
∑

i min(ai, bi) we

only used that the distance from the zero vector was 1. We used the fact that other distances

are 1 only in the final step, where we estimated the rank of the approximating matrix. So

to approximate the matrix of
∑

i min(|a3
i |, |b3

i |) we only need the following equality∑
i

|a3
i | = 1. (10)

Again, to get rid of the function δ, we split coordinates so that different ones are used for

positive and negative values of ai, so we can think of just having only positive values of ai’s.

Then we choose intervals in the same way as we did for ai, but now we do it for a3
i . The only

difference will be that we need to get a better precision for approximating error terms on

the diagonal, since the matrices of minima are with total weight 8 (instead of 2 in the case

of p = 1). Thus instead of 1, 2−1/3, 2−2/3 . . . we need a finer division. Therefore we replace

2−t/3 by 2−γt for γ > 0 such that 2γ − 1 < 1/8 (eg., γ = 1/8 will do; for p larger we will

need an appropriately smaller constant). The bound on the resulting error of approximating∑
i min(a3

i , b
3
i ) will be the same up to a multiplicative constant.

Next we have to approximate
∑

i min(a2
i bi, aib

2
i ). For this we shall use the same choice

of intervals, so the number of coordinates to which we split the original n coordinates will

11



be the same. (Thus, the total bound on the number of coordinates will be only twice bigger

than it was in case of the l1 norm.) But the values that we shall use will be different. Let

~a ∈ A be given, and let i be a coordinate. Let t be such that ut−1 < a3
i ≤ ut. Then we define

1. a∗i,j = ai
√

3
√
uj − 3

√
uj−1, for j < t;

2. a∗i,j = 0, for j > t;

3. a∗i,t will be 0 or ai
√

3
√
ut − 3

√
ut−1 in case of randomized rounding, and

ai
ai − 3

√
uj√

3
√
uj − 3

√
uj−1

otherwise.

We can view it also as if we scaled up the intervals from [u, v] to [ 3
√
u, 3
√
v] and multiplied

the original values by ai. Clearly, if a3
i and b3

i are in different intervals, we get the value

min(a2
i bi, aib

2
i ) precisely. If ut−1 < a3

i , b
3
i ≤ ut, the error is at most

aibi( 3
√
ut − 3

√
ut−1) = aibi 3

√
ut − aibi 3

√
ut−1 ≤ ut − ut−1.

This guarantees that the error on diagonal elements will be bounded by the same term as

for cubes, namely, it will be less than 2/3 for n sufficiently big.

In randomized rounding there is a small difference between what we do for cubes and

what we do for terms a2
i bi. When doing randomized rounding for cubes, we take randomly

and uniformly a threshold τ between u and v and round up if τ ≤ a3
i . When doing it for

terms a2
i bi we take randomly and uniformly τ between 3

√
u and 3

√
v and round up if τ ≤ ai.

The effect will be again zero expected error and the variance at most 1/4 of

(aibi( 3
√
ut − 3

√
ut−1))2 ≤ (ut − ut−1)2,

the square of the interval. Hence the estimate of the error will be again at most constant

times bigger than in the case of l1 norm.

When applying Lemma 2.1, it is clear that the constant time increase in the number of

coordinates and in the errors can be compensated by a larger constant in the estimate for

m. Thus we get an O(n log n) upper bound for the size of equilateral sets in l3.

Turning now to a general odd positive integer, let q be an arbitrary natural number. We

notice that

(x− y)2q+1 =

q∑
r=0

(−1)r
(

2q + 1

r

)
(x2q+1−ryr − xry2q+1−r)

=

q∑
r=0

(−1)r
(

2q + 1

r

)
(xy)r(x2q+1−2r − y2q+1−2r).

12



Since for odd t, |xt − yt| is xt − yt if x ≥ y and it is yt − xt otherwise, we get

|x− y|2q+1 =

q∑
r=0

(−1)r
(

2q + 1

r

)
(xy)r|x2q+1−2r − y2q+1−2r|.

Using our formula (2) for the absolute value of a difference, we get

|x−y|2q+1 =

q∑
r=0

(−1)r
(

2q + 1

r

)
(xy)r

(
|x2q+1−2r|+ |y2q+1−2r| − 2δ(xy) min(|x2q+1−2r|, |y2q+1−2r|)

)
.

Since δ(xy)(xy)r = δ(xy)|xy|r, we get finally |x− y|2q+1 =

q∑
r=0

(−1)r
(

2q + 1

r

)(
|x2q+1−2r|xryr + xryr|y2q+1−2r| − 2δ(xy) min(|x2q+1−ryr|, |xry2q+1−r|)

)
.

So again we only need to approximate the minima. As in the case p = 3, the number of

coordinates and the error will be only constantly larger than it was estimated in the proof

for p = 1. Hence the bound O(n log n) follows along the same lines.

4 A general lower bound

In this section we prove Theorem 1.5. The proof is short, and combines the argument of

Smyth in [7] with Lemma 2.1 here. We need the following result in approximation theory,

derived in [7] as a simple consequence of the classical result of Jackson [4].

Lemma 4.1 For every fixed real p ≥ 1 and for every d ≥ dpe there is a polynomial g of

degree at most d such that

|g(t)− |t|p| ≤ B(p)/dp

for all t ∈ [−1, 1], where B(p) = (dpep(1 + π2/2)dpe(p)dpe−1)/dpe!.

Fix p > 1, and let

A = {~a(i) = (a
(i)
1 , . . . , a

(i)
n ) : 1 ≤ i ≤ m }

be a set of m vectors in Rn so that the lp-distance between any pair of vectors in A is 1.

Let g(t) be a polynomial of degree d satisfying |g(t) − |t|p| ≤ 1
nm1/2 for all t ∈ [−1, 1],

where d ≤ c(p)n1/pm1/(2p). Such a polynomial exists by Lemma 4.1.

Define an m by m matrix matrix M = (Mi,j) by

Mi,j = 1− ‖~a(i) − ~a(j)‖pp = 1−
n∑
k=1

|a(i)
k − a

(j)
k |

p.

13



Obviously this matrix is simply the m by m identity matrix. Define an approximation M∗

of M by

M∗
i,j = 1−

n∑
k=1

g(a
(i)
k − a

(j)
k ).

By the properties of the polynomial g, |Mi,j −M∗
i,j| ≤ 1/

√
m for all i, j. It thus follows from

Lemma 2.1 that the rank of M∗ satisfies

rank(M∗) ≥ (m(1− 1/
√
m))2

m(1 + 1/
√
m)2 +m(m− 1)/m

≥ m

2
(1− o(1)). (11)

On the other hand, for each i, the row number i of M∗ is the vector whose j-th coordinate

is gi(a
(j)
1 , . . . , a

(j)
n ), where gi is the polynomial

gi(x1, . . . , xn) = 1−
n∑
k=1

g(a
(i)
k − xk).

Since all these polynomials lie in the linear span of the members of

U =
{

1,
∑n

k=1x
d
i , x1 , x

2
1, . . . , x

d−1
1 , x2, x

2
2, . . . , x

d−1
2 , . . . , xn, x

2
n, . . . , x

d−1
n

}
,

it follows that the dimension of the row space of M∗ is at most 2 + (d− 1)n ≤ dn. Indeed,

each row of M∗ is a linear combination of the 2 + (d− 1)n vectors{ (
f(a

(1)
1 , a

(1)
2 , . . . , a(1)

n ), (f(a
(2)
1 , a

(2)
2 , . . . , a(2)

n ), . . . , (f(a
(m)
1 , a

(m)
2 , . . . , a(m)

n )
)

: f ∈ U
}
.

Combining this with (11) and the fact that d ≤ c(p)n1/pm1/(2p) we conclude that

m

2
(1− o(1)) ≤ c(p)n1/pm1/(2p)n,

implying that m ≤ c′(p)n(2p+2)/(2p−1). This completes the proof of Theorem 1.5. �

5 Concluding remarks and open problems

• The proof of Theorem 1.5 works for p = 1 as well, and provides a short proof for the

fact that e(ln1 ) ≤ cn4 for some absolute constant c. The more complicated proof of

Theorem 1.3 supplies a better estimate.

• Both conjectures of Kusner mentioned in the introduction remain open, and although

the estimates we prove here may possibly be improved using similar techniques, it seems

unlikely that the methods described here will suffice to prove the precise statements of

the conjectures.
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• Our methods here can be used to estimate the maximum possible cardinality of a set of

vectors A in Rn, such that for every two distinct members (a1, . . . , an) and (b1, . . . , bn)

of A, the sum
∑

i φ(|ai − bi|) is a nonzero constant, where φ is a sufficiently smooth

function satisfying φ(0) = 0. The method of Section 4 works better for functions φ that

have low degree polynomial approximations, and the quality of these approximations

near 0 is the main factor effecting the bound obtained.
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